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Abstract— Solving visual features’ correspondence and deal-
ing with missing data are two factors of limitations for points
registration techniques. To tackle this problem, we conceived a
pattern, primarily designed for structured lighting vision sys-
tems, which may also be used for camera calibration purposes.
The pattern design previously presented in [1] provides a huge
of benefits. Among them, we firstly present a new calibration
technique of a structured lighting system and secondly an
automatic distortion compensation based on a printed pattern.
These two well-known issues are very useful in 3D vision-based
metrology with range data, for instance for model-based visual
robot control, especially when the model is incrementally built
with a real-time 3D reconstruction of moving surfaces. Perhaps,
one of the most significant profit with a high Hamming distance
pattern is the ability to reliably decode its projected individual
elements even if several of items are missing, as it greatly
extends the range of measurements volume.

A technique which solves the distortion parameters by
means of a robust M-estimator algorithm is presented. It uses
a printed pattern and it allows the distortion be corrected
with a single view and without the computation of other
(intrinsic/extrinsic) parameters, even in presence of occlusions.
Experimental results, in one hand by means of a printed pattern
for the distortion compensation of a rigid endoscope and on the
other hand by means of a projected pattern for the calibration
of the structured lighting system, show very good performance
for the 3-D reconstruction.

I. INTRODUCTION

For three decades, the field of vision-based robotics has

been widely grown, and more and more complex 3D scenes

are within robot reach due to deeper understandings of the

scene perception, the increase of computer capabilities and

control theory. For its wide field of applications, surfaces

reconstruction is one of a very important topic in computer

vision. This problem is related to structure from motion,

stereovision, pose determination and so on, which results in

applications including object modeling, mobile robot navi-

gation and localization, environments building. Calibration

is then a key step when accurate measurements of the

3D shape of an object or its 3D localization are required.

Among the 3D shape measurement techniques, structured-

light-based techniques are very efficient due to their fast

speed and noncontact nature. Compared to a classical stereo

vision system, structured lighting differs in that it solves

the fundamentally problem of matching by replacing one

camera by a light pattern projector. When the whole vision

system is projectively identified, correspondences between

views may be easily found for stereo vision or with an
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exhaustive search in the pattern array for structured light

vision systems. In the latter case, the pattern design is a

crucial step for quickly solving features’ correspondence

with neighborhood techniques, a class of techniques used

for capturing the 3-D shape with a single shot. Therefore it

can be applied for dynamic scenes. The matching problem

is then closely related to the choice of the pattern and to the

associated coding strategy since finding the correspondences

depends on the ability of the decoding stage to locate the

pattern elements in the image [12].

A. Motivations and related works

We are currently being developing an endoscopic range

finding system using a low-power laser beam illuminating

the pattern. This system is designed so as to be used for

robotic assistance in minimally invasive surgery. Except for

robotic tasks concentrated on area close to the image centre,

the distortion effect of such wide-angle camera lens is very

significant in many situations, that is estimation errors could

be very large for ulcer size determination or for surgical

needle localisation for instance.

As the 3D reconstruction accuracy strongly depends on

that of the calibration of the vision system, we seek a

procedure which compensates for non-linear projections

and outliers detection. Usually, the calibration of a vision

system with structured lighting system requires two major

stages. The first one is the camera(s) calibration and the

second one is corresponding both to the identification of

the position/orientation of the projector wrt to a common

reference frame but also for its internal parameters. In

the sequel, we provide a brief state-of-the-art mainly for

structured lighting systems calibration but we also referred

to some recent works about distortion camera evaluation

since there is a vast literature about camera calibration and

many techniques developed in the last two decades can be

applied (see also [11] for a review).

Nakamura et al. [5] have designed an active scanning

system with structured lighting for the reconstruction of 3-D

intraoperative local geometry of pointed organs. With a 2-D

galvano scanner and two cameras, a real-time registration of

the area of interest was performed in order to alleviate the

surgeon to mentally estimating the depth. A robot vision

system that automatically positions a surgical cleaning

instrument with a stationary camera mounted onto a long

pipe laparoscope has been carried by Krupa et al. [6]. To

this end, a laser pointer has been designed to emit 4 markers

on the organ’s surface. The distance estimation between

the pointed organ surface and the tip of the instrument
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was based on the projective invariance of the cross-ratio

with a set of collinear active markers sticked on the

instrument shaft and aligned with laser markers. With these

two related works in the field of image-guided robotized

surgery and active vision, the tracking behaviour and the

positioning accuracy were disturbed by the high radial

distortion effect with endoscopic devices. In both case, the

distortion was corrected with one of the early techniques

which simultaneously estimate the camera placement [11].

Hence, the video information related to the distortion may

be disturbed by both perspective distortion, noise and the

focal length value.

The distortion can be seen as a measure of the deviation

of the imaged pattern elements with respect to those

projected according to the pinhole model. The design

of an extra geometric transformation which incorporates

non-linear effects should lead to shrink the distance which

separates the real projection from a true perspective.

Then, a suitable distortion correction could be expressed

as a prior image warping with a faithfully color interpolation.

II. THE CODED STRUCTURED LIGHTING

Among the 3-D shape measurement techniques, structured

light-based techniques are very efficient due to their non-

contact nature. Compared to stereovision, structured light

differs in that it solves the matching by replacing one camera

by a light pattern projector. Structured light techniques can

be classified, according to the strategy of encoding the

pattern, into three categories [12]: time multiplexing, direct

coding and spatial neighborhood. Time multiplexing can

achieve a good accuracy and a high resolution, however it is

unsuitable with dynamic scenes since multiple patterns must

be projected successively. Direct coding techniques provide

a good spatial resolution but their applicability is limited due

to their sensitivity to noise and to light variations.

A. The neighborhood-based techniques

Techniques based on the spatial neighborhood strategy tend

to integrate the entire coding scheme in a unique pattern.

Therefore it can be applied for dynamic scenes. The coding

must alleviate any ambiguity while identifying the compo-

nents and must also increase the robustness of the decoding

algorithm, even in the presence of occlusions. The code of

each pattern component depends on its value and on those

of its neighbors. To tackle the decoding of a partially visible

pattern, some authors adopted the theory of Perfect Maps

(PM) to encode a unique pattern ([9], [14], [7], [8]). If A is

a (m×n) pattern matrix in which each element is taken from

an alphabet of k symbols, and if A has a window property so

that each (p×q) submatrix apq appears exactly once, then A

is named a Perfect Map. If A does not contain the submatrix

filled with 0’s, it is called an M-array. The robustness of the

methods adopting the projection of such patterns is due to

their capability to decode the visible parts of the observed

pattern thanks to the properties of the M-array’s. Since we

are interested in surfaces reconstructions of non-structured

0

0

2 1 2

0 2

1 1

Code : 012102210

(a)

(b)

Fig. 1. Pattern of 783 elements based on central-symmetric perfect maps.
(a) Definition of the codeword of each (3× 3) submatrix. (b) The whole
pattern of size (27×29) built with only three distinct geometrical features.

scenes as it is the case in medical endoscopy, we have to face

with the classical problems of shadows and occlusions. In

such situations, a key factor is to design an encoded pattern

with a significant Hamming distance. The Hamming distance

h quantifies differences between codewords. If this distance

is higher than 1, some errors may be corrected. It was shown

in [7] that we can obtain better results when the Hamming

distance is higher than 3. However, most of referenced

methods used such a distance but with more symbols as

it is the case in [7] with k = 8 symbols. To represent the

symbols, some authors use gray levels or colors [8], [3].

For the application of concern, and after the study of the

light-organs interaction, we chose to associate a geometrical

feature to a symbol to generate a monochromatic pattern.

B. Design of the proposed pattern

The feasibility of building a pattern with a small h value

depends on m, n, k and p× q. To reduce the search space

of each codeword location during the decoding stage, it is

suitable to use the smallest value of k, as there are kpq

distinct codewords, and that (m − [p/2])(n− [q/2]) words

are necessary to build A. Therefore, a lower bound of k can

be defined as

k ≥ (m− [p/2])(n− [q/2])(1/pq) . (1)

In [7], the authors proposed an algorithm to generate M-

arrays given m, n, k, h, and p×q. The algorithm generates

a M-array with fixed properties using a bruteforce approach.

For example, to generate a M-array using three symbols

with a window property of 3× 3, we start by choosing a

3×3 subarray randomly. Then a (1×3)-column of random

elements through the alphabet is added to the right of

this initial subarray followed by adding random rows of

(3×1) beneath the subarray maintaining the integrity of the

window property and the Hamming distance between the

resulted windows. The horizontal and vertical processes are
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repeated while the starting coordinates is being incremented

by one, until the entire array is filled. For our application of

interest, we have used a similar algorithm where we imposed

additional constraints. Besides the uniqueness of each (3×3)
window, the pattern matrix must have a central symmetry for

an efficient realization with diffractive optical elements. To

increase the Hamming distance, the acceptance test has been

extended to codewords with missing upper corners. This test

led to generate a pattern with an average Hamming distance

of h̄ = 6.173 [1]. The pattern codewords are all of length

9 (p = q = 3) and only k = 3 simple geometric features

(disc= 0, circle= 1 and stripe= 2) have considered; the latest

one carries a directional information, thus it simplifies the

neighbors detection and speeds up the decoding. A codeword

Ci j is defined from A by the shape value at (i, j) and the

shape value of its 8 adjacent neighbors (see Fig. 1-a).

III. CALIBRATION

A. Calibration of the structured lighting vision system

1) A global approach: The calibration of the overall

active vision system could be tackled with the projector

thought as a camera device, but with a constant view. This the

case in [4] and [10]. Considering the perspective projection

model, Pc = Kc [I | 0] such that mc ≡ Pc Mc and the upper

triangular (3×3) matrix Kc = (kc
1,k

c
2, [0 0 1]T)T of camera

parameters. This modeling leads to seek a solution for





(kc
1)

T −
[
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i j

]

(kc
2)

T −
[
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i j
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
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


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j )
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

 tLC .

(2)

where M̃i j are the 3D (inhomogeneous) coordinates of the

projected element in position (i, j) in the matrix pattern,

mc
i j = (uc

i j,v
c
i j) its image coordinates, KL a projector intrinsic

parameters matrix (see Fig. 2-a). C is a rank-3 (3 × 3)
real matrix. With a distortion-free laser model, the third

row of C is computed with points Mi j of identical index

j. Such points lie on a common plane π j defined by the

jth pattern row δ L
j , KL and the laser centre. Then, δ L

j and

Mi j are related with (δ L
j )

T KL(RLCM̃i j + tLC) = 0 in the

camera frame. Once the camera calibration is done, one

needs to estimate only the epipole and the homography

of a plane at infinite distance, H∞, not the transformation

(RLC,tLC) between the projector frame (RL) and the camera

frame (RC), since in (2) H∞ Kc = KL RLC and the epipole

e ≡KL tLC. In practice, this can be achieved with two sets of

printed patterns on two non-parallel world planes on which

laser beams are simultaneously projected. Note that both

printed and projected patterns may be pseudo-random array.

The major problem with such approach is its sensitivity to

non-linear effects coming from the projector lens. That’s

why we present in the next paragraph a different solution.

2) The proposed technique: We propose to calibrate each

pattern element individually. In an earlier work, Zhou [16]

has considered the calibration of each stripe line. In compar-

ison to this work, we are dealing with each element and

its own codeword. Furthermore, our technique takes into

account the distortion of the projector lens and missing data

which may occur in several images. To do so, a calibration

plane is used both for camera calibration purposes but also

to collect the projections of all pattern elements. Since the

camera-to-plane transformation can be retrieved, the three

coordinates of any point on this plane can be estimated

provided it is visible. This the case for the intersections

of each pattern element beam with the calibration plane.

These intersections are all lying on the same line and are

corresponding to an irregular sampling of the line, it doesn’t

matter whether the pattern beam element has been previously

distorted or not through the projector lens. Therefore, we use

this interesting property to conceive an algorithm.

For each attitude of the calibration plane, two images are

acquired. The first one, with the projector switch off, is

used to compute the plane parameters embedded in a 4-

vector π = (rT

3 ,−d⊥) where r3 is the third column of the

rotation matrix Rco between the camera frame and the plane

frame (x− y plane) and d⊥ = tTcor3 is the signed orthogonal

distance from the calibration plane to the camera origin. tco

is the position vector between the frame origins. The second

image is used to capture each imaged pattern projection

mπ = (uπ ,vπ ,wπ)T when the projector is turn on. As the

projection is issued from a 3-D point Mπ = (Xπ ,Y π ,Zπ ,1)T

on the plane π , it must verified πTMπ = 0. Expressing

the perspective projection with mπ ×Pc Mπ = 0, it comes

Zπ = d⊥
rT

3 (Kc)−1mπ . Each pattern line Li j is then defined by a

set p intersection points M
π(k)
i j , the superscript k = 1, · · · , p

is referred to the kth image, hence the p transformations

(Rco, tco), then the p attitudes of the calibration plane.

Finally, with any two distinct points M
π(k)
i j and M

π(l)
i j on Li j,

one may built the Plückerian matrix Li j, a (4×4) rank-2 real

matrix as (subscripts i and j are dropped for clarity)

L = Mπ(k)Mπ(l)T−Mπ(l)(Mπ(k)T =

[
[w]× −v

vT 0

]

. (3)

With more points, L may be evaluated with the Least Mean

Squares technique, that is with p ≥ 2 geometrical primitives,

one per image, emanating from the same pattern element.

One can notice that the method can handle missing data for

several attitudes, when for instance some points are out of

the camera field-of view. The only condition is to capture at

least two geometrical primitives with the same codeword in

the set of p images, then it allows to consider a large range of

position and orientation values of the calibration planes. The

set of dual Plückerian matrices L⋆
i j (obtained directly from

L by permuting the two vectors v and w) are representing

the calibration of the projector with respect to the camera

frame. To conclude, since any 3-D point belongs to this line

if L⋆M = 0, the back-(perspective) projection rule is used for

computing the 3D coordinates

M = Z

[
(Kc)−1

0T

]

m + [0 0 0 1]T . (4)
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Fig. 2. (a) Geometrical description of the vision system with a structured light coded (5×5) upper-left sub-matrix of the original (flipped) pattern in Fig
1-b. (b) The experimental setup with a digital camera and a video-projector. The camera captures two images; the first one with the projector off is used
to acquire the calibration plane texture (corners of the checkerboard). The second one, when the projector is turn on, grabs the images of the in field of
view projections of the structured light pattern elements.

B. About the distortion model

In this part, we describe the distortion model we retained for

high-distortion vision sensors. Although the following model

has been thought for endoscopic devices and is not new, it

may also be applied to any radially distorted fisheye optics

mounted on more popular vision systems with a wide-angle

lens. In this latter case, non-linear effects rather results of

imperfections in the design or alignement of group of lenses

due to low cost materials and quick implementation.

The camera model is based on the perspective projection

affected by some distortion effects (radial pincushion, radial

barrel, tangential or thin prism distortions). Brown [2] has

presented fourty years ago a model for lens distortion.

Although Brown’s formulation can account for all the above-

mentionned distortion effects, we shall focus on a radial

distortion model. Let mu = (xu,yu,1)T and md = (xd ,yd ,1)T

be respectively undistorted and distorted image points. The

distortion model we consider herein may be expressed as

mu = mdc + D(rd) (md −mdc) (5)

with r2
d = (xd −xdc)

2 + 1
a2

r
(yd −ydc)

2 and D(rd) = 1+κ1 r2
d +

κ2 r4
d + · · ·+ κn r2n

d . mdc = (xdc,ydc,1)T is the distortion

centre and ar is the aspect ratio. As ar only depends on

properties of the imaging array and digitizing electronics,

we assume it is known as it is part of the set of instrinsic

parameters which can be estimated with techniques based on

the undistorted projection [15].

C. The robust distortion correction

In this section, we present a solution for the distortion’s

correction problem. The distortion parameters κi of the poly-

nomial D(rd) (see section III-B) can be recovered linearly

from the images of interest points that are collinear in space.

Like in [13], let us assume that the distortion centre coincides

with the image centre 1 and that the image coordinate

1It seems advisable not to recover the distortion center if the lens has a
very small distortion value.

system is centered in this point. Then consider the images

of three collinear points m
(i)
u = (x

(i)
u ,y

(i)
u )T. If these points

are collinear once the distortion is corrected, we must have

m
(0)
u m

(1)
u ×m

(0)
u m

(2)
u = 0. With the distortion model (5), this

leads to
∣
∣
∣
∣
∣
∣
∣

x
(0)
d

x
(1)
d

x
(2)
d

y
(0)
d y

(1)
d y

(2)
d

f (r
(0)
d ) f (r

(1)
d ) f (r

(2)
d )

∣
∣
∣
∣
∣
∣
∣

= 0 , (6)

with λ1 = −κ1, λ2 = −(κ2 − κ2
1 ), λ3 = −(κ3 − 2κ1κ2), ...

and f (rd) = 1/D(rd) = 1 + ∑l=n
l=1 λl r2l

d . Contraints can

be accumulated from all possible triplets of points that are

projections of collinear points in the calibration pattern. We

thus obtain a linear equation of the form A Λ = b where

Λ = (λ1,λ2,λ3 · · ·)
T is the vector of unknowns. Minimizing

the algebraic distance by the accumulation of the residuals

∑i ξ 2
i = ‖A Λ−b‖2 with the standard least squares through

the SVD of matrix A yields the parameters that maximize

the collinearity of the rectified points. However, to handle

properly the estimation in presence of noise and corrupted

data, a robust estimation has to be performed. The Itera-

tively Reweighted Least Squares algorithm (IRLS) aims at

solving the following system WA Λ = W b where W =
diag(w1,w2, · · · ,wn) is a diagonal matrix where wi reflects

the confidence of each feature. To do so, a sigmoid function

is useful for favouring the confidence of farthest interest

points from those close to the image center. Considering

that the noise acts statistically with the same strengthness

all over the image, it makes sense to pick up the distortion

information rather close to the image borders. Then, the

weight can be expressed as wi(rd) = 1

1+e
−a|r

(i)
d

−c|
and one has

to follow the iterative minimization (at step k)

min∑
i

w(ξ
(k−1)
i ) ξ 2

i , (7)

and the weight w(ξ
(k−1)
i ) must be recomputed at every step.
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(a) (b)

Fig. 3. (a) Projection on the three parallel planes. (b) Detection and
decoding: the red color is corresponding to well-decoded primitives.

IV. EXPERIMENTAL RESULTS

A. Validation of the calibration

The experimental setup consists of a digital camera AVT

Pike F100C and a video-projector Sony VPL-CS6 (Figure

2-b). The image size is (512×512) pixels. The sizes of the

printed pattern are about (15×18) cm. 14 different positions

of the pattern plane have been considered for the experi-

ments. For each attitude, two images have been captured,

the first one when the projector is switch off, the second

one when it is turn on. With the set of captured images of

the printed pattern, both the camera intrinsic parameters and

the 14 euclidean transformations from the camera-to-plane

euclidean transformations are estimated. With the images of

the projected pattern, each pattern line (the laser beam) is

evaluated as described in section III-A.2. In order to assess

the accuracy of the calibration of the overall vision system

(results of the camera parameters are not reported here), we

have projected the pattern onto three parallel planes (Figure

3-a). The distance between each pair of planes has been

measured previously at several positions with a mechanical

measurement device (values are reported in the first column

of TABLE I). The three planes have been placed inside

a workspace corresponding to a depth range of 600-800

mm. Then, each image has been segmented so as to locate

primitive centres. Then, each primitive has been classified

according to its shape and the neighborhood search provides

the associated codeword (see [1], for further details). In

Figure 3-b, the primitives which are correctly decoded are

drawn with a red color, the others are drawn in blue.

The set of calibration data corresponding to all pattern ele-

ments are used to reconstruct the three planes, independently,

(Figure 4-a) that is the computation of the triple {π1,π2,π3},

expressed in the camera frame (see section III-A.2). To do

so, a robust estimation has been carried out. Several k = 14

viewpoints have been acquired so as to collect a set of vectors

{π1k,π2k,π3k}, allowing to compute the relative distance and

orientation between planes and the average of interdistance

differences. These data are gathered in the TABLE I. One

can see that the distance error is always less than 0.9 mm

and the angle error is always less than 1◦ (0.5◦ in average)

in the considered workspace.
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Fig. 4. (a) The planes reconstruction by means of the 3D coordinates
estimates of the pattern projections. (b) A new view of the three planes
computed from the 3D reconstruction and after the robust estimation of
vectors π1,2,3.

Surfaces True Mean Distance Angle
distance (mm) distance (mm) errors (mm) (◦)

1-2 16.50 16.27 0.48 0.15
1-2 16.00 0.84 0.53
1-2 16.75 0.75 0.87
1-2 15.98 0.88 0.77
2-3 16.70 16.71 0.21 0.11
2-3 16.58 0.52 0.09
2-3 16.98 0.75 0.74
2-3 16.78 0.45 0.91

TABLE I

RECONSTRUCTION ERRORS FOR THE THREE PARALLEL PLANES.

B. Evaluation of the radial distortion correction

(a) (b)

Fig. 5. (a) A part of the imaged pattern. (b) Successfully decoded primitives
are drawn in red color. Blue ones correspond to the only segmented (but
not decoded) primitives.

Many experiments have been conducted with an endoscopic

Karl Storz c© vision system with a straight laparoscope of

35 mm of length and 10 mm of diameter. The segmentation

approach use the contours for detecting the symbols. Then

the contours are classified in order to label each contour

by one of the three pattern primitives. The classification of

the primitives (circle, disc or stripe) is based on first-order

statistics for the circle and on second-order for the two other

primitives (see [1] for more details). Once the neighbors of

each pattern features are detected, its codeword is determined

as illustrated on Fig. 1-a. Therefore, an exhaustive search

is carried out to find the primitive location in the original

matrix pattern taking advantage of the pattern robustness.

On the Fig. 5-b, the segmented primitives (in blue) and the

decoded ones (in red) have been drawn. One may observe

that not all the pattern is visible (Fig. 5-a). Except close to
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the boundaries of the selected polygonal image region, all

the primitives have been successfully decoded.

The computation of the pattern primitives displacement has

been performed. On Fig. 6, the red square are corresponding

to corrected positions whereas green triangles are the initial

primitives’ positions. The distortion centre has been evalu-

ated and its position is drawn on this figure (pink star). All

the endoscopic images has been corrected, and a set of three

sample images and corrected ones have been reported on Fig.

7, thanks to a backward warping and gray-level interpolation.

Fig. 6. Correction of the centres’ coordinates of each decoded pattern
primitives (red square). The estimated distortion centre (drawn with the pink
star) is computed thanks to a sampling grid of (0.5 pixels step) dimensions
(10×10) around the image centre.

(a)

(b)

Fig. 7. Two images acquired with a straight laparoscope at distinct distances
and orientations from the calibration pattern. Left: distorted images. Right:
corrected images.

V. CONCLUSION

We have presented a new calibration method for structured

light vision system and a distortion compensation technique

both using a robust pattern based on perfect maps. We have

followed the strategy of spatial neighborhood for coding the

structured light with only three symbols to design the overall

pattern. One of them carries the local orientation so as to

reduce the search of the neighbors during the decoding stage.

The distortion compensation as well as the calibration of

each pattern element assess the practicability of the proposed

pattern for calibration purposes since the pattern (printed or

projected) and its associated decoding algorithm allow to

automatically and quickly solve the correspondences. Since

the Hamming distance of any pair of codewords is greater or

equal to one, the pattern exhibits a high degree of robustness.

This is needed even for the distortion compensation as

the pattern element are captured in disorded configurations

and some of them may be out-of-field of view or blurred.

Considering the accuracy, the proposed calibrations are not

superior to early techniques, excepted in presence of a pro-

jector with strong distorsions. They are rather two convenient

methods for in situ calibration with automatic matching.

The experimental results we obtained with a high distorted

straight laparoscope show very good performances in the

distortion compensation and 3-D reconstruction accuracy.

REFERENCES

[1] C. Albitar, P. Graebling, and C. Doignon. Robust structured light
coding for 3d reconstruction. In IEEE Int’l Conf. on Computer Vision,
Rio de Janeiro, Brazil, October, 14-20 2007.

[2] D.C. Brown. Decentering distortion of lenses. Photogrammetry

Engineering, 32:444–462, 1971.
[3] C. Chen, Y. Hung, C. Chiang, and J. Wu. Range data acquisition

using color structured lighting and stereo vision. Image and Vision

Computing, 15:445–456, 1997.
[4] C. Doignon and D. Knittel. A structured light vision system for out-

of-plane vibration frequencies location of a moving web. IAPR Int’l

Journal of Machine Vision and Applications, 16(5):289–297, 2005.
[5] M. Hayashibe and Y. Nakamura. Laser-pointing endoscope system

for intra-operative 3d geometric registration. In IEEE Int’l Conf. on
Robotics and Automation, Seoul, Korea, May 2001.

[6] A. Krupa, J. Gangloff, C. Doignon, M. de Mathelin, G. Morel, L. Soler,
J. Leroy, and J. Marescaux. Autonomous retrieval and 3d positioning
of surgical instruments in robotized laparoscopic surgery. IEEE Trans.

on Robotics and Automation, 19(5):842–853, October 2003.
[7] A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov.

Structured light using pseudo-random codes. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 20(3):322–327, 1998.

[8] J. Pagès, Ch. Collewet, F. Chaumette, and J. Salvi. An approach to
visual servoing based on coded light. In IEEE Int’l Conf. on Robotics

and Automation, pages 4118–4123, 2006.
[9] E.M. Petriu, T. Bieseman, N. Trif, W. McMath, and S. Yeung. Visual

object recognition using pseudo-random grid encoding. In IEEE/RSJ

Int’l Conf. on Intelligent Robots and Systems, pages 617–624, 1992.
[10] M. Ribo and M. Brandner. State of the art on vision-based structured

light systems for 3d measurements. International Workshop on Robotic

and Sensor Environments, pages 2–6, 2005.
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