
  

  

Abstract—In this paper, parallel link mechanisms for multi 
drive linear motors (MDLMs) are proposed. The multi drive is a 
control method for linear motors in which a number of moving 
parts are individually driven on one stator part. Various 
configurations of parallel link mechanisms which were 
constructed for MDLMs are proposed. These mechanisms offer 
a wide range of motion in addition to the existing characteristics 
that parallel mechanisms provide, namely, rigid mechanisms, 
high precision, and high speed. Moreover, they are suitable for 
force control because of their low friction direct drive actuators. 
In this paper, the kinematic and dynamic characteristics of 
2-DOF (xy) and 3-DOF (xyθ) planar parallel link mechanisms 
are investigated. A singularity analysis and internal force 
control method for a 3-DOF with 4 redundant moving parts is 
derived. The condition of dynamic decoupling and the constant 
inertia design of a 2-DOF with 2 moving parts and a 3-DOF with 
4 moving parts are derived. The effectiveness of these analyses is 
then confirmed by numerical simulation. Based on this analysis, 
a prototype of the 3-DOF with 4 moving parts is designed and 
developed.  

I. INTRODUCTION 
A robotic system with parallel link mechanisms (PLMs) has 

mechanical characteristics such as rigidity of the mechanism 
and precise positioning [1]-[3]. These characteristics enable 
them to stably perform contact tasks with sensitive force, e.g. 
mold grindings and rehabilitation robotics. On the other hand, 
mechanical interference and the singularity of the mechanism 
restrict the robot’s movable range [4]. PLMs have therefore 
been conventionally applied not to general-purpose industrial 
robots, but to special-purpose machines [5]-[6]. 

 In order to expand this limited application of PLMs, new 
parallel link mechanisms with multi drive linear motors 
(MDLMs) are proposed. The multi drive is a control method 
for linear motors in which a number of moving parts are 
individually driven on one stator part. In this paper, we 
propose various configurations of PLMs that were 
constructed for MDLMs. These PLMs expand the robot’s 
movable range while retaining the advantageous rigid 
mechanism and precise positioning that PLMs offer. 
Moreover, the proposed PLMs are suitable for force control, 
because linear motors are directory driven without friction 
full gearings. In this paper, we investigate the kinematics and 
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dynamic characteristics of 2-DOF (xy) with 2 moving parts 
(2D2M), and 3-DOF (xyθ) with 3 non-redundant moving 
parts- (3D3M) and 4 redundant moving parts- (3D4M) planar 
parallel link mechanisms. The redundancy of the PLMs is not 
used only for singularity avoidance as sought by conventional 
research, but is also used for forward kinematics computation 
[7] and calibration of the mechanism [8][9], which have been 
standing problems with conventional PLMs. 

II. CONFIGURATIONS OF LINK MECHANISM 

A. Multi Drive Linear Motor 
A ball screw driven by a rotational motor, as shown in 

Fig.1 (a), is generally used as a linear actuator in conventional 
PLMs. A single driving part moves in a straight line on a 
linear stator; we will refer to this below as a single drive. A 
single drive disturbs the space in which movement takes 
place, and restricts the general-purpose application of PLMs. 
Moreover, it is difficult in principal for the load of the tip to 
be transmitted to the actuator, which in turn renders the ball 
screw drive incapable of force control.  

To cope with these problems, multi drive linear motors 
(MDLMs), as shown in Fig.1 (b), were employed in our 
research. MDLMs offer a way to arrange more than one 
moving part on one stator of a linear motor, with each moving 
part individually controlled and driven. 

Various configurations of parallel link mechanisms that 
were constructed for MDLMs are proposed. These 
mechanisms offer a wide range of motion, in addition to the 
existing characteristics that parallel mechanisms offer, 
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namely rigid mechanisms, high precision and high speed. 
In this paper, the kinematics and dynamic characteristics of 

2-DOF (xy) with 2 moving parts on one stator (2D2M), and 
3-DOF (xyθ) with 3 non-redundant moving parts- (3D3M) 
and with 4 redundant moving part- (3D4M) planar parallel 
link mechanisms are investigated. It is possible to expand the 
range of motion of PLMs to three dimensions by using more 
than two stators. 

B. Configuration of 2-DOF Planar Mechanism 
The configuration of a 2D2M planar PLM is shown in Fig. 

2. The 2D2M PLM has mechanical characteristics such that 
the mechanical compliance on the horizontal (xy) plane is 
higher than that of the vertical (z) direction. It is suitable for 
part-fitting tasks in a vertical direction, such as SCARA 
(Selective Compliance Assembly Robot Arm). In addition, 

the PLM has a wide range of motion in the x direction, as 
shown in Fig. 3.  

Moreover, it is possible to arrange the heavy moving parts 
on the base so that the weight of the link mechanisms is 
reduced, allowing for faster motion and greater accuracy than 
in a SCARA. Figure 4 shows another application using a pair 
of 2D2M PLMs. This system has 4 moving parts on a single 
linear stator, which can perform the tasks of grasping, 
conveying and manipulation. 

C.  Configuration of 3-DOF Planar Mechanism 
The configuration of a 3-DOF (xyθ) planar PLM with 3 

non-redundant moving parts (3D3M) and a 3-DOF (xyθ) 
planar PLM with 4 redundant moving parts (4D4M), are 
shown in Figs. 5(a) and (b). The 3D4M PLM with 4 
redundant moving parts is the centerpiece of our research. Its 
redundancy is used not only for singularity avoidance, but 
also for forward kinematics computation and calibration of 
the mechanism. We are planning to apply the PLM to a table 
mechanism of 5 axis machine tools.  

III. KINEMATICS OF THE PARALLEL LINK MECHANISM 

A. Kinematics of 3-DOF Parallel Link Mechanisms 
On the basis of the general kinematics formulation of 

parallel link mechanisms [10] [11], a kinematics equation for 
the proposed 3-DOF parallel link mechanism was derived. In 
turn, the parallel link mechanism of the particular 
configuration of our research can also be analyzed by the 
general method of kinematics. 

The kinematic relationships of the 3D4M PLM, as shown 
in Fig. 6, are expressed as follows: 
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where ci (i = 1,..,4) is the control variable of the ith actuator, 
i.e., the position of the ith moving part of the multi drive 
linear motor. The length of the ith rod (link) is expressed as li. 
The distance from the central point to the ith pair of the end 
effecter is expressed as rt. Other symbols are indicated as in 
Fig. 6. Equation (1) expresses the relationship between the 
positions of the moving parts ci (i=1,..,4) and the positions p 
and orientation θ of the end effecter. By solving (1) as ci, an 
inverse kinematics equation is derived as follows: 
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For the 1st and 3rd link, the plus-minus sign in (3) is given as 
positive, and for 2nd and 4th link is given as negative. The 
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Fig. 5.  3-DOF planar parallel link mechanisms 
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unit direction vector of the ith link is given as: 
 

iiii lc /)( aLz −=   (3) 
 

By applying derivatives to both sides of (1), the derivative 
relation of the 3D4M PLM is derived as follows: 
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where Je44 and Jc4 are Jacobian matrices of the system. 
Kinematic characteristics such as singular point and static 
force can be analyzed by using (4). 

The kinematic equation of the 3D3M PLM is derived by 
removing the redundant part from (1)-(4) as follows: 
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B. Kinematics of the 2-DOF Parallel Link Mechanisms 
  The kinematic equation of the 2D2M PLM shown in Fig. 

2 is derived as si=0 in (1)-(3). The differential equation of the 
2D2M PLM is given as: 
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C. Singularity Analysis of the 3-DOF PLM 
It is well known that parallel link mechanisms have two 

kinds of singularities [12][13]. When PLM arrives at a 
position and orientation such that the Jacobian matrix Jcm in 
(4)-(6) is singular, the output of the actuators does not 
transfer to the link mechanism. These situations are referred 
to as 1st kind of singularity. When the PLM arrives at a 
position and orientation such that the Jacobian matrix Jen in 
(4)-(6) is singular, the output of the end effecter does not 
transfer to the link mechanism. These situations are referred 
to as 2nd kind of singularity. Variables m and n express the 
number of actuators and the degree of freedom of the end 
effecter, respectively. 

When each element of Jcm equals zero, the proposed PLM 
becomes the 1st kind of singularity. The condition of the 1st 

kind of singularity is expressed as follows: 
 

0=az T
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Equation (7) implies that if the unit direction vector a of the 

actuator and the unit direction vector zi of each link are 
orthogonal, the PLM becomes one of 1st class singular 
points.  

The 2nd kind of singularity differs, depending on the 
configuration of the PLM. Here, the singular points of the 
3D3M PLM are derived. The condition of the 2nd kind of 
singularity is given as the determinant of the Jacobian matrix 
in (5), which equals zero as follows: 
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Using symbolic mathematics software, equation (8) is solved. 
The following 4 types of singular points exist in the 3D3M 
PLM. 
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Next, the singularity avoidance of the 3D4M PLM is 
shown through the definition of manipulability [14]. The 
derivative kinematics of the PLM is transformed as: 
 

ncenmnenmcmm pJpJJc Δ=Δ=Δ −1   (13) 
 
The manipulability of the PLM is defined as follows:  
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Numerical calculations of the manipulability of the 3D3M 
PLM and the 3D4M PLM in correspondence with the 
rotation angle of the end effecter, are shown in Figs. 7(a) 
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and (b). The ratio of each link length li and the length of the 
end effecter 2rt is given as 2:1. 

The 3D3M non-redundant PLM becomes the 4th type of 
singular point given in (12) when the angle of the end effecter 
equals 28.7 degrees. Around this angle value, there is little 
manipulability, as shown in Fig.7 (a). On the other hand, the 
singular point is avoided by the redundant 3D4M PLM, as 
shown in Fig.7 (b). This confirms that the redundancy of the 
3D4M PLM greatly increases homogeneous manipulability. 

IV. STATIC FORCE ANALYSIS OF THE PLM 

A. Static Force Analysis for the non-redundant PLM  
Conventional static force analysis only derives the 

relationship between the generative force/torque of actuators 
and the external forces of the end effecter based on the 
principle of virtual force. Here, we expand this static force 
analysis in order to also calculate internal forces such as the 
constraint forces at the joints and the axial forces of the links. 

First, the formula for static force is derived when the 
degree of freedom of the end effecter (n) and the actuators (m) 
is equivalent. For the sake of convenience, the external forces 
of the end effecter fe and the generative forces of the actuators 
fc are expressed by vector forms as follows: 
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The relationship between fe and fc is derived by the principle 
of virtual forces as: 
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As shown in Fig. 8, fni and fli are defined as quantities of the 

constraint force at the ith joint and axial force of the ith link, 
respectively. The values fni and fli represent the internal forces 

of the PLM. The unit direction vector n along the constraint 
force fni is orthogonal to the unit direction vector a along the 
actuator force fci. The equilibrium of forces at the ith joint is 
given as: 
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By applying the inner product to (17) with each vector a 

and n, with the condition that vectors a and n are mutually 
orthogonal, the following formulas are derived: 
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The constraint force fni and the axial force fli of each link 

are combined as vector form fn and fI as follows: 
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From (15) to (19), the internal forces fn and fI are given by 

the following equations: 
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B. Static Force Analysis for the redundant PLM  
In this section, the static forces for the redundant 3D4M 

PLM, as shown in Fig. 5 (b), are derived. Instead of the 
inverse matrix of (16), a generalized inverse matrix is applied 
to the calculation of the static force equation. 
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where + implies the pseudo inverse of a matrix, and k is a 

41× arbitrary vector. In the case of the 3D4M PLM, the left 
side of (21) has 4 degrees of freedom. On the right side of 
(21), the 1st term has 3 degrees of freedom, which means the 
2nd term will have 1 degree of freedom. 

The null space projection matrix T
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T
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44 × , but its rank is just one. Therefore, the dimension of the 
2nd term on the right side of (21) is reduced as:  
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The dimension was reduced to one by the independent 
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variable fi in (22). In its physical sense, fi corresponds to the 
quantity of internal force acting on the end effecter plate. 

In (22), fiL and fiR are the internal forces which act upon the 
left and right ends of the end plate, respectively, as shown in 
Fig. 8. For purposes of convenience, they are combined 
together as the vector fi. The direction of internal forces fiL 
and fiR  coincides with the direction of the end plate, whose 
angle is defined by the rotation angle θ of the end effecter. 
The values fiL and fiR have the same quantity fi, but have 
opposite directions, as shown in Fig. 8. The one dimensional 
internal force that acts along the end plate is explicitly 
controlled by (22). 

Finally, from (21) and (22), the generative forces of the 
actuators fc are calculated from the external force of the end 
effecter fe and the internal force of the end plate fi as: 
 

ii
T

cenme
T

cenmc fJJfJf 1)( −+ +=   (23) 
 

The internal force of the end plate exerts tensile or 
compressive stress on the end plate, which helps to diminish 
joint backlash and increase mechanical rigidity [15]. 

C. Numerical Simulation of the Static Force Analysis 
Numerical simulation software of the static force analysis 

for the 3D4M PLM, as shown in Fig. 5(b), was developed. 
The external force fe, the internal force fi, the generative force 
of the actuator fc, the constraint force fn and the tensile force 
of the link fL were calculated for an arbitrary position and 
orientation of the PLM. Schematic views of these forces 
superimposed on the link mechanism are shown in Fig. 8. 
Examples of static force simulations for the 3D4M PLM are 
shown in Figs. 9 (a) and (b). 

Unit external force fe is acting at the central position of the 
end plate. Fig. 9 (a) shows the case in which the internal force 
of the end plate fi is zero. Representations of the generative 
force of the actuator fc, the constraint force fn and the tensile 
force of the link fL are superimposed on the link mechanism 
as a solid line with the symbol * at the tip of the vector. Fig. 9 
(b) shows the case in which the unit internal force of the end 
plate fi was applied. In Fig. 9(b), the internal force fi and 
additional forces caused by the fi at each joint are shown by 
broken lines. Representations of the generative force of the 
actuator fc, the constraint force fn and the tensile force of the 
link fL are also superimposed on the link mechanism as a solid 
line with the symbol * at the tip of the vector. These forces 
include elements of the internal force fi, from (23). 

The situation in Fig. 9 (b) expresses how compressive 
force was exerted upon the end plate. This situation also 
expresses how two 2D2M PLMs grasp an object with 
compressive force, as shown in Fig. 4. 

V. DYNAMICS OF THE PARALLEL LINK MECHANISM 

A. Equation of Motion of the 2D2M PLM  
An equation of motion for the 2D2M PLM was derived, 

and is shown in Fig.2. In order to focus on the dynamic 
characteristics of the link mechanisms, the mass of the 
actuator was excluded from this equation of motion. 

The position of the end effecter p=[x, y]T and of the 
generative forces at the end effecter fe=[fx,fy]T are considered 
as generalized positions and generalized forces, respectively. 
In this formulation, gravity was assumed to be affected in the 
negative direction of the y-axis. The equation of motion was 
derived by applying Lagrange's equation. 

In particular, if the length, mass and moment of inertia of 
each link is designed with the same value, the equation of 
motion of the PLM becomes a simple formula, as follows: 
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where mxx and myy denote the generalized inertia of the PLM. 
The value mxx is a constant and myy is a function of y. Non- 
diagonal elements of the inertia matrix are zero. Elements hy 
and gy express Coriolis and centrifugal forces, and the 
gravitational force of the y direction, respectively. Elements 
of Coriolis, centrifugal and gravitational forces of the x 
direction are zero.  

Equation (24) reveals that the dynamics of the x direction 
of the 2D2M PLM has both decoupled and constant inertia 
characteristics. The dynamics in the y direction are also 
decoupled in the x direction. Moreover, the inertia myy and the 
Coriolis and centrifugal force hy are functions of only y. The 
constant of gravitational force affects only the y direction. 

B. Equation of Motion of the 3D4M PLM  
An equation of motion for the 3D4M PLM was derived, as 

shown in Fig.5 (b). 
The positions and orientation of the end effecter p=[x, y, 

θ]T and the generative forces/torque at the end effecter 
fe=[fx,fy,τθ]T are considered as generalized positions and 
generalized forces, respectively. In this formulation, gravity 
was assumed to be affected by the negative direction of the 
y-axis. The equation of motion was derived by applying 
Lagrange's equation. 

In particular, if the length, mass and moment of inertia of 
each link is designed with the same value, the equation of 
motion of the PLM becomes a simple formula, as follows: 
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Equation (25) shows that the dynamics of the x direction of 

the 3D4M PLM has both decoupled and constant inertia 
characteristics. The dynamics of the y and θ directions are 
also decoupled in the x direction. The constant of 
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gravitational force affects only the y direction. 
As we showed in (24) and (25), if the mechanical 

parameters of each link are designed with the same value, the 
equation of motion becomes a simple formula. 

C. Numerical Simulation of the Dynamics  
Numerical simulations of the dynamics of the 3D4M PLM 

were tested. One example is shown in Fig.10. In the 
simulation, the length, mass and moment of inertia of each 
link were given as 0.14m, 0.064kg and 1.97E-4 kgm2, 
respectively. The length, mass and moment of inertia of the 
end plate were given as 0.10m, 0.375kg and 8.54E-4 kgm2, 
respectively. The initial positions and orientation were set as 
p0=[0.0m, 0.10m, -20.0deg]T. A constant force fx=0.1N was 
applied to the end effecter. The time responses of positions x 
and y. are shown in Fig.10 (a). No conflict was observed 
between the x and y directions. The configurations of the 
PLM at intervals of 0.1 sec are shown in Fig.10 (b). The PLM 
generated a constant motion of acceleration in the x direction 
while maintaining its initial configuration. 

VI. EXPERIMENTAL SYSTEM OF THE 3D4M PLM 
An experimental system of the 3D4M PLM was developed. 

The 3D CAD model and prototype design of the experimental 
system are shown in Figs.11 (a) and (b). A front view while 
the orientation of the end plate is being changed is shown in 
Fig. 12. The four moving parts of a linear shaft motor with a 
rated force of 2.3N were individually driven and controlled 
on a stator shaft with a length of 950mm. A linear encoder 

with a positional resolution of 1μm was installed on each 
driving part of the linear motor. The length of each link and 
end plate was designed as 0.14 m and 0.10 m, respectively. 
The mass and moment of inertia of each link were designed 
with the same value in order to realize the decoupled and 
constant inertia dynamics shown in the previous section. 

VII. CONCLUSION 
New parallel link mechanisms for multi drive linear motors 

were proposed. These expand their range of motion, while 
retaining the advantages of a rigid mechanism and precise 
positioning. A prototype of a 3-DOF planar PLM with 4 
redundant moving parts was designed and developed by 
applying the results of the present study of static force and 
dynamics analysis, as follows: 
1) Static force analysis was expanded to calculate internal 

forces such as the axial forces of links. This was useful 
for the mechanical design of the PLM. 

2) If the length, mass and moment of inertia of each link 
were designed with the same value, the equation of 
motion of the PLM showed both decoupled and constant 
inertia characteristics in the x direction. 
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Fig. 10.  Numerical simulation of dynamics 

 

     
(a) 3D CAD model                (b) prototype of the PLM 

Fig. 11.  3D CAD model and prototype of the experimental system 
 

 

   
 

Fig. 12.  Front view of the experimental system 
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