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Abstract— To date, there exist only few works on the use
of color images for visual servoing. Perhaps, this is due to
the difficulties usually found to cope with illumination changes
in these images. This paper presents new parametric models
and optimization methods for robustly and directly registering
color images. Direct methods refer to those that exploit the
pixel intensities, without resorting to image features. We then
show how a robust and generic visual servoing scheme can
be constructed using the obtained optimal parameters. The
proposed models ensure robustness to arbitrary illumination
changes in color images, do not require prior knowledge (in-
cluding the spectral ones) of the object, illuminants or camera,
and naturally encompass gray-level images. Furthermore, the
exploitation of all information within the images, even from
areas where no features exist, allow the algorithm to achieve
high levels of accuracy. Various results are reported to show
that visual servoing can indeed be highly accurate and robust
despite unknown objects and unknown imaging conditions.

I. INTRODUCTION

Visual tracking of an object of interest can be formulated

as an image registration problem. Image registration consists

in estimating the transformations that best align a reference

image to a second one. Generally, they can be classified

into feature-based methods or direct methods [1]. Feature-

based methods require extracting and matching a set of

features (e.g., points, lines) from the two images. Since they

may afford relatively larger displacements of the object in

the field-of-view, feature-based methods are suitable when

the two images are taken under disparate viewpoints. In

turn, direct methods exploit the pixel intensities without

having to rely on image features. They can then be highly

accurate mainly owing to the exploitation of all possible

image information, even from areas where no features exist.

On the other hand, direct methods assume that the two

images of the object have a sufficient overlapping [2]. Since

this paper considers real-time vision-based robot control [3],

we can suppose that the frame rate is sufficiently high such

that only relatively small inter-frame displacements of the

object are observed. Moreover, high accuracy is often needed

for robot positioning applications. Thus, we focus in this

article on direct registration methods of color images and

their integration in visual servoing schemes, e.g., [4]. Note

however that the parameters estimated by image registration

methods can in fact be used in a variety of visual servoing

techniques, e.g., [5].
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Fig. 1. (a) Original color image and (b) after its conversion to gray-scale.
Almost all information has been lost in this example. This illustrates the
need to work with the color image directly. Please print in color so as to
see how rich the original image is!

To our knowledge, only few techniques on the use of color

images in a visual servoing scheme have been proposed to

date. Perhaps, this is due to the difficulties usually found to

adequately cope with illumination changes in color images.

Another possible reason is that one may think that the use of

color images do not contribute so much to the final precision

of the servoing. This is not always true, and extreme cases

exist where all visual information is lost when gray-scale

cameras are used (see Fig. 1). Even if this is an unlikely

situation in practice, we can conjecture that in many cases

color cameras provide much richer information than their

gray-scale counterparts. Therefore, their application should

be studied in more depth.

Color cameras, like the human eye, are generally (but

not always) trichromatic. In this case each pixel of a color

image is a three-vector, one component per sensor channel.

An active research topic concerns color constancy, which

seeks illuminant-invariant color descriptors. A closely related

problem is to find illuminant-invariant relationships between

color vectors. Given two images of a Mondrian world1 under

specific conditions,2 the results presented in [6] claim that a

multiplication of each tristimulus value (in an appropriate ba-

sis) by a scale factor is sufficient to support color constancy

in practice. This framework has been exploited in color-

based point tracking, e.g., [7], and has also been applied

in [8] to the control of a pan-tilt (i.e., 2 dofs) by finding

the centroid of a red object. An effective technique also to

find the centroid of an object in color images is through

mean-shift [9]. However, these methods are not enough to our

purposes since we are interested in accurately and robustly

controlling all 6 dofs of a robot end-effector.

In this paper, we propose new models and methods to

overcome the limitations of both the Mondrian world1 and

1A Mondrian is a planar surface composed of only Lambertian patches,
and is after Piet Mondrian (1872-1944) whose paintings are similar.

2For example, the light that strikes the surface has to be of uniform
intensity and spectrally unchanging, no inter-reflections, etc.
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of those working conditions,2 when directly registering color

images. Indeed, the proposed transformation models ensure

robustness to arbitrary illumination changes in color images,

do not require prior knowledge (including the spectral ones)

of the light sources (e.g., type, power, pose), of the object

(which can be non-Lambertian and of unknown shape) or

of the camera sensors, and naturally encompass the gray-

level case [10]. Obviously, as any direct method, sufficient

gradient along different directions must still be present in

the images. Then, we show how to construct a robust and

generic visual servoing scheme that directly exploits the

obtained optimal parameters. Another important aspect is

that the exploitation of all information within the images

allows both the registration and the resulting visual servoing

scheme to achieve high levels of accuracy. Experimental

and simulation results show that the proposed techniques

can indeed be highly accurate and robust despite unknown

objects and unknown imaging conditions.

II. THEORETICAL BACKGROUND

A. Two-view Epipolar Geometry

Consider the pinhole camera model. The epipolar geom-

etry establishes the relations between corresponding image

points p ↔ p∗ [11]. In the general uncalibrated case, this

relation is given by

p ∝ Gp∗ + ρ∗ e, (1)

where G ∈ SL(3) is a homography, e ∈ R
3 denotes

the epipole, and ρ∗ ∈ R is the parallax of the 3D point

projected in the reference image I∗ as p∗. This parallax

also encodes the inverse of the depth of this 3D point. Note

that (1) also encompasses the particular situations of a pure

rotation motion and that of a planar object. In these both

cases, ρ∗ e = 0. In the calibrated case, the relation between

corresponding image points p↔ p∗ is given by

p ∝ KRK−1p∗ + (z∗)−1Kt, (2)

where R ∈ SO(3) and t ∈ R
3 respectively denote the

relative rotational and translational displacements between

the camera frames F and F∗, z∗ > 0 is the depth of the

3D point in the reference camera frame, and the matrix

K ∈ R
3×3 gathers the perfect camera intrinsic parameters.

B. Geometric Direct Image Registration Problem

The geometric direct image registration problem can be

formulated as the seek of the geometric parameters that warp

the reference image such that each pixel intensity is matched

as closely as possible to the corresponding one in the current

image. This non-linear optimization problem can be solved

by iteratively performing three main steps: image warping,

computation of the incremental displacement, and the update

of these parameters. Considering that the global minimum

can be attained, the final amount of iterations depends on

the desired precision.

Therefore, a first step consists in choosing an appropriate

warping (i.e., mapping) function

p = w(g,p∗), (3)

which can be based on a parametric model. In the case of a

purely geometric model one may choose between (1) or (2),

depending on the considered framework. If the problem is

formulated in the uncalibrated framework, the parameters can

be g = {G, e, ρ∗} as in [12]. Many applications exploit

this set, given its intrinsic robustness characteristics. This

will be further discussed in Section IV. If one considers the

calibrated case, then the natural set of parameters is g =
{R, t, (z∗)−1} as in [13]. That is, the Location and the Map.

The visual SLAM problem can indeed be formulated as a

direct image registration task.

The second step in the iterative procedure consists in

computing the incremental displacement g̃. To this end, a

suitable discrepancy measure (i.e., residual), e.g.,

∑

i

[
I
(
w(g̃ ◦ g,p∗

i )
)
− I∗(p∗

i )
]2

, (4)

and the best direction of descent are first determined. Finally,

a linear least squares problem in terms of g̃ can be obtained

by applying a necessary condition of optimality. Throughout

this article, let I(p) represent the intensity value of pixel p.

The third step can then be performed once g̃ has been

computed. It consists in updating the transformation param-

eters through the related composition rule

g←− g̃ ◦ g, (5)

where the arrow “←−” denotes the update assignment within

the iterations, and the operator “◦” depends on the involved

Lie group [14]. For example, if one considers a matrix Lie

group then the operation to be performed is the matrix

multiplication. This three-step procedure is iterated until

convergence. The convergence to the optimal g can be es-

tablished when the incremental displacement g̃ is arbitrarily

close to the identity element of the involved group.

C. Modeling Arbitrary Illumination Changes

In regard to purely photometric registration tasks, the in-

terest concerns the recovery of which intensity modifications

have to be applied to the image I in order to obtain a

transformed I ′ such that it matches as closely as possible

to the reference one I∗. Inspired by major illumination

models [15], [16], a model of illumination changes has been

proposed in [10] to cope with arbitrary lighting variations:

I ′(S, β) = S · I + β, (6)

where the elementwise multiplicative lighting variation S
is viewed as a surface that evolves with time. Note that,

whilst β ∈ R captures only global variations, the surface S
also models local illumination changes. For instance, those

produced by specular reflections. Very importantly, this

model allows the registration to be performed without prior

knowledge of the object’s attributes (e.g., albedos, shape) or

the illuminants’ characteristics (e.g., number, type, pose).

Nevertheless, if the alignment involves only two images,

an under-constrained system is obtained (more unknowns

than equations). Surface reconstruction algorithms classically

solve this problem through a regularization of the surface.
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The basic idea is to prevent pixel intensities from changing

independently of each other. Given that the model of the

illumination changes is viewed as an evolving surface, the

same technique can be applied to the registration at hand.

Indeed, S is supposed to be described by a parametric surface

S ≈ f(γ,p), ∀p ∈ I, (7)

where the real-valued vector γ contains less parameters

than the available equations. Then, one has to choose an

appropriate finite-dimensional approximation f(γ,p) of the

actual surface. Afterward, the optimal image I ′ in (6) can be

obtained by directly estimating the set of parameters {γ, β}.
To this end, an optimization procedure is also proposed

in [10] to simultaneously obtain all of these photometric and

of some geometric parameters.

III. PROPOSED PHOTO-GEOMETRIC DIRECT

COLOR IMAGE REGISTRATION

This section presents a new transformation model and an

optimization method for robustly and efficiently aligning two

color images of the same unknown object under unknown

imaging conditions. Let I represent a color image, which is

obtained by stacking the channels Ik, k = 1, 2, . . . , n.

A. A Generic Model of Illumination Changes

Let us describe here how to extend the model of lighting

variations reviewed in Subsection II-C to the case of color

images. The main idea consists in respecting any intrinsic

coupling that may be present in the channels so as to be as

generic as possible.

Indeed, we propose to obtain the transformed color im-

age I
′ that best matches the reference I

∗ through

I
′(h) = S • I + β, (8)

where the full set of photometric variables h comprises all

surfaces related to the illumination changes,

S =




S11 S12 · · · S1n

S21 S22 · · · S2n
...

...
. . .

...

Sn1 Sn2 · · · Snn


 , (9)

and the per-channel shift, β ∈ R
n, which captures the varia-

tions both in the ambient lighting changes and in the camera

bias. The operator “•” stands for a linear combination of the

color channels, elementwise multiplied by the corresponding

surface. That is, Equation (8) can be rewritten using the

operator for elementwise multiplication “·” by stacking each

I ′k(h) =
n∑

j=1

Skj · Ij + βk, k = 1, 2, . . . , n. (10)

The proposed fully coupling model (8) allows the registra-

tion to be performed without prior knowledge (including the

spectral ones) of the light sources, of the object (which can

be non-Lambertian and of unknown shape) or of the camera

sensors. Nonetheless, if available they can be easily applied

to that generic model. For example, prior knowledge of the

spectral response of the camera sensors (e.g., from its data-

sheet) allows for suitably uncoupling the lighting variation S,

at an eventual expense of robustness. Indeed, consider RGB

(red-green-blue) images in the following example. Given that

at least the red and the blue channels are only weakly coupled

in many color cameras, one may set S13 = S31 = 0, or even

S ≈ diag
(
S11,S22,S33

)
(11)

if the camera sensors are narrow-band. Other particular

models can also be derived from the generic one (8). For

example, if a symmetry between a particular coupling is

present then one may set S12 = S21 and/or S23 = S32.

Independently of the choice, if the alignment involves only

two images, an under-constrained system is still obtained.

Thus, following the same technique for the gray-level case,

we suppose that S can be described by parametric surfaces:

S ≈ f(Γ,p), ∀p ∈ I, (12)

where Γ = {γkj}. One then has to choose an appropriate

finite-dimensional approximation f(Γ,p) of the actual S.

For example, through a discretization of the space followed

by a suitable interpolation. This choice also plays an impor-

tant role in the computational efficiency of the algorithm.

Another possible solution to reduce the burden is to focus

on the dimension of Γ.

B. The Full System

Hence, our parametric generative model is composed of

both the proposed photometric model (8) and a chosen

geometric model (see Subsection II-B):

I
′(g,h,p∗) = S(Γ,p∗) • I

(
w(g,p∗)

)
+ β, (13)

with the set of both global and local geometric and photomet-

ric parameters, respectively, g and h = {Γ,β}. Since it must

be applied within a fast iterative procedure, the proposed

model (13) is transformed into:

I
′
(
g̃ ◦ g, h̃ ◦ h,p∗

)
=

= S
(
Γ̃ ◦ Γ,p∗

)
• I

(
w(g̃ ◦ g,p∗)

)
+ β̃ ◦ β. (14)

The robust direct color image registration task can thus be

formally posed as

min
ex

1

2

∑

i

[
I

′(x̃ ◦ x,p∗

i )− I
∗(p∗

i )︸ ︷︷ ︸
di(ex)

]2

(15)

using (14) with x = {g,h}.

C. The Minimization Procedure

The full system (15) can be concisely rewritten as the

seek of the incremental parameters x̃ =
{
g̃, h̃

}
such that

the image discrepancy is minimized, i.e., as

min
ex

1

2

∥∥d(x̃)
∥∥2

, (16)

with d(x̃) = {di(x̃)}. To iteratively solve this non-linear

optimization problem, an expansion in Taylor series is firstly

performed. For this, another key technique to achieve nice
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convergence properties and high accuracy is to perform

an efficient second-order approximation of d(x̃) [12]. It

is computationally efficient because the Hessians are never

computed explicitly. Indeed, it can be shown that, neglecting

the third-order remainder, such an approximation of d(x̃)
around x̃ = 0 is given by

d(x̃) = d(0) +
1

2

(
Jx(0) + Jx(x)

)
x̃, (17)

where Jx(0) and Jx(x) respectively represent the Jaco-

bian at the current state and at the (unknown) solution.

Obviously, they both depend on the parametrization of x.

Their analytical expressions for the calibrated framework

with gray-level images can be found in [13]. Similarly, the

general uncalibrated case with gray-level images is derived

by applying the model of illumination changes proposed

in [10] to [12]. Their extensions to color images are devised

from the proposed photo-geometric generative model (14).

Applying a necessary condition of optimality so that x̃ is

an extremum of (16) gives

1

2

(
Jx(0) + Jx(x)

)
x̃ = −d(0), (18)

where Jx(0) is completely computed from image data. This

system of equations (18) is not linear in x̃ because of Jx(x).
However, if the Lie algebra is used to describe motion (either

in the calibrated or uncalibrated case), then the corresponding

Jacobian part within Jx(x) satisfies the left-invariance prop-

erty. Thus, it can also be completely computed from image

data. This does not hold for the parameters related to surfaces

(either in the calibrated domain or in the uncalibrated case).

Thus, an approximation of the corresponding Jacobian part

has to be used, e.g., the one at the current state.

Afterward, a linear least squares problem can finally be

written from (18):

J′

x
x̃ = −d(0), (19)

where J′
x

represents our proposed direction of descent. The

solution x̃ to the linear system of equations (19) is obtained

by solving its normal equations. The parameters are then

updated through the related composition rule:

x←− x̃ ◦ x. (20)

The procedure is iterated until the convergence to the

optimal x, as outlined in Subsection II-B. As a remark,

while having an equivalent computational cost to the Gauss-

Newton method, it exploits all available information from

both the current and the reference images. This contributes

to achieve large domains and rates of convergence.

IV. APPLICATION TO VISUAL SERVOING

The image registration method proposed in Section III

simultaneously recovers the optimal set of parame-

ters x = {g,h}. The photometric parameters h are estimated

so as to achieve effective robustness to illumination changes.

On the other hand, the geometric parameters g can be used

for visual servoing purposes, as described in this section.

A variety of visual servoing techniques can be applied

using g, either in the calibrated or uncalibrated setting. How-

ever, let us focus here on the uncalibrated case, which is in-

trinsically more robust to errors in the camera parameters K

(when controlling all 6 dofs, at least a coarse estimate K̂ is

always needed). In this setting, the reference pose is given

by means of a reference image, a framework also called

teach-by-showing. Considering then the uncalibrated case,

the related set of geometric parameters is g = {G, e, ρ∗}
(see Section II). Existing visual servoing techniques that

exploit this set for controlling all 6 dofs of a robot mainly

differ in the required prior knowledge, e.g., scene structure,

camera motion, normal to a plane. Recently, the Direct Visual

Servoing (DVS) has been proposed [4] as a general technique

where neither priors nor decompositions are required.

The DVS uses that projective geometric information as

follows. Firstly, normalized entities are obtained:

m∗ = K̂−1p∗ (21)

e′ = K̂−1e (22)

H = K̂−1GK̂, (23)

where p∗ corresponds to a chosen point (not necessarily an

interest point) of the object. The control error

ε =

[
(H− I)m∗ + ρ∗ e′

µ(H)ϑ(H)

]
(24)

is theoretically proved to be locally diffeomorphic to the

camera pose. In (24),
[
µ(H)

]
×
= H−H⊤, where [µ]× de-

notes the anti-symmetric matrix associated to the 3-vector µ,

and ϑ(H) = 1 (or another function that allows for path

planning). Provided the diffeomorphism, the control law

v = λ ε ∈ R
6, λ > 0, (25)

is also theoretically proved to ensure local asymptotic sta-

bility. Furthermore, it is shown that a very large domain of

convergence is obtained if path planning is performed. The

control signal v comprises both translational and rotational

velocities. Using this technique, no prior knowledge of the

object’s attributes or of the camera’s motion are required,

both for registration and servoing.

V. RESULTS

This section reports some representative sets of experi-

ments (they can also be found as multimedia material) using

unknown objects under challenging imaging conditions, both

for image registration and for full 6-dof positioning tasks.

A. Direct Color Image Registration

The image registration algorithm immediately starts after

selecting the area of interest, also called template. This

template is then considered as the reference one. Assuming

relatively small inter-frame displacements, it is automatically

aligned to successive frames of the sequence.

The first set of results is shown in Fig. 2. The unknown

light source and camera perform unknown motions in space.

Despite severe specularities, shadows and instantaneous
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Reference Image Image #102 Image #224 Image #624

Reference template Registration #102 Registration #224 Registration #624

Fig. 2. (First row) Image registration of a reference image (the first one) to successive frames of a video sequence. (Bottom row) Aligned (warped)
images are shown to demonstrate the stability of the tracker. The sequence contains severe changes in the specular, diffuse and ambient reflections.

Reference Image Image #147 Image #154 Image #162

Reference template Registration #147 Registration #154 Registration #162

Fig. 3. (First row) Image registration of a reference image to successive frames of a video sequence. (Bottom row) Aligned (warped) images are shown to
demonstrate the stability of the tracker along the sequence. The unknown light source and camera perform unknown motions in space. No prior knowledge
of the object’s attributes (e.g., shape, albedos) is exploited.

changes in the diffuse and ambient reflections, all images

are accurately registered, with a median RMS error of 15.73

levels of gray-scale along the sequence, performing a median

of 9 iterations per image.

The second set of results is shown in Fig. 3. We have

used the same pattern as in the preceding sequence, although

with an object of different shape (in this case, a cylinder).

Of course, this knowledge is not a-priori provided to the

algorithm. Once again, a challenging scenario is set up with

very disparate types of lighting variations, and the images

are successfully aligned with a median RMS error of 16.76

levels of gray-scale along the sequence, performing a median

of 7 iterations per image.

B. Direct Visual Servoing

The optimal set of parameters computed from each im-

age registration can be used for visually servoing a robot.

We provide in this subsection the results obtained by the

DVS technique [4], given its attractive properties (e.g., no

prior knowledge required, convergence properties, etc.) as

discussed in Section IV.

To have a ground truth, we constructed a synthetic object

(a sphere) and created light sources. In particular, the specu-

lar reflections are due to an illuminant rigidly attached to the

virtual camera. It points towards the object with a slightly

different direction with respect to the camera’s optical axis.
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(a) Reference Image (b) Initial Image

(c) Image #55 (d) Final Image
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Fig. 4. Direct visual servoing with respect to a sphere (a-priori unknown)
using a pinhole color camera. Note that the servoing is successfully per-
formed despite large specular reflections, even at the final image. Compare
(d) the final image with (a) the reference one.

This simulates a misalignment between the camera and the

carrying light. Then, a textured image is mapped onto the

object. Finally, we model the control system as a pinhole

color camera mounted on the end-effector of a classical

manipulator robot.

A visual servoing result is depicted in Fig. 4. The control

law is stable: both translational and rotational velocities con-

verge to zero. At the convergence, the camera is positioned

at the desired pose very accurately. The norm of the final

Cartesian error is around 1 mm for the translation, and 0.1◦

for the rotation. We remark that high accuracy is obtained

despite large specular reflections even at the final image

(compare it with the reference one). See Fig. 5 for both the

synthetic reflection present in the image at the convergence,

and a particular surface related to the illumination changes

reconstructed by the image registration method.

(a) (b)

Fig. 5. (a) The synthetic specular reflection at the convergence for the visual
servoing task showed in Fig. 4. (b) A particular reconstructed surface (S22)
to counterbalance the lighting variations. All surfaces are modeled through
discretization into blocks for computational efficiency.

VI. CONCLUSIONS

In this paper, we have investigated how to improve the ro-

bustness and the accuracy of visual servoing methods through

appropriate color image registration techniques. In particular,

we have focused on general photo-geometric parametric

transformation models to perform direct image alignment.

These models can cope with generic illumination changes,

e.g., specularities and shadows, even in color images. The

registration approach is then integrated into a visual servoing

technique that directly uses the estimated parameters. Exper-

imental results with both real-world and simulated sequences

show that the registration and the resulting visual servoing

scheme can be highly robust and accurate despite unknown

objects and unknown imaging conditions.
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