
Lane Boundary and Curb Estimation with Lateral Uncertainties

Albert S. Huang and Seth Teller

MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA

Email: albert@csail.mit.edu, teller@csail.mit.edu

Abstract— This paper describes an algorithm for estimating
lane boundaries and curbs from a moving vehicle using noisy
observations and a probabilistic model of curvature. The
primary contribution of this paper is a curve model we call
lateral uncertainty, which describes the uncertainty of a curve
estimate along the lateral direction at various points on the
curve, and does not attempt to capture uncertainty along the
longitudinal direction of the curve. Additionally, our method
incorporates expected road curvature information derived from
an empirical study of a real road network.

Our method is notable in that it accurately captures the
geometry of arbitrarily complex lane boundary curves that are
not well approximated by straight lines or low-order polynomial
curves. Our method operates independently of the direction
of travel of the vehicle, and incorporates sensor uncertainty
associated with individual observations. We analyze the benefits
and drawbacks of the approach, and show results of our
algorithm applied to real world data sets.

I. INTRODUCTION

The road networks of countries around the world carry

countless numbers of people and goods to their destinations

each day. To assist the safe and efficient transport of their

travelers, roadways are typically marked with painted and

physical boundaries that define the safe and legal regions of

travel. The exact nature and appearance of these markings

vary from region to region, but all serve to delineate the lanes

within which a single file of vehicles is intended to travel.

A system able to automatically and reliably estimate the

roadway and its lanes from a moving vehicle using on-board

sensor data would have enormous benefits for land-based

travel. It could be used for tasks ranging from wide-scale

road and lane quality assessments, to providing inputs to a

driver assistance safety system, to serving as a navigational

component in a fully autonomous vehicle.

These tasks have slightly different requirements, but all

require that the system be able to divine the shape and

geometry of at least some part of the roadway and its lanes.

To do so, the system must utilize information from its on-

board sensors, and any other a priori information it has

available (e.g. from a road map).

We divide the lane-finding problem into three individual

sub-problems: Feature detection, boundary estimation, and

lane tracking. The feature detection problem refers to the

use of on-board sensors to detect road paint, curbs, and other

environmental markings such as color or texture discontinu-

ities that may be used to demarcate the roadway and its

lanes. The boundary estimation problem is that of using the

detected features to estimate the number and shape of each
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Fig. 1. Lateral uncertainty allows us to concisely model the uncertainty
associated with a piecewise linear curve. (a) A camera image (b) Lidar-
detected (cyan) and vision-detected (yellow) lane boundary estimates, and
their lateral uncertainties projected into image space. (c) Three camera
images from the same scene projected onto a ground plane. (d) The lane
boundary estimates shown on the ground plane.

of the lane boundaries. Finally, the lane tracking problem is

to infer the number and shape of the travel lanes.

In this paper, we consider the sub-problem of lane bound-

ary estimation for an autonomous vehicle. Specifically, given

a set of noisy observations that are likely to correspond to

lane boundary fragments, we are concerned with fusing those

observations into curve estimates of potential lane boundaries

that are tracked and filtered over time and space. Our system

should be able to estimate lane boundaries independently

of their orientation with respect to the vehicle, so that the

system has good situational awareness (e.g. when exiting

parking lots and arriving at intersections). Additionally, our

system must accurately model a wide variety of lane bound-

ary geometries, to effectively capture the shapes of real roads

and lanes.

The primary contribution of this paper is an algorithm

for tracking curves from noisy observations. Central to this

algorithm is a novel probabilistic curve model we call lateral

uncertainty, and an empirically determined model of road

curvature. The key insight is to describe the uncertainty

of our system’s estimates along the lateral direction of the

curve, and not on the longitudinal direction, as illustrated in

Fig. 1. This allows us to robustly and efficiently incorporate

noisy observations into a tracked curve estimate.
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II. RELATED WORK

Aspects of the lane-finding problem have been studied

for decades in the context of autonomous land vehicle

development [1], [2] and driver-assistance technologies [3],

[4], [5]. McCall and Trivedi provide an excellent survey [6].

Early work in autonomous vehicle development often made

simplifying assumptions on road curvature and vehicle ori-

entation relative to the road. These systems exhibited limited

autonomy in the sense that a human driver had to “stage”

the vehicle into a valid lane before enabling autonomous

operation, and to take control whenever the system could

not handle the required task, for example during highway

entrance or exit maneuvers [2]. Recent work has attempted

to relax many of these requirements [7], [8], [9].

Because sensing the real world is an inherently uncertain

process, there has been much work on modeling uncer-

tainty for lane estimation, starting from Dickmanns’s original

Kalman filter formulation [1]. Recently, Sehestedt et al.

described the use of a particle filter for boundary tracking

[10], and ZuWhan Kim presented a system to detect and

track the left and right boundaries of a single lane using a

combination of a support vector machine, RANSAC spline

fitting, and a dynamic bayesian network [8].

Our approach to the boundary estimation problem differs

from recent work in two key respects. Unlike previous

approaches, which are primarily concerned with detecting

and tracking boundaries in a frame relative to the vehicle

or sensor (usually a camera) [9], [8], [10], our formulation

estimates boundaries in a Cartesian frame fixed to the local

environment [11]. This has simplifying ramifications, as it

eases the fusion of multiple heterogeneous sensors, and the

motion of boundary curves is minimized in this coordinate

frame. We typically propagate our state estimates forward

through time via the identity transformation. The second

primary difference is that our piecewise linear uncertainty

model allows us to model and track an arbitrary number

of curves without any restrictions on their positions or

orientations relative to the vehicle.

III. APPROACH

We represent a continuous parametric 2-D curve f as:

f(s) = (fx(s), fy(s))⊤, s ∈ [s1, sn] (1)

where fx(s) and fy(s) are the x and y coordinates of the

curve, parametrized by the scalar value s, and defined on

the domain s ∈ [s1, sn]. In the context of road and lane

boundaries, we treat a boundary as a single parametric curve,

with coordinates expressed in a Cartesian frame fixed to the

local environment. The length of the curve could be on the

order of meters for short streets or merge lanes, or thousands

of kilometers for a transcontinental highway.

For simplicity, we consider only curve representations that

are piecewise linear, and represent a curve f by its n × 2
matrix of control points F = (f1, f2, . . . , fn)⊤. A point

f(s) on the curve can then be determined by simple linear

interpolation. We will refer to the curve alternately as either

f or F, depending on context. Additionally, we assume some

method of inferring first and second order spatial derivatives

from the control points, such as by fitting quadratic or cubic

splines [12].

The goal of our method is to produce a useful estimate f̂

of f , given a set of noisy observations. We seek to estimate

the region of f that is within sensor range of our vehicle. We

note that it is typically the case that the domain on which f̂

is defined is a subset of the domain on which f is defined.

Thus, we define our estimate f̂ as:

f̂(s) = (f̂x(s), f̂y(s))⊤, s ∈ [r1, rn] (2)

and note that s1 ≤ r1 < rn ≤ sn.

A. Lateral Uncertainty

We do not typically have knowledge of the true form of

a curve f , and would like to define a probability distribution

over its possible shapes. A straightforward approach is to

assume that the control points of the polyline are normally

distributed, and represent the uncertainty with a 2n×1 mean

vector and 2n × 2n covariance matrix.

The major drawback of this method is that allowing the

control points of the polyline to vary in all directions pro-

vides unnecessarily many degrees of freedom. Specifically,

the shape of the curve does not change significantly if we

move a polyline control point by a small amount along the

longitudinal direction. In the case of three collinear control

points, moving the middle control point longitudinally does

not change the curve shape at all. Thus, using a covariance

matrix on the control point coordinates is an inefficient way

to represent uncertainty.

Instead, we propose to represent the probability distri-

bution over the shape of a curve using a mean Fµ =
(µ

1
,µ

2
, . . . ,µn)⊤ and a lateral uncertainty term repre-

sented by the n × n covariance matrix1 Σ. Given a random

matrix G = (g
1
,g

2
, . . . ,gn)⊤ of control points representing

a curve drawn from the distribution, such that each gi can

be expressed as:

gi = µi + wiµ̄i (3)

where wi is a scalar, and µ̄i is the unit normal vector of the

curve at µi, we define the probability density of G as:

P
F̂,Σ(G) =

1

(2π)n/2|Σ|1/2
exp(−

1

2
w⊤Σ−1w) (4)

where w = (w1, w2, . . . , wn)⊤ is the vector of residuals,

distributed according to w ∼ N(0,Σ). For our purposes, the

mean is the true curve, such that Fµ = F and ūi = f̄ i. Fig. 1

illustrates this with a number of lane boundary estimates, and

their 3-σ lateral uncertainties marked by short line segments

at the control points of the curves. The cross-covariances of

Σ are not illustrated.

1Our implementation uses diagonal covariances for speed, but the
derivation for dense covariances is given for generality and simplicity of
explanation.
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The intuition behind this formulation is that we allow the

control points of the curve to vary only along the curve

normal. Thus, each control point has one degree of freedom

instead of two; even though G has 2n distinct components,

it has only n degrees of freedom.

We have defined G such that each of its control points lies

on the normal vector of a control point of F. To evaluate

the probability density of an arbitrary curve g, we can re-

sample its control points to satisfy this requirement. This

process preserves accuracy so long as long as the difference

between the original curve g and the polyline representation

G is small (e.g. as measured by the area between the two).

If we re-sample the control points of a curve on which a

probability distribution has been defined, then we will also

need to re-define the distribution in terms of the new control

points. If H is a k×n matrix, where k is the number of new

control points, then HG is a random variable with mean

HF and lateral uncertainty HΣH⊤. A re-sampling of curve

control points simply amounts to choosing H such that each

of its rows has at most two non-zero entries that are adjacent

and sum to unity.

B. Estimation

In estimating and tracking curves, we do not have absolute

knowledge of either the true curves, or the true probability

distributions. Instead, we work with estimates of these val-

ues. We refer to our estimate of F as F̂ = (f̂1, f̂2, . . . , f̂n)⊤,

our estimate of Σ as Q, and our estimate of f̄ i as f̆ i. These

estimates are themselves random variables, and if our model

is correct, the expected values of these estimates are the true

values. As is standard practice in estimation, we will often

use the estimates in place of the true values for our work.

C. Observations

We define a noisy observation z of f as:

z(u) = f(c(u)) + v(u)f̄(c(u)), u ∈ [u1, um] (5)

where v(u) is a scalar noise term, f̄(u) is the unit normal

vector of f at u, and c(u) is a parametrization function that

maps values of u to values of s. It is typically the case that

z is only a partial observation of f , such that s1 ≤ c(u1) <

c(um) ≤ sn. Thus, z is a random curve whose probability

distribution is determined by f and v(u).
As before, we represent z with the control point matrix

Z = (z1, z2, . . . , zm)⊤ and the lateral uncertainty covariance

matrix R. In particular, each control point zi can be written:

zi = f ci
+ vif̄ ci

(6)

where ci is the discrete version of the parametrization

function c, and vi is a noise term such that the vector v =
(v1, v2, . . . , vm) is a random variable distributed according

to v ∼ N(0,R).
If we define Fz to be the m× 2 matrix with f ci

as its ith

row, and F̄z to be the m × 2 matrix with f̄ ci
as its ith row,

then we can re-write Z as:

Z = Fz + diag(v)F̄z (7)

In short, we define an observation Z to be a polyline where

each control point of the observation corresponds to a point

on the true curve, plus a noise component along the lateral

direction of the true curve.

D. Data Association

Given a curve estimate F̂ with lateral uncertainty Q, and

an observation Z with lateral uncertainty R, we would like to

determine if Z is an observation of f , or if it is an observation

of a different curve. We assume that Z is sampled such that

each control point zi lies on the normal vector of f̂ ci
. Thus,

each zi can be expressed as:

zi = f̂ ci
+ eif̆ ci

(8)

for a scalar value ei. Denote P as the m×m sub-matrix of

Q such that Pj,k = Qcj ,ck
. Additionally, define the vector

of residuals e = (e1, e2, . . . , em)⊤. Finally, define the scalar

random variable y to be the Mahalanobis distance:

y = e⊤(R + P)−1e (9)

If z is an observation of the curve f , then e has zero

mean, and y obeys a χ2 distribution with m degrees of

freedom [13]. With this, we can compute a p-value and

apply a standard goodness-of-fit test to determine if z is an

observation of f , or if it is an observation of a different curve.

When simultaneously estimating and tracking multiple

curves, we can apply a greedy matching procedure, whereby

an observation is associated with the curve that best “ex-

plains” that observation. If no tracked curve could reasonably

have been expected to generate the observation, then a

new curve is defined, initialized with the mean and lateral

uncertainty of the observation.

E. Curvature Prediction

The data association procedure described above is applica-

ble only when the observation and tracked curve have some

longitudinal overlap. It is often the case that the observation

z is actually part of the true curve f , but has no overlap

with the current estimate f̂ . Consider the case of tracking a

lane boundary marked with a dashed line; when a new dash

is observed, we would like to associate it with the existing

curve estimate.

Intuitively, if we have observed one portion of a curve, we

can reliably predict the shape of the nearby unobserved parts

of the curve. The direction and curvature of lane boundaries

do not change very rapidly, and are governed by the physical

limitations of the vehicles they carry. In order to make this

prediction, we must first have a model of how the curve

evolves over space.

The state of Massachusetts publishes a dataset containing

the geometry of more than 61,000 km of public roads in the

state, produced by manual annotation of ortho-rectified aerial

imagery [14]. We fit a simple first-order Markov model to
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Fig. 2. A road curvature prediction model, fit to MassGIS data on public
roads in the state of Massachusetts. 1-σ bounds are shown.

this data set to produce a generative model of road curvature.

Specifically, given the signed curvature at one point on a

lane boundary, this model predicts the curvature of the lane

boundary one meter farther down the curve (Fig. 2). Higher-

order models can be expected to improve prediction accuracy

and reduce prediction variance.

Using this curve model, we can extend both our estimate f̂

of f and the observation z. If the original observation z was

reasonably close to the original curve estimate, but did not

actually have any longitudinal overlap, then the extensions

may have enough overlap to robustly determine if the two

correspond to the same underlying curve. This is illustrated

in Fig. 3.

F. Update

Once an observation z has been associated with an existing

curve estimate f̂ , we use z to update our estimate, analogous

to the update step of a standard Kalman filter [13]. If

the observation z does not span the length of f̂ , we first

augment its lateral uncertainty covariance matrix R with

entries corresponding to unobserved parts of f̂ set to infinity.

The control point matrix Z is also extended. Similarly, if z

extends beyond f̂ , then F̂ and Q are augmented accordingly.

Without loss of generality, we assume that Z is an n × 2
matrix, where each row of Z lies on the normal vector of f̂

at the same row in F.

The updated mean, which we denote as F̃, is then:

F̃ = F̂ + diag(Q(Q + R)−1e)F̆ (10)

The updated lateral uncertainty covariance matrix, which

we denote as Q̃, is expressed as:

Q̃ = (I − Q(Q + R)−1)Q (11)

Intuitively, this update allows our estimate of F to shift

a control point only along the curve normal at that control

point. The amount by which a control point is shifted is

(a) Curve estimate (left) and a non-overlapping observation
(right)

(b) Predicted extensions of both curves

(c) Final curve estimate

Fig. 3. A curvature prediction model allows us to associate observations
with existing curve estimates when there is no overlap. Short line segments
perpendicular to the curves indicate the 1-σ lateral uncertainty.

determined from the lateral uncertainties of the original curve

and of the observation.

By shifting the control points, we have also changed the

curve normals. Since our uncertainty is defined only along

the direction of the curve normals, the actual probability

distribution over the curve changes after re-computing the

normal vectors. The amount of error introduced by this

change is directly related to the angle change of the normal

vector, and introduces approximation errors analogous to

those found in the linearization step of an extended Kalman

filter.

IV. IMPLEMENTATION

To assess its performance, we implemented our algorithm

on a Land Rover LR3 passenger vehicle equipped with

multiple cameras and laser range finders. As input to our

system, we used road paint and curb detection algorithms

developed at MIT [7], [15]. Both algorithms output piecewise

linear curves in a local coordinate frame.

Curves corresponding to road paint and curbs were tracked

separately; road paint and curbs were never mixed to update

the same curve estimate. Polyline control points were spaced

at 1m intervals, and each curve was re-sampled after every

update to maintain longitudinal control point spacing.

Through a number of experiments, we arrived on several

useful thresholds. To reduce false matches, we required

that a detection and a tracked curve overlap by 4.0m. This

threshold includes overlap of predicted curve extensions.

When extending curves based on our prediction model,

extensions were terminated when the 1-σ lateral uncertainty

at the end of the curve exceeded 1.5m. Additionally, we set

a p-value threshold of 0.94 for the χ2 error statistic y.

To prevent overconfidence as a result of not accounting

for correlations across observations, we applied a minimum

bound of 0.1m on the 1-σ lateral uncertainty of each control

point.
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Fig. 4. Lane boundary tracking results, with curve estimates longer than 20m depicted. The first column shows a camera image. The second column
shows tracked road paint (yellow) and curb (cyan) estimates superimposed on the image. The third column shows a simulated overhead view with three
camera images inverse-perspective mapped onto an assumed ground plane, and the curves superimposed accordingly. The final column shows a simulated
viewpoint left of and behind the vehicle with the lidar point cloud shown in grey.

V. RESULTS

We tested our method on the MIT Urban Challenge

dataset [15], which contains synchronized camera, lidar, and

navigational data for 90 km of travel through a mock urban

environment. This dataset also contains the output of the

road paint and curb detection algorithms used as input to

our method.

Fig. 4 shows a number of areas where our method per-

formed well. Each row contains four images depicting the

same scene. Vision-detected curves (road paint) are drawn

in yellow, with lateral uncertainties represented by short

perpendicular line segments. Lidar-detected curves (curbs)

are similarly drawn in cyan. In both cases, only curves

longer than 20m are depicted. Our system tracks curves of

all lengths; we use the 20m threshold as an example of how

one might further distinguish curves corresponding to lane

boundaries.

In Figs. 4a-4c, our method is able to successfully track a

painted lane boundary in the presence of strong shadows. The

road paint detection algorithms produce many false alarms in

these cases, but only the detections that are highly likely to

correspond to the tracked curve are used to update the painted

boundary estimate. Fig. 4d illustrates our method’s ability to

track lane boundaries perpendicular to the vehicle’s direction

of travel, such as would be encountered when exiting a

parking lot or at an intersection. In Figs. 4e and 4f, our

method is able to track closely spaced curves.

A. Limitations

An immediately apparent limitation of our algorithm is

that it does not account for error correlations between indi-

vidual detections. Thus, if a series of detections are used to

update a tracked curve, and each of the detections has highly

correlated error, then our system will produce overconfident

results. We are not aware of any other lane estimation system

that robustly addresses this issue.

It is possible to employ heuristics to reduce, but not

eliminate, this effect. For example, we enforced a lower

bound on the lateral uncertainties to prevent overconfidence.

In addition, we may be able to estimate and account for

certain inter-detection error correlations by computing the

distance between vehicle poses at detection time. A simple
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(a) Forward camera view

(b) Leftward camera view

(c) Simulated overhead view

Fig. 5. Our method can fail when a detection is erroneously associated
with a tracked curve. In this case, the road paint is detected correctly, but
the wrong detection is used to update a curve estimate.

rule could be to ignore the second of two consecutive and

identical detections made while the vehicle is halted.

A second limitation of our algorithm is that if a detection

is incorrectly associated with a tracked curve, and is also

used to extend the curve estimate by an amount that deviates

significantly from the true curve, then our method is unlikely

to recover. An example of this is shown in Fig. 5. To reduce

the chances of this occurring, we could employ several

methods. First, a more accurate model of road curvature

could be used to reduce the overall matching score errors in

some cases. Second, the order in which updates are applied

could be determined by a ranking procedure, instead of

simply applying updates in the order that matchings are

generated. Third, we could apply a limit on how far a

tracked curve can be extended by a single observation, as a

means to filter spurious matches. Finally, semantic reasoning

incorporating information such as marking type, appearance,

and context could be used to guide the matching.

VI. CONCLUSION

Road and lane estimation can be divided into several sub-

problems: detecting features such as road paint and curbs;

finding and tracking boundary curves; and identifying and

tracking the actual road and travel lanes. We have described

an approach to the sub-problem of boundary curve estimation
and tracking that uses lateral uncertainty to capture proba-

bility distributions over piecewise linear curves.

Our method matches curves with an empirically deter-

mined probabilistic curvature model, and is able to match

curves that do not overlap longitudinally. Our method is

robust to noise, successfully suppresses a range of falsely

detected features (e.g. those caused by shadows), and is able

to track an arbitrary number of curves independently of their

position and orientation with respect to the vehicle.

Finally, we showed the results from applying our method

to a variety of realistic driving scenarios, discussed its

strengths and limitations, and described several possible

improvements.
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