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Abstract— Proportional-Integral-Derivative (PID) control is
widely used to control mechanical systems. In PID control
technique, however, there are limits to the accuracy of the
resulting movement because of the influence of gravity, friction,
and interaction of joints caused by modeling errors. Digital
acceleration control has robustness for the modeling errors. But
it requires position, velocity, and acceleration of a controlled
object to construct a controller. In this paper, we use the
novel digital differentiator, ESDS. It enables digital acceleration
control without increasing the number of sensors. Furthermore,
the proposed method works effectively for quantized sensor
data. The validity of the proposed method is confirmed by
simulations and experiments using 2-link manipulator.

I. INTRODUCTION

Mechanical systems generally employ PID control to

control objects like robot manipulators. However, there are

limits to the control accuracy because of modeling errors,

which are caused by the influence of gravity, friction, and the

interaction of joints. Here, digital acceleration control[1] is

more robust towards modeling errors, and it is more effective

control method than PID control.

Digital acceleration control requires accurate information

of the position, velocity and acceleration. Accordingly, a

digital acceleration controller must be equipped with sensors,

while at the same time it is desirable to minimize the

number of sensors used, to reduce the cost and maintenance.

Estimates of velocity and acceleration from some position

reduce employing additional sensors.

In order to construct a controller without increasing the

number of sensors, we estimate velocity and accelerated ve-

locity from position by using some differentiator. Generally,

a motor is used as a actuator of mechanical systems. In

order to obtain information of motor’s angle, rotary encoder

is commonly used. However, it is impossible to infinitely

diminish a resolution of encoder. This causes a problem of

quantization error. Especially, when a sampling time of con-

trol system becomes shorter by introducing a digital signal

processor, cancellation of significant digits tends to increase.

By using differential data that is affected by quantized error,

then stability of the control system may become impaired.

In position servo system, the encoder information becomes

nondense when the velocity is near to zero. Therefore, it is

impossible to perform high-precision position control.

In order to solve such problems, instantaneous speed

observer is proposed[2][3]. The basic idea of this method

is to lengthen a sampling time of encoder. As a result,

adverse affect of cancellation of significant digits becomes

small. However, when the amplitude of desired value is very
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minute, the adverse affect of nonlinear term such as static

friction becomes large. In order to prevent the problem, a

disturbance compensator is required, but system becomes

complex. Furthermore, the same problem will occur when

the targeted velocity is small.

In this paper, we use ESDS[4] as a differentiator. ESDS

is one of the nonlinear filters that is based on sliding mode

technique. It works very effectively to eliminate the impulse

noise by preserving the sudden shift of input signals. In

this paper, we improve ESDS with considering the quantized

error of input signal. We propose a novel controller of digital

acceleration control which includes ESDS as differentiator.

We apply the proposed control system to 2-link manipulator,

and we confirm the validity of the proposed method by

performing simulations and experiments.

II. DIGITAL ACCELERATION CONTROL

Controlling of the mechanical systems are affected by

modeling errors. Modeling errors cause reductions in accu-

racy. Digital acceleration control [1], however, is robust to

modeling errors, and this paper employs digital acceleration

control.

The relation between input τ and time t is shown in Fig. 1.

Here T is the control period. The equations of motion of a

manipulator are expressed as:

τ (kT+) = M [θ(kT+)]θ̈(kT+)

+ X[θ(kT+), θ̇(kT+)], (1)

τ (kT−) = M [θ(kT−)]θ̈(kT−)

+ X[θ(kT−), θ̇(kT−)]. (2)

Equation (1) is the equation of motion at the time t = kT+

when the input torque is applied, and Equation (2) is the

equation of motion at the time t = kT−, the moment

immediately before t = kT+.

Using the terms for the coriolis and centrifugal force

h, viscous friction D, coulomb and static friction E, and

gravity g, the term X is described by

X[θ, θ̇] = h[θ, θ̇] + Dθ̇ + E[θ, θ̇] + g[θ]. (3)

Although τ and θ̈ is renewed at t = kT+, θ and θ̇ are not,

because they are integrals of the acceleration. This leads to

the following relations:

θ(kT+) = θ(kT−), (4)

θ̇(kT+) = θ̇(kT−). (5)
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Fig. 1. Relation between input (τ ) and time (t)

Subtracting Eq. (2) from Eq. (1) and using Eqs. (4) and (5)

give

τ (kT+) = τ (kT−)+M [θ(kT+)]

{θ̈(kT+) − θ̈(kT−)}.
(6)

This equation represents the advantage of digital acceleration

control. Because the X term which causes modeling errors

is not included in Eq. (6), modeling errors do not affect

the accuracy. In Eq. (6) θ̈(kT+) is assigned as the desired

acceleration θ̈d(kT+), and adding PD compensation to ac-

celeration, with Eqs. (4) and (5), the following equation is

obtained:

τ (kT+) = τ (kT−) + M [θ(kT+)]

{θ̈d(kT+) − θ̈(kT−) + KD[θ̇d(kT+)

− θ̇(kT+)] + KP [θd(kT+) − θ(kT+)] }.

(7)

This equation determines the input torque of the digital

acceleration control.

Now, the stability of digital acceleration control will be

discussed. The angular error is defined as

e(t) = θd(t) − θ(t), (8)

where θd is the desired angle, and with Eqs. (6), (7), and

(8), the following is derived:

ë(kT+) + KD ė(kT+) + KP e(kT+) = 0. (9)

In the very short time interval [kT+ (k+1)T+], the following

approximation is made:

ė((k + 1)T+) ≃ ė(kT+) + ë(kT+)T, (10)

e((k + 1)T+) ≃ e(kT+) + ė(kT+)T

+ ë(kT+)T 2

2
. (11)

Using Eq. (9) and eliminating ë(kT+) in Eqs. (10) and (11),

they can be rewritten in matrix form as
[

e((k + 1)T+)
ė((k + 1)T+)

]

=

[

I − T 2

2
KP TI − T 2

2
KD

−TKP I − TKD

] [

e(kT+)
ė(kT+)

]

,

(12)

E(k + 1+) = AE(k+). (13)

When the coefficient matrixes KP and KD are selected as

the system is stable, the errors converge to zero. However,

it is difficult to determine KP and KD by trial and error

as the system is stable and has a high tracking capability.

Developing A in Eq. (13), we find
[

I − T 2

2
KP TI − T 2

2
KD

−TKP I − TKD

]

=

[

I TI

0 I

]

−

[

T 2

2
I

TI

]

[

KP KD

]

= A1 − A2K,

(14)

and Eq. (13) can be represented as

E(k + 1+) = (A1 − A2K)E(k+). (15)

Now Eq. (15) is in a form for state feedback control, and KP

and KD can be determined by pole assignment or optimal

regulator theory. Therefore the selection of parameters for the

digital acceleration control is simpler than with PID control.

III. ESDS

Digital acceleration control is an effective control method,

however, additional sensors to measure velocity and accel-

eration are needed. Therefore, a system that Estimates the

Smoothed and Differential values by a Sliding mode (ESDS)

[4] [5] is employed to estimate velocity and acceleration

from rotational angle. In this section, the theorem for system

configuration and the actual implementations by using the

two kinds of stable systems are described. The composition

of our estimator is as follows:
{

ẋ1 = x2

ẋ2 = f(x1, x2, y)
(16)

Our proposed system is shown in Fig. 2. In this system,

the input signal y contains the target element of signal ŷ
and the noisy element of signal n. If the parameter x1

ignores the noisy element n and follows the target element

ŷ, we obtain the desirable smoothed value. Furthermore, the

relation ẋ1 = x2 in (16) shows that the parameter x2 is the

estimated differential of ŷ.

Theorem 1: If the following system
{

ẋ1 = x2

ẋ2 = f(x1, x2)
(17)

is globally uniform and asymptotically stable at the origin,
{

ẋ1 = x2

ẋ2 = R2f(x1 − y, x2/R)
(18)

Then the status x1(t) of these differential equations conform

to constant signal y(t) = C in the finite time for R ≫ 0.

Where R is an arbitrary parameter given by the system

designer, and it dominates the characteristics of system

convergence.

The proof of this theorem is see reference [6]. This

theorem says that a globally uniform asymptotically stable

system at the origin is required in order to construct the

estimator. As a stable system, we consider the following two

kinds of systems:
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1) The sliding mode system that has linear switching line.

2) The sliding mode system that has nonlinear switching

line. This system is generally known as the minimum-

time system.

In this section, we construct two estimators by using these

stable systems.

A. Utilize the Sliding Mode System that has Linear Switching

Line

As described in Theorem 1, a globally uniform asymp-

totically stable system at the origin is required in order to

construct the estimator. As the stable system, we utilize

the sliding mode system that has linear switching line in

this subsection. At the beginning, we explain the sliding

mode system. We start with the consideration of system

configuration on the basis of the following second-order

dynamic system.
{

ẋ1 = x2

ẋ2 = u
(19)

In (19), we find the input signal u that converges the arbitrary

state variable (x1, x2) to the origin. By finding this u, we can

obtain the system that is globally uniform and asymptotically

stable at the origin. If we consider this system from a

physical standpoint, it will be like accelerating an object

moving in one-dimensional space then stopping it at the

origin. In this case, there is a limit to the amplitude of

the applied acceleration (|u| ≤ U,U > 0). In order to

analyze this system, we perform a phase plane analysis.

Phase plane analysis [7] is a graphical method for inves-

tigating second-order systems. The basic idea of it is to

generate, in the state space of a second-order dynamic system

(a two-dimensional plane called the phase plane), motion

trajectories corresponding to various initial conditions, and

then to examine the qualitative features of the trajectories.

In this way, information concerning the transient response of

the system can be obtained.

From (19), we have

ẋ2 = u
x2ẋ2 = ux2 = uẋ1∫

x2dx2 = u

∫

dx1

x2
2/2 = ux1 + c (20)

The phase planes of (20) when u > 0 and u < 0 are shown

in Figs. 3(a) and (b). In order to obtain the stable system, we

set the switching line at x2 = −ax1(a > 0), and apply the

input of u = −U when the state exists above the switching

line and the input of u = +U below the switching line.

The solution trajectory in the phase plane is illustrated as

Smoothed / Differential
Value  Estimator

y(t)
x1(t)

x2(t)

Fig. 2. View of estimator.

0
x1

x2

(a)

0
x1

x2

(b)
Fig. 3. Orbiting paths: (a) u > 0 and (b) u < 0.

0
x1

x2

(a)

0
x1

x2

(b)
Fig. 4. Switching lines: (a) linear function and (b) nonlinear function.

shown in Fig. 4(a), and the state from the arbitrary initial

condition converges to the origin according to the trajectory.

This concept of system configuration is based on the sliding

mode technique. In this way, we can obtain the stable system

from the sliding mode theory. Fig. 4(a) is formulated by

following differential equations.

{

ẋ1 = x2

ẋ2 = −Usign(x2 + ax1)
(21)

where the sign indicates the signum function and is defined

by the following equation.

sign(σ) =







+1 σ > 0
0 σ = 0

−1 σ < 0
(22)

The system represented in (21) is globally uniform and

asymptotically stable at the origin. Therefore, we can con-

struct the following estimator by applying the Theorem 1.

{

ẋ1 = x2

ẋ2 = −UR2sign(a(x1 − y) + x2/R)
(23)

When we apply ESDS to an actual system, chattering prob-

lem may occur. To reduce the chattering effect, saturation

function is generally used in place of signum function as

shown in next equations.

{

ẋ1 = x2

ẋ2 = −UR2sat (σ/φ)
(24)

σ = Sx1 + x2 (25)

Where aR = S. We call it ESDS-linear. The definition of
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saturation function is as follows:

sat

(

σ

φ

)

=

{

σ/φ (|σ| ≤ φ)
sign (σ) (|σ| ≥ φ)

(26)

The characteristics of ESDS-linear are described in next

section.

B. Utilize the Sliding Mode System that has Nonlinear

Switching Line

In previous subsection, we have constructed the estimator

by using the sliding mode system that has linear switching

line. According to the Theorem 1, the estimated smoothed

and differential values are obtained when the estimate of the

input signal coincides with the input signal. Therefore, it is

expected that the estimation of the input signal is obtained

rapidly if the system converges quickly. To this end, we find

the switching line that converges the arbitrary initial states

to the origin in minimum-time by using the Pontryagin’s

maximum principle [8]. The optimal switching line for |u| ≤
U is illustrated in Fig. 4(b) and is formulated as follows:

{

ẋ1 = x2

ẋ2 = −Usign(Ux1 + x2|x2|/2)
(27)

These differential equations represent the optimal trajectory

and they are generally known as the minimum-time system.

Equation (27) indicates that the trajectory is a segment of

the parabola. The system represented in (27) is globally

uniform and asymptotically stable at the origin, and this

system converges from arbitrary initial points to the origin in

minimum-time under the condition of (19). We can construct

the following estimator by using (27).
{

ẋ1 = x2

ẋ2 = −UR2sign(U(x1 − y) + |x2|x2/(2R2))
(28)

As same as ESDS-linear, we introduce the saturation function

to (28). As a result, next equations are obtained:






ẋ1 = x2

ẋ2 = −UR2sat

(

σ

φ

)

(29)

σ = 2UR2 (x1 − y) + |x2|x2 (30)

We call this system as ESDS-minimum.

In this section, two kinds of estimators are constructed by

using the Theorem 1, and ESDS-linear and ESDS-minimum

are obtained. In the following sections, we draw a compar-

ison between them in order to clarify the characteristics of

ESDS.

IV. EVALUATION OF THE PROPOSED DIFFERENTIATOR

In order to perform the evaluation of the proposed ESDS,

simulation results by using pendulum are shown in this

section. In this simulation, we estimate the angular velocity

and angular acceleration from angle. In order to evaluate the

performance of the proposed methods, we draw a comparison

between estimated value and true value that is calculated by

using Runge-Kutta method. We use quantized input value in

order to apply the proposed method to actual mechanical

systems. The specification of the pendulum is shown in

Table I.

TABLE I

SPEC OF PENDULUM

length l 0.4 m

acceleration of gravity g 9.81 m/s2

initial angle θ0 25 deg

initial angular velocity ω0 0 deg/s

TABLE II

PARAMETERS OF ESDS-LINEAR

ESDS1 ESDS2

UR2

1
30 UR2

2
30

S1 30 S2 25

φ1 1 φ2 4

TABLE III

PARAMETERS OF ESDS-MINIMUM

ESDS1 ESDS2

UR2

1
30 UR2

2
30

φ1 1 φ2 4

1) ESDS-linear: Table II shows the parameters of ESDS-

linear, and Fig. 5 shows the simulation result. This simulation

result shows that angular velocity and angular acceleration

are accurately estimated by using ESDS-linear.

2) ESDS-minimum: Table III shows the parameters of

ESDS-minimum, and Fig. 6 shows the simulation result. This

simulation result shows that there is a little error especially

on the estimated accelerated velocity.

Ideally, estimated value by using ESDS-minimum is con-

sidered more accurate than ESDS-linear because ESDS-

minimum utilizes the minimum-time system. However, sim-

ulation results are different. Therefore, we discuss about the

cause of this problem in the next section.

V. IMPROVEMENT OF ESDS

From the simulation results of the previous section, es-

timated accelerated velocity of ESDS-minimum is vibrated

at velocity zero. In this section, we discuss the cause of the

vibration, and we propose the novel ESDS which control the

vibration.

In order to discuss about the cause of the vibration, we

illustrate the switching line on phase plane as shown in

Fig. 7. This figure shows that the gradient of switching

line of the minimum-time system becomes infinity at the

convergence point. Therefore, the influence of the error of

the input signal to the differential value grows larger than

linear system.

The simulation results, which were shown in the previous

section, had been influenced by quantized data. In order

to calculate accelerated velocity, we apply ESDS twice. At

the first ESDS, estimated differential value is influenced

by the quantized error especially at the convergence point.

And then, the differential value that was influenced by

quantized error is inputted to the second ESDS. As a result,

the quantized error is amplified especially at the estimated

accelerated velocity in the second ESDS. On the basis of this

consideration, we improve the switching line of ESDS.

Basically, ESDS-minimum is superior to ESDS-linear in

terms of convergence speed. On the other hand, ESDS-linear

is superior to ESDS-minimum in terms of stability at the

convergence point. In this way, there is a trade-off between

these two conditions. Therefore, we improve the switching

line of ESDS in order to satisfy these two conditions. At the
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Fig. 5. Simulation of pendulum (ESDS-linear)
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Fig. 6. Simulation of pendulum (ESDS-minimum)

beginning, we move the switching line of ESDS-minimum

parallelly so that the gradient of the switching line at the

convergence point becomes −S′. Namely, the following

equation is satisfied:

dx2

dx1

= −S′ (31)

Then, we move parallelly the switching line so that the

following coordinates become origin.

(x1, x2) =

(

−
U

2S′2
,
U

S′

)

,

(

U

2S′2
,−

U

S′

)

(32)

The switching line that satisfies above-mentioned is repre-

sented by following-equation:

σ = 2UR2 (x1 − y) + |x2|x2 +
2UR2

S
x2 (33)

Figure 9 shows the simulation result by using new-ESDS that

utilizes the improved switching line. We define this ESDS as

ESDS-quantized. From the next section, we use the ESDS-

quantized as ESDS.

VI. SIMULATION

A. Modeling of a manipulator

This section models a horizontal planar 2-link manipulator

as shown in Fig. 10, applying digital acceleration control

to a horizontal planar 2-link manipulator. The specifications

of the manipulator in the simulations and experiments are

shown in Table IV.

x

x

1

2

o

∆x

∆x

2

1

y

Linear system

Minimum-time

system

Fig. 7. Convergence point on phase plane

x

x

1
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o

Fig. 8. Concept of modification
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Angular velocity

Angular acceleration
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0.5

-0.5

0

0

0

1

2

-2

-1

Fig. 9. Simulation of pendulum (ESDS-quantized)

In modeling the horizontal planar 2-link manipulator, the

followings were assumed:

• The links are rigid.

• It is unable to ignore the effect of coriolis and centrifu-

gal forces.

• Angles are quantized by the equation:

y = q · round(θ/q), (34)

where θ: input, y: output, q: resolution, and

round: a rounding function.

The last of the assumptions is the most important in actual
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Fig. 10. Horizontal planar 2-link manipulator model

TABLE IV

SPECIFICATIONS OF THE MANIPULATOR

First link Second link

m1 0.096 kg m2 0.096 kg
mj2 0.40 kg

l1 0.12 m l2 0.12 m
lG1 0.06 m lG2 0.06 m

IG1 4.61 × 10
−4 kg · m2 IG2 4.61 × 10

−4 kg · m2

C1 1.0 × 10
−4 Nm · s C2 1.0 × 10

−4 Nm · s
q1 2π/4096 q2 2π/4096

limiter

LPF
Controlled

object

ESDS1

ESDS2

(t)θ

(t)θd

(t)θd

.

(t)θd

..

(t)θe

(t)θe

.

(t)θe

..

z -1

z -1

(k)τ
M[   ]θe

(k-1)τ

Fig. 11. Block diagram of the control system

equipment as sensors of actual equipment have limited

resolution. The equation of motion is derived by using the

Lagrangian method:
[

J1 + J2 + J3 cos θ2 J2 + 1

2
J3 cos θ2

J2 + 1

2
J3 cos θ2 J2

] (

θ̈1

θ̈2

)

+

[

−J3θ̇1θ̇2 sin θ2 −
1

2
J3θ̇

2
2 sin θ2

1

2
J3θ̇

2
1 sin θ2

]

+

[

τfric1

τfric2

]

=

(

τ1

τ2

)

,

(35)

where J1, J2, J3 are

J1 = m1l
2
G1

+ m2l
2
1 + mj2l

2
1 + IG1, (36)

J2 = m2l
2
G2

+ IG2, (37)

J3 = 2m2l1lG2. (38)

B. Composition of the control system

Combining the ESDS with a digital acceleration control,

the control system is composed as shown in Fig. 11. Because

the ESDS does not estimate second order differential values,

ESDS is employed twice to estimate angular acceleration.

TABLE V

PARAMETERS OF ESDS

ESDS1 ESDS2

UR2

1
1000 UR2

2
3000

S1 80 S2 75

φ1 50 φ2 500

Fig. 12. Simulation results under payload changes

The torque of the controller must be restricted to improve

the initial response, and a Low Pass Filter (LPF) is applied

to the input torque to reduce high frequency components

in the estimated acceleration. In both the simulations and

experiments, the desired angles of joints θd are given by

θd(t) = a sin (t/b) (39)

and the control period T is 2 ms. Parameters of the digital

acceleration control are: Kp = diag(50, 80) and Kd =
diag(12, 15). And parameters of ESDS-quantized are shown

in Table V.

C. Simulation Results

Figure 12 shows the simulation results. In order to confirm

the validity of the proposed system, we performed the

simulation under payload changes. As the initial condition,

the manipulator grasps a object that weight is 0.05 kg. At

t = 3.3 s, the manipulator releases the object so payload

becomes 0. And then, the manipulator grasps a same object

when t = 6.7 s. Simulation results show that the disturbance

to the controlled angle by using the proposed method is tiny

in spite of the existence of payload changes. The robustness

to payload changes is one of the advantages of digital

acceleration control method.

VII. EXPERIMENTAL RESULTS

We performed the experiments under same conditions

as the simulations which were performed in the previous

section. In order to realize the structure to change payload,

the electromagnet is attached to the manipulator as shown in
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Fig. 13. Block diagram of the experimental setup

Fig. 14. Experimental setup

Fig. 15. Experimental results

Figs. 13 and 14. Therefore, it is easy to release a payload,

but it is difficult to attach a payload on manipulator. So,

we don’t perform the experiment of grasping object. As the

initial condition, the manipulator grasps an object of 0.05

kg. At t = 5 s, the manipulator releases the object, therefore

payload becomes 0.

Figure 15 shows the experimental result. This result shows

the validity of the proposed control system under payload

changes. However, we can observe an adverse affect to

the angle when payload changes. The cause of the adverse

affect is delay of input signal because of using the LPF.

And we can observe a little difference between simulation

and experimental result on input torque. The causes of the

difference are considered modeling error and static friction.

It is possible that the coefficient of viscous damping of actual

manipulator is different from the parameter of simulation. It

is difficult to determine the accurate value because the value

is affected by the environment and conditions used.

As mentioned above, there is a difference between simu-

lation and experimental result on input torque. However, the

error on input torque does not affect a controlled angle. This

result shows the validity of the digital acceleration control

method including ESDS-quantized. In other words, there is

a strong consistency between simulation and experimental

result. Therefore, by using the digital acceleration control

method, the usefulness of the simulation improves.

VIII. CONCLUSIONS

Simulations and experiments were performed on digital

acceleration control with the ESDS-quantized of a 2-link

manipulator. We proposed the ESDS-quantized in order to

differentiate quantized data such as angle that is obtained by

encoder. It was shown that ESDS enables digital acceleration

control without additional sensors. The results confirm the

effectiveness and practicality of ESDS in actual machinery

applications as well as in simulations. The ESDS employed

in this paper requires LPF for estimates of acceleration of

the control system, and further development of the ESDS is

the subject for future study.
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