
A Learning Approach to Integration of Layers of a Hybrid Control
Architecture

Matthew Powers and Tucker Balch

Abstract— Hybrid deliberative-reactive control architectures
are a popular and effective approach to the control of robotic
navigation applications. However, the design of said architec-
tures is difficult, due to the fundamental differences in the
design of the reactive and deliberative layers of the architecture.
We propose a novel approach to improving system-level per-
formance of said architectures, by improving the deliberative
layer’s model of the reactive layer’s execution of its plans
through the use of machine learning techniques. Quantitative
and qualitative results from a physics-based simulator are
presented.

I. INTRODUCTION

Hybrid deliberative-reactive control architectures for
robotic navigation have long been an active area of research.
Despite their success, open questions remain how to best
integrate the layers to maximize overall system performance.
In this work, we propose a novel method to improve the
integration of deliberative planning and reactive control in a
robotic navigation system. In particular, we will use machine
learning techniques to improve the deliberative layer’s model
of the reactive layer’s interpretation of its plans.

Today, many modern systems use an implementation of a
hybrid layered approach to robot control architecture. Hybrid
and hierarchical layered approaches make use of decoupled
layers of functionality to satisfy both the robot’s immediate
constraints and its longer-term objectives. In the case of
robot navigation (especially in the area of field robotics),
many modern architectures make use of a lower-fidelity
global deliberative planner and a higher-fidelity local reactive
controller [1], [2], [3].

Finding a compromise between global objectives and local
constraints is not always easy, and often the tradeoffs have to
be empirically “fine-tuned” by the robot software designer.
Either the deliberative layer’s model of the world and the
robot, or the reactive layer’s interpretation of the deliberative
layer’s input must be adjusted. This process can be time-
consuming and is subject to human interpretation of the
robot’s performance. It can also simply be difficult for a
human to make sense of how all the degrees of freedom
that a complex software system may contain might affect
the robot’s system-level performance.

We propose an approach to improving system-level perfor-
mance of hybrid control architectures by learning models of
the reactive layer’s execution of the deliberative layer’s plans,
based on measurements of actual executions. Our approach

Matthew Powers and Tucker Balch are with the College of Computing,
Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30332,
USA mpowers@cc.gatech.edu, tucker@cc.gatech.edu

begins by measuring the performance of the execution of
the plans in the context of a training environment. Machine
learning techniques, particularly supervised learning, are
used to abstract that performance to predict performance in
other environments. Then, this learned model is fed back
to the planner for use in creating plans with better overall
performance.

II. RELATED WORK

A. Hierarchical and Hybrid Control Architectures

Arkin’s AuRA architecture [4] and Gat’s Atlantis ar-
chitecture [5] are early examples of hybrid deliberative-
reactive architectures. In both, the reasoning done by the
deliberative layer is fundamentally different from that done
by the reactive layer. The deliberative layer works to achieve
global goals based on world models. The reactive layer
works to achieve local constraints based on current sensor
input. Each architecture suggests methods for combining
the globally-based deliberative input with the locally-based
reactive reasoning.

Layered architectures have been especially successful in
the area of field robotics. Albus’ 4D-RCS architecture [1]
builds upon the concept of layered architectures, implement-
ing an extended hierarchy of layers. Stanley, the robot winner
of the DARPA Grand Challenge [2] made use of a global
trajectory planner advising a lower-level real-time controller
to navigate 120 miles of desert. The winner of the DARPA
Urban Challenge, Boss [3], made use of an architecture that
included a global task planner, a local path planner and a
local behavior-based design to navigate over 60 miles of
urban terrain.

B. Learning within Hierarchical Control Architectures

Because of the difficulties associated with assuring
system-level performance within hierarchical control sys-
tems, a body of work has evolved promoting learning across
layer boundaries or across task decompositions. Stone [8]
implemented an approach to task decomposition and learn-
ing within the context of robot soccer. Rather than using
reinforcement learning at all layers, Stone relied on human
insight to choose appropriate learning techniques at each
layer. Higher-level layers were learned making explicit use
of learned low-level layers. Stone extended this hierarchy up
to the team level and demonstrated its effectiveness in several
international competitions.

In [9] Balch demonstrated the use of reinforcement learn-
ing for robots to learn a sequential layer strategy in the

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 893

form of a finite state automata (FSA), based on a designer-
implemented reactive layer. Balch implemented a set of be-
havioral assemblages, and defined states in an FSA mapping
to each behavioral assemblage. He then used Q-learning to
learn transitions between the states in the FSA.

III. REPRESENTATION

Following the pattern of other hybrid control architectures,
we divide the architecture into two distinct components, the
reactive layer and the deliberative layer. The reactive layer
is responsible for monitoring the robot’s sensors, performing
low-level navigation and decision making, and actuating the
robot’s motors. We model the robot’s reactive layer as a
continuous controlled dynamical system. The deliberative
layer is responsible for integrating sensor input into maps,
and planning routes and actions toward a given goal. We
model the deliberative layer as a discrete process providing
regular input to the reactive layer.

A. Sensing and Reactive Control

We begin by modeling the robot as a controlled dynamical
system,

ẋ = f (x,u), x ∈ Ra, u ∈ Rb (1)

which exists in a world W ⊂ Rd .
We are given a measurement equation,

y = hy(x) (2)

that provides access to the state of the system. Additionally,
we are given another measurement equation that gives sen-
sory access to the state of the world, hs(x,w). We then define
s as the collection of all observable sensory input:

s = {hs(x,w)}w∈W (3)

We can then close the loop, defining the control input u as
a function of the measurements of both the system state and
the environment state. Thus,

u = g(y,s) (4)

B. Mapping and Deliberative Control

We model the robot’s deliberative layer as a regularly
updating discrete-timed event system which updates at times
t0, t1, . . . , t f inal , where ti − ti−1 = ∆t, ∆t > 0. These intervals
account for the practical requirements of the execution of
complex algorithms and management of large data sets.

Given that the robot is using a map to guide its path
planning algorithms, we define the map M as an integrated
set of sensory input. In each update cycle, the most recent
set of sensory input, S is integrated into the map by the
integration function m,

Mt = m(st ,yt ,Mt−1) (5)

We assume m is a non-invertable function. That is, given Mt
we cannot directly recover {(s0,y0), (s1,y1) . . . , (st ,yt)}.
This is an important point, as given Mt , we cannot directly
recover the reactive layer’s control output, u(yt ,st)

Given that the world W is compact and connected, assume
W is partitioned into a set of n regions,

RRR = {ri}n
i=1 (6)

such that
n⋃

i=0

ri = W (7)

and
ro

i

⋂
ro

j = φ , ∀i, j i 6= j (8)

where ro
i denotes an interior region.

For each region, we are given a collection of m control
laws,

Gro
i
= {g j(y,s)}m

j=0, ∀ro ∈ Ro (9)

and a transition function d(ro,M,gro) which provides a
mapping from an interior region and a control law to the
next region the control law will drive the robot toward.
Intuitively, we can think of this is as the expected outcome
of the control law. This mapping is important to the planning
process as it provides a model of the outcome of the action
of employing a particular control law. We are also given a
cost model, c(ro,M,gro) that provides an expected cost of
traversing region ro, using the control law g, given the map
M.

Given a goal region, rgoal , and an starting region, rstart ,
this representation is easily mapped into a graph-based
model (compatible with many planning algorithms), Γ =
(V,E, l,vstart ,vgoal), where:

• V is a set of vertices, directly corresponding to the set
of interior regions, {ro}ro∈Ro

• E is a set of directed edges, E ⊂ V ×V . This set of
edges corresponds to the connectivity described by the
transition model, E = {ro×d(ro,M,gro)}ro∈Ro, gro∈Gro

• l is a cost function l : E → R+ directly corresponding
to the cost model c(ro,M,gro), where the edge corre-
sponding to the weight is given by the transition model,
E = (ro×d(ro,M,gro)).

• vstart and vgoal are the starting and goal vertices, respec-
tively. These vertices correspond directly to the regions
rstart and rgoal .

Within this graph-based representation, the path planning
problem can be defined as selection a sequence of edges

Plan = {e0 = (Vstart ,V1), . . . ,eN = (Vgoal−1,Vgoal)} (10)

to minimize the total cost

Cost = ∑
e∈Plan

l(e) (11)

In this case, the set of edges is provided by the transition
model, d(ro,M,gro), which is a function of the selection of
of the control law, gro . We can then more precisely define
the planning problem as choosing a mapping b ∈ B (where
B is the set of all possible mappings), from each ro

i to a
gro ∈ Gro

i
,

ẋ = f (x,gro(y,s)), ∀x | p(x) ∈ ro
i , gro = b(ro

i) (12)

894

(where p(x) ∈W is the position of the system) , such that

b = argmin
b∈B

goal

∑
i=0

c(ro
i ,M,b(ro)) (13)

where
ro

i+1 = d(ro
i ,M,b(ro

i)) (14)

C. Learning
Two components of the deliberative layer’s planning

process rely primarily on a priori models of the reactive
layer’s execution of the provided plans. The transition model,
d(ro,M,gro) predicts the the next region the system will
enter, given the region the robot is currently in and the
control law the robot is currently executing. The cost model
c(ro,M,gro) predicts the cost incurred by the system until the
next region is reached. It is the goal of this work to improve
the integration of the deliberative and reactive layers by
learning a cost model that better represents the cost actually
incurred by the reactive execution of the plan. Improving
performance by learning the transition model as well will be
discussed further in the Future Work section.

We begin by defining a measurement function, mc(x,ro)
which measures the cost incurred by the execution of control
law g in region ro given map M. We define the learning
problem as choosing a cost model that best predicts the
measured cost,

c = argmin
c∈C

E[|mc(x,ro)− c(ro,M,gro)|] (15)

where C is the set of all possible cost functions. This opti-
mization is over a expectation not only because of possible
noise in the sensory information, but because, as noted
earlier, the mapping function is non-invertable. Therefore, the
cost model, which is a function of M, cannot directly access
the reactive output measured by the measurement function.
The best the cost model can do is a prediction of the reactive
output. Our goal is to minimize the error in this prediction.

IV. IMPLEMENTATION
To demonstrate the capabilities and performance of the

proposed system, a simulated robot and hybrid control archi-
tecture was implemented. A car-like robot was implemented
in the Gazebo simulation environment [10]. The robot’s
physical state is represented as simply its 2-dimensional
position and heading,

x =

 x
y
θ

 (16)

The robot has control over its translational velocity, v and
its steering angle, which is proportional to the curvature of
its path, κ ,

u =
[

κ

v

]
(17)

Thus, the dynamics of the robot are defined,

ẋ =

 v · sinθ

v · cosθ

v · κ

 (18)

The simulated robot is equipped with sensors to measure
its own state, and the state of the world. A simulated GPS
module provides the robot with a measurement of its own
state,

y =

 x
y
θ

 (19)

Simulated laser range-finders provide measurements of the
state of the world,

s =
{

o(w) if ‖p(x)−w‖ ≤ ∆

φ otherwise (20)

where ∆ is the range of the measurement system, and o(w)
is the occupancy of the point w ∈W . The occupancy of a
point w is defined as:

o(w) =
{

1 if the point w is occupied
0 else (21)

A. Reactive Layer

The reactive layer is implemented in a behavior-based
voting design, explained in detail in [11]. In this design a
number of behaviors evaluate candidate actions over a short
temporal scale, each behavior representing a specific interest
pertaining to the robot’s objective.

In this implementation the behaviors reason over constant
curvature arcs. Each behavior distributes an allocation of
votes over an array of potential arcs for the robot to navigate
along. The behaviors can allocate votes for arcs that work to
achieve its interests, or against arcs that are detrimental to its
interests. In addition to distributing votes for or against arcs,
behaviors assign a maximum allowable velocity, associated
with each arc.

To choose a curvature and velocity for the robot to
execute, an arbiter sums the votes cast by each behavior for
each curvature arc, weighting the votes for each behavior
according to a predetermined weighting scheme. It selects
for execution the curvature arc with the highest total of votes.
It then selects for execution the minimum of the maximum
allowable velocities assigned by the respective behaviors
to the selected curvature arc. The selected curvature and
velocity are sent on to low-level controllers for execution.

Five behaviors were used in this implementation:
• Move to Waypoint - allocates positive votes to arcs

according to a linear control law relating the local
heading to the waypoint to a commanded curvature. The
votes are allocated according to a Gaussian distribution
around the output of the linear control law.

• Avoid Obstacles - allocates negative votes to arcs ac-
cording to the distance along the arc that the arc crosses
into the configuration space around a detected obstacle.
Arcs that do not cross into the configuration space of
the obstacle are not voted against.

• Maintain Headway - sets maximum allowable velocities
for each arc according to the distance along the arc
that the arc crosses into the configuration space around
a detected obstacle. If the arc does not cross into

895

the configuration space of the obstacle, the robot’s
maximum speed is assigned. If the arc crosses into the
configuration space of the obstacle within a parameter-
ized safety distance, the maximum allowable velocity is
zero.

• Slow for Congested Areas - sets maximum allowable
velocities for each arc according to the distance along
the arc that the arc crosses into an intentionally large
configuration space around a detected obstacle. If the
arc does not cross into the the configuration space of
the obstacle, the robot’s maximum speed is assigned. A
velocity of zero is never assigned. That responsibility is
left to the maintain headway behavior.

• Slow for Turns - sets a maximum allowable velocity
for each arc according to a parameterized maximum
allowable rotational velocity. if the calculated maximum
allowable velocity is larger than the robot’s top speed,
the robot’s top speed is assigned.

In this implementation, the set of control laws Gro is
provided by parameterizing the given set of behaviors with
a waypoint from each adjacent region. (i.e., each member of
the set of control laws drive the robot toward one of the ad-
jacent regions, using the full compliment of behaviors.) The
transition model d(Ro,M,gro) is simply defined as mapping
to the region associated with the waypoint parameterizing
the control law gro , regardless of the map.

B. Deliberative Layer

The deliberative layer is implemented as a global path
planner over a relatively high-resolution occupancy grid. As
sensory information is accumulated in the local frame it is
integrated into the global map based on the robot’s current
global state measurement. Detected obstacles are placed into
grid cells based on their discretized global position. Each
grid cell can be marked as either occupied or unoccupied.
Obstacles associated with unoccupied cells cause the cell to
be marked as occupied. Obstacles associated with occupied
cells have no effect on the cell; the cell remains marked
occupied.

The grid cells are then grouped into regions, as depicted
in Figure 1. A count of occupied grid cells is kept within
each region. This count is used by the planning algorithm in
evaluating the cost of traversing each region.

To represent the connectivity between the regions, a graph
is overlaid on the map, as shown in Figure 1. One graph
vertex is placed at the center of each region. Edges are added
between contiguous nodes. Figure1 depicts a four-connected
graph based on the structure of the occupancy grid. The
cost of traversing each edge is proportional to the expected
time to move between its source node and destination node.
The time to move between nodes is modeled as the distance
between the nodes divided by the expected average velocity
of the robot over that distance. The baseline planner uses a
binary model of the robot’s velocity. If the count of occupied
grid cells within the region associated with either node is
larger than a parameterizable count, the expected velocity
is zero (i.e. the edge is not traversable and is assigned an

infinite cost). Otherwise, the expected velocity is the robot’s
top speed. This graph structure is a suitable data structure
for many planning algorithms. In this implementation, an
instance of the D*-Lite [12] [13] algorithm is employed.

C. Learning

Next Node

(Right)

Last Node

(Back)

Current Node

(a) Learning experience setup

Next Node

Last Node

Current Node

Measured

Average Velocity

(b) Learning experience measure-
ment

Fig. 1. A depiction of the encoding of the learning experience. In (a),
the learning experience is setup. The robot is shown in the center of the
diagram. The next planned waypoint is represented by the graph vertex to
the right of the robot. The local map, out to the range of the robot’s sensors is
included under the graph. In (b), the robot has completed the experience. The
supervisory signal (in this case, average velocity) is measured and provided
to the learning algorithm, along with the experience representation.

The learning component of this approach is implemented
within a supervised learning paradigm. To keep the learning
problem tractable, it is important to create a compact, yet
meaningful representation of the robot’s experiences execut-
ing proposed planning segments. We define the length of a
learning experience to be time to move from one region,
ro

i to the next region in the plan, d(ro
i ,M,gro), given the

control law gro provided by the planning algorithm. We use
the following representation of a learning experience:

Exp = (gro ,Mlocal) (22)

where Mlocal is a local representation of the map, M. To
take advantage of symmetry in the problem, we orient the
experience into the robot’s local frame. That is, rather than
encoding the segments of the plan as “move north” or “move
east”, it is more general to encode the robot’s experiences as
“move forward” or “move right”. A more general encoding
of experiences makes learning over these experiences more
tractable, as it reduces the dimensionality of the problem.
Figure 1 is a graphical representation of the robot’s planning
experience.

A supervisory signal is provided by the measurement
function mc(x,ro), which measures the reactive layer’s inter-
pretation of the commanded plan. As shown in Figure 1(b),
the measurement function measures the average speed of the
robot during the experience.

Once a sufficient number of planning experiences have
been recorded, the experiences are used as data for a
supervised learning algorithm. The supervised learner uses
the experiences to extrapolate expected results from new
proposed experiences. In this implementation, the learned

896

model of expected velocity is used by the global planner
to plan subsequent navigation paths. The planner uses the
model to evaluate the expected cost of traversing an edge, in
terms of expected time to traverse the edge. To evaluate the
cost of an edge, the edge is encoded in terms of a planning
experience. The learned velocity model returns an expected
velocity over the edge. The time-based cost model is obtained
by dividing the distance between the source node and the
destination node by the expected velocity. The planning
algorithm plans over these costs to find the fastest route.

V. EXPERIMENTAL SETUP AND RESULTS
A. Experimental Setup

(a) The training environment (b) The quantitative testing environ-
ment

(c) The qualitative testing environ-
ment

Fig. 2. The environments used in training and testing. The environments
were built in the Gazebo simulation environment. Environment (a) was
used in gathering training data for the learning process. Environment (b)
represents a slightly more complex environment than (a), and was used for
quantitative testing. (c) represents a plausible environment, consisting of a
path through a dense forest, and was used for qualitative testing.

Two complex environments were designed within the
Gazebo simulation environment. The environments used are
shown in Figure 2. Environment 2(a) was used for gathering
training data. Environment 2(b) was used for running tests
comparing different systems. Environment 2(c) was used to
demonstrate the qualitative behavior of the system.

Data was gathered in the training environment by tasking
the robot to achieve a series of randomly generated goals
around the environment, using the baseline planner and
the above described reactive layer. Every time the robot
achieved a waypoint the robot’s experience was recorded,
including the local map, the robot’s average velocity, the
commanded waypoint, and the waypoint actually achieved.
Approximately 5000 learning examples were collected.

Several different supervised learning algorithms were eval-
uated for use. The Weka machine learning environment [14]
provided a library of community-supported implementations
of well known algorithms. For learning prediction of the

Simulated
Time to
Complete
Test

Simulated
Distance
Travelled

Relative
Improve-
ment over
Baseline
System

Paried
T-Test
p-Value

Baseline
System

7745 sec 5124 m N/A N/A

Learned
System
(KNN
k = 5)

6434 sec 5577 m 17% .02

TABLE I
RESULTS OF TIMED TEST OF BASELINE AND LEARNED SYSTEMS. THE

LEARNED SYSTEM IMPROVED PERFORMANCE OVER THE BASELINE BY

17%, WITH A STATISTICALLY SIGNIFICANT p-VALUE OF .02.

robot’s velocity (a real-valued signal), we evaluated the k-
nearest neighbor algorithm for several values of k, a multi-
layer perceptron network, linear regression, and the baseline
strategy of always assuming the robot travels at its maximum
speed.

Models were built from the training data, using each
algorithm. Cross-validation tests on the training data were
performed to evaluate the effectiveness of each algorithm.
The k-nearest neighbor algorithm with k = 5 produced the
lowest average relative error and highest correlation of the
algorithms tested, and was chosen for use in testing.

The learned models were then incorporated into the cost
function of the global planner. The baseline system was
compared to the system using the learned model. Each
system was tasked with achieving a sequence of goals criss-
crossing the test environment. This sequence of goals totaled
a piecewise straight-line distance of over 1500 simulated
meters. Results were compiled comparing the average time
to complete each goal between different systems.

In addition to quantitative experiments, a qualitative ex-
periment was performed to demonstrate, in an intuitive way,
the effect learning had on the overall system performance.
An environment was constructed to resemble an open path
through a wooded area, shown in Figure 2(c). The wooded
area is sparse enough that the robot is capable of finding
a path between the trees, but would travel that path slowly
due to its tendency to drive slowly in tight spaces and slow
down for the frequent required turns. The robot was tasked
with navigating to a goal whose straight-line path would
take the robot through the woods. The plans and resulting
paths created by the baseline system and the system that
had learned a cost model were compared qualitatively and
quantitatively.

B. Quantitative Results

Table I displays the results of using the learned models in
the global planner on the time to complete the sequence of
goals criss-crossing the environment shown in 2(b). Using
the learned velocity model reduced the time to complete
the overall mission by 17% over the baseline system. The
calculated p-value indicates that the result is statistically
significant.

897

The fact that the learned model does show improvement
indicates that using supervised learning to improve the
deliberative layer’s model of how its plans are interpreted
by the reactive layer can improve the robot’s overall system
performance.

C. Qualitative Results

(a) Baseline system’s planned route (b) Baseline system’s trajectory

(c) Learned system’s planned route (d) Learned system’s trajectory

Fig. 3. A comparison of the plans and trajectories produced by the baseline
and learned systems in the “path in the woods” environment.

Figure 3 shows the results of the qualitative tests in the
path through the woods environment. Figure 3(a) shows the
baseline planner’s planned route through the environment.
Note how the planned route snakes through the dense ob-
stacle field on its way to the goal. Figure 3(b) shows the
trajectory actually taken by the robot following the planner’s
output. Note that it departs from the planned route early
in the mission. The planner continues to suggest updated
routes based on the robot’s position, and the robot eventually
achieves the goal.

Figure 3(c) shows the route provided by the planner
using both the velocity and transition models. Note that it
prefers a slightly longer (by distance) route that follows the
wide path. Figure 3(d) shows the trajectory actually taken
by the robot following this plan. In this trial, the robot
completes the mission in 25% less time than the baseline
planner. This demonstrates a clear qualitative and quantitative
improvement in system-level performance in a plausible
environment.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel approach to the prob-
lem of improving system-level performance of a hybrid

deliberative-reactive control architecture for robotic navi-
gation. In particular, we propose using machine learning
techniques to improve the deliberative layer’s cost model,
based on measured performance of the reactive layer’s ex-
ecution of plans. The system was implemented in physics-
based simulation environment. Quantitative and qualitative
experimental results were compiled and presented.

While, this work concentrated on batch-learning of the
cost model, certainly more work in the area can be done.
For example:

• It is not yet clear how map representation effects the
performance of the learning component of the approach.

• Incremental learning may be desirable in many appli-
cations of robotic navigation. How does this approach
handle incremental improvements “on the fly”?

• While improving the planner’s cost model certainly has
the potential to improve overall system performance,
judging from the trajectory in Figure 3(d), it is apparent
that improving the transition model may also have a
significant effect on system performance.

We look forward to exploring these questions in future work.

REFERENCES

[1] J. S. Albus, “4d/rcs: a reference model architecture for intelligent
unmanned ground vehicles,” in In Proceedings of SPIE Aerosense
Conference, pp. 1–5, 2002.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, et al., “The
robot that won the darpa grand challenge,” Journal of Field Robotics,
vol. 23, pp. 661–692, 2006.

[3] C. Urmson, J. Anhalt, H. Bae, J. A. Bagnell, et al., “Autonomous
driving in urban environments: Boss and the urban challenge,” Journal
of Field Robotics Special Issue on the 2007 DARPA Urban Challenge,
Part I, vol. 25, pp. 425–466, June 2008.

[4] R. C. Arkin and T. Balch, “Aura: Principles and practice in review,”
Journal of Experimental and Theoretical Artificial Intelligence, vol. 9,
pp. 175–189, 1997.

[5] E. Gat, “Integrating planning and reacting in a heterogeneous asyn-
chronous architecture for mobile robots,” SIGART Bulletin, vol. 2,
no. 4, pp. 70–74, 1991.

[6] L.-J. Lin, “Hierarchical learning of robot skills by reinforcement,” in
International Conference on Neural Networks, 1993.

[7] R. Sutton and A. Barto, Reinforcement Learning, an Introduction. The
MIT Press, 1998.

[8] P. Stone, Layered Learning in Multi-Agent Systems. PhD thesis, School
of Computer Science, Carnegie Mellon University, 1998.

[9] T. Balch, Behavioral Diversity in Learning Robot Teams. PhD thesis,
Georgia Institute of Technology, December 1998.

[10] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage
project: Tools for multi-robot and distributed sensor systems,” in
In Proceedings of the 11th International Conference on Advanced
Robotics, pp. 317–323, 2003.

[11] D. Wooden, M. Powers, M. Egerstedt, H. Christensen, and T. Balch, “A
modular, hybrid system architecture for autonomous, urban driving,”
Journal of Aerospace Computing, Information, and Communication,
vol. 4, pp. 1047–1058, December 2007.

[12] S. Koenig and M. Likhachev, “D*-lite,” in National Conference on
Artificial Intelligence, pp. 476–483, 2002.

[13] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Transactions on Robotics, vol. 21, pp. 354–
363, June 2005.

[14] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. H.
Witten, and L. Trigg, “Weka - a machine learning workbench for data
mining,” in The Data Mining and Knowledge Discovery Handbook
(O. Maimon and L. Rokach, eds.), pp. 1305–1314, Springer, 2005.

898

