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Abstract— In this paper we propose a system architecture
that extends the current state-of-the-art in computational visual
attention by incorporating the biological concept of ventral
attention. According to recent findings regarding the neuro-
biological foundations of attention, there exist two separate
but interacting attention systems in the human brain: the
dorsal attention system and the ventral attention system. As
opposed to the well-known computational concepts of bottom-
up and top-down saliency, which both correspond to the dorsal
attention system, the ventral attention system is sensitive to
behavior-relevant stimuli that are unexpected (i.e. not top-down
salient), independent of their perceptual saliency (bottom-up
saliency). This results in a dynamic interplay between top-
down saliency, bottom-up saliency and ventral attention in the
proposed system architecture, enabling the system to redirect
its focus of attention to important stimuli while being absorbed
in a task, even if their perceptual saliency is low. Our technical
system instance implementing the proposed architecture inte-
grates several state-of-the-art methods in a coherent system and
concentrates on unexpected motion as a first technical account
of ventral attention. In our experiments, we demonstrate that
the ventral attention enables our system to detect and reorient
to important situations in real-world traffic environments that
are relevant for the behavior of driving.

I. INTRODUCTION

Due to the huge complexity of unconstrained real-world
environments, any autonomous embodied system operating
in such environments needs some kind of attention mecha-
nism to filter the information that is relevant for the behavior
of the system from the vast amount of data available. This is
the same for all such agents, be it an autonomous car driving
in inner-city environments, a humanoid robot operating in
realistic indoor environments or human beings themselves.
The importance of the attentional mechanisms in humans can
be seen by the effects of disorders that impair their normal
function, such as autism, for example.

Consequently, considerable research on computational at-
tention mechanisms has been conducted in robotics, com-
puter vision and related fields. As an early result, this led to
the concept of bottom-up saliency, which basically combines
various two-dimensional feature maps computed from an
input image to a single map that indicates the information
content at each location, given the features considered [1]
[2] [3]. From this map, potentially relevant targets can be
derived, e.g. gaze targets. However, the computation of this
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map is data-driven, not taking into account what is relevant
for the system given the current situation, such as defined by
the task that is currently pursued by the system, for example.
This limitation is overcome by the concept of top-down
saliency, which explicitly allows for top-down modulation of
the way the different feature maps are combined [4] [5]. As
a result, a certain location of the same scene may be highly
salient or not, depending on the top-down modulation. State-
of-the-art attention systems typically consist of both bottom-
up and top-down saliency [6] [7].

Neurobiological evidence supports the existence of two
separate but interacting attention systems in the human brain.
These are the dorsal attention system and the ventral atten-
tion system [8] [9] [10]. However, recent findings concerning
the role of the ventral attention system contradict the view
that these might be the neural correlates of computational
bottom-up and top-down saliency [11]. Instead, they suggest
that both bottom-up and top-down saliency correspond to
the dorsal attention system, which is closely related to
the generation of eye movements based on the perceptual
saliency of stimuli (bottom-up saliency) or their relevance for
the currently pursued task (top-down saliency). The ventral
attention system, in contrast, does not directly serve the
purpose of generating eye movements but plays an important
role in redirecting attention to stimuli that are of high
behavioral importance to the organism, such as a predator
slowly approaching, for example. A more technical example
in the domain of intelligent vehicles would be a ball rolling
unexpectedly onto the street, which is highly relevant for
the behavior of driving because it might be followed by a
child that runs after the ball. The crucial point here is that
such stimuli may or may not be perceptually salient, and
most often they are unexpected since they have nothing to
do with the task the system is currently engaged in.

The contribution of this paper is three-fold: On a con-
ceptual level, we extend the current state-of-the-art in com-
putational visual attention by incorporating the biological
concept of ventral attention. As we show in our experiments,
this enables the system to detect and reorient to certain
stimuli that are neither top-down nor bottom-up salient but
nevertheless highly behavior-relevant. On a systems level,
we not only consider top-down saliency, bottom-up saliency
and ventral attention in isolation but propose a closed-loop
system architecture in which they are embedded. Here, our
focus is on the attentional dynamics that result from their
interplay within the context of the system as a whole.
On the implementation level, we present a concrete tech-
nical instance of the proposed architecture that integrates
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several state-of-the-art methods in a coherent system and
that concentrates on unexpected motion as a first technical
account of ventral attention. We evaluate its performance in
unconstrained real-world traffic environments.

This paper is organized as follows. In Sec. II, we present
the system architecture. In Sec. III, we explain the attentional
dynamics resulting from the interplay between top-down
saliency, bottom-up saliency and ventral attention. In Sec.
IV, we describe the technical system instance implementing
the proposed architecture. In Sec. V, we report on the ex-
perimental results that we have obtained using this technical
system instance. In Sec. VI, we summarize our main results
and provide suggestions for future work.

II. SYSTEM ARCHITECTURE
The basic structure of the proposed system architecture is

depicted in Fig. 1. It consists of five sub-systems:
• Image processing,
• Dorsal attention,
• Ventral attention,
• Classification, and
• Expectation generation.
The sub-system for image processing computes a variety

of two-dimensional feature maps f : W×H → [0, 1] given
the input image i : W × H → [0, 1], where W,H ∈ N
denote the width and height of i in pixels, respectively, and
X is short for the set {0, . . . , X − 1}, for each X ∈ N.
Each feature map fj concentrates on a certain feature such as
oriented contrast edges or optic flow, for example. The dorsal
attention sub-system integrates the fj to a single saliency
map sdorsal : W×H → [0, 1] from which it then computes
a certain 2D position pFoA ∈ W×H in image coordinates,
typically at the global maximum. This 2D position pFoA

represents the current focus of attention of the system, i.e.
subsequent processing steps do not operate on the entire
image but concentrate on pFoA and its local neighborhood.
Consequently, the sub-system for classification considers a
local image patch RpF oA

⊂ W × H that is defined by
pFoA and, based on its visual appearance, computes an
estimate cperceived ∈ C of the object category to which
RpF oA

corresponds, where C ∈ N is the total number
of object categories known to the system. The expectation
generation sub-system closes the loop by generating an
expected object category cexpected ∈ C, given cperceived or
a task t. The expectation cexpected is then propagated to the
dorsal attention sub-system where it influences the way the
fj are combined, and hence the focus of attention pFoA.

Like the dorsal attention sub-system, the ventral attention
sub-system also operates on the fj and integrates them
to a single saliency map sventral : W × H → [0, 1].
It integrates them in a different way, however, since its
purpose is not directly to compute the focus of attention
pFoA but to detect stimuli that contradict the expectations of
the system given the current situation, such as unexpected
motion, for example. In this case, it generates an interrupt
event χ ∈ {0, 1} that stops the currently pursued task t
and, at the same time, it provides a coarse spatial prior

Fig. 1. Basic structure of the proposed system architecture.

punexpected ∈ W × H to the dorsal attention sub-system,
thereby enabling the system to reorient to the unexpected
stimulus (see Sec. III).

It should be noted that our focus is not so much on the in-
dividual sub-systems themselves. Consequently, we employ
existing state-of-the-art algorithms for their implementation
(see Sec. IV). Instead, we are interested in their dynamic
interplay within the context of the system and, in particular,
how this enables the system to reorient to unexpected stimuli
detected by the ventral attention. This goes beyond the task-
oriented notion of attention employed in our previous system
[12]. In order to illustrate the attentional dynamics, we
consider an intuitive example in the following section. Note
that we also provide experimental results of this example in
Sec. V-A.

III. EXAMPLE OF ATTENTIONAL DYNAMICS

Let us assume that the system is in a traffic environment
and that it currently pursues the task of keeping the distance
to the car in front. From experience, the system knows
that this task involves the object category “car”, the spatial
prior “in front”, and the behaviors “brake” and “accelerate”.
Leaving aside the behaviors in the following consideration,
the system also knows from experience how to express the
object category “car” in terms of the various feature maps,
i.e. which features are characteristic for the object category
“car” and which are not. The resulting top-down feature
weights modulate the way the dorsal attention combines the
feature maps (see Fig. 2, left). This leads to a saliency map
in which cars are highly salient while other parts of the scene
are not. Likewise, the system knows from experience how the
spatial prior “in front” translates to 2D image space, which
affects the saliency map by further increasing the saliency
of cars in front while decreasing the saliency of cars in the
periphery. As a result of the combined effect of top-down
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feature weights and spatial prior, the focus of attention is
indeed on the car in front. The classification sub-system
confirms this, and a stable state is achieved (see Fig. 2, right).

Now suppose that a ball rolls onto the street while the
system is absorbed in its distance-keeping task. This unex-
pected event cannot be detected by the top-down saliency in
the dorsal attention sub-system: The features that are char-
acteristic for the object category “ball” differ significantly
from those that are characteristic for cars, to which the top-
down saliency is currently tuned because of the task. The
bottom-up saliency in the dorsal attention sub-system can
detect the ball, in principle, because it takes into account all
the different feature maps that are available without being
tuned to a certain subset thereof: Due to its motion and its
contrast to the background, there is at least some activity
corresponding to the ball. However, this activity is very
limited and by no means outstanding compared to other
parts of the scene, e.g. other traffic participants, which is
a drawback of the bottom-up saliency’s lack of specificity.
Moreover, due to the presence of the task, the influence of the
bottom-up saliency map as a whole is significantly reduced
at the moment, compared to the influence of the top-down
saliency map, since it would otherwise distract the system
from the task in progress. This phenomenon is known as
change blindness [13].

In the ventral saliency map, in contrast, the moving ball
causes a high degree of activity for two reasons: First, a
ball rolling onto the street is an unexpected change in the
system’s environment that normally does not happen in traffic
scenes like this. In particular, the direction of movement
strongly contradicts the expectations of the system, which
rather predict radial directions of movement, e.g. due to ego-
motion and other traffic participants moving on the different
lanes. Second, this unexpected change is highly relevant for
the behavior of the system, because driving safely implies
that the area in front of the car should be free, and the ball
might be followed by a child running after it. Hence, the ball
is highly salient in the ventral saliency map and thus triggers
a reorienting response by firing the interrupt and providing
the coarse spatial prior. Note that at this stage, neither the
system nor even the ventral attention sub-system knows what
triggered the reorienting response: The interrupt only tells the
system that something did, and the coarse spatial prior to the
dorsal attention sub-system provides a rough cue where to
look for it.

The interrupt stops the current task of the system and,
together with it, the influence of the corresponding top-
down feature weights on the dorsal attention sub-system.
Thus, the balance between top-down and bottom-up saliency
is shifted in favor of the latter. Together with the coarse
spatial prior provided by the ventral attention sub-system,
the activity in the bottom-up saliency map that corresponds
to the ball becomes outstanding now, compared to the other
parts of the scene. As a consequence, the system’s focus of
attention is redirected to the ball. As soon as the classification
sub-system recognizes it as a ball, the formerly unexpected
stimulus has become something known. This marks the end

Fig. 2. The task-induced expectation of a car in front modulates the dorsal
attention sub-system by means of top-down feature weights (left). As a
result, the system’s focus of attention is indeed on the car in front, which is
confirmed by the classification sub-system (right). This represents a stable
state of the system’s attentional dynamics.

Fig. 3. The unexpected motion of a ball rolling onto the street is
detected by the ventral attention sub-system and has triggered a reorienting
response (left). When the ball is recognized by the classification sub-
system, reorienting is over and the formerly unexpected stimulus has become
something known. It can then be actively focused by the system by means
of top-down feature weights (right), which represents a stable state of the
system’s attentional dynamics again.

of the reorienting response (see Fig. 3, left).
Afterwards, the ventral attention sub-system returns to its

normal state. Depending on the implications the ball has for
the system, different things may happen in the following: If
the ball is of little importance to the system, e.g. because it is
rolling away, the system may continue with the task that has
been interrupted, focusing on the car in front again. If the
ball has to be dealt with, e.g. because it is blocking the way,
the system must set up the task to avoid it, thus focusing
on the ball further. Moreover, if the system knows from
experience that the ball might be followed by a child running
after it, it is able to set up the task of actively looking for the
expected child. In either case, with respect to the attentional
dynamics, the system returns to a stable state like in Fig. 2,
right, differing only in terms of the top-down feature weights
that are involved now.
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IV. IMPLEMENTATION

An overview of our technical system instance implement-
ing the proposed architecture is depicted in Fig. 4. The large
boxes correspond to the five sub-systems introduced in Sec.
II, showing their implementation in greater detail. They are
described in the following. All implementation has been
done in C code and is embedded in the RTBOS/DTBOS
framework for distributed real-time systems [14].

A. Image Processing

The input to our technical system instance as a whole,
and in particular to the image processing sub-system, is a
pair of color stereo images ileft, iright : W ×H → [0, 1]3.
The image processing sub-system consists of three parallel
processing steps:

• Saliency feature computation,
• Stereo correlation, and
• Optic flow computation.
The saliency feature computation operates on ileft and

calculates various feature maps f : W ×H → [0, 1], which
are identical to those used in [7]. The features considered
include intensity contrast edges and color contrast edges at
different orientations and scales, and they can be further
divided into on-off and off-on contrast edges. Each feature
map fj concentrates on one of these features, and the value
fj(x, y) ∈ [0, 1] assigned to a pixel (x, y) ∈ W×H indicates
the extent to which a contrast edge of the orientation, scale
and type represented by fj is present at (x, y). Let F ∈ N
denote the total number of feature maps fj .

The stereo correlation operates on both ileft and iright and
computes a disparity map idisp : W×H → Z, using a local
correlation method [15]. The disparity map idisp assigns a
disparity value idisp(x, y) ∈ Z to each pixel (x, y) ∈ W ×
H, where disparity values idisp(x, y) ≥ 0 are valid while
disparity values idisp(x, y) < 0 are invalid, which may occur
due to correlation ambiguities within homogeneous image
regions, for example. Invalid disparities are not processed
any further.

The optic flow computation operates on ileft and also
takes into account ileft from the previous timestep. From
these two, it calculates the optic flow maps iflowX , iflowY :
W × H → Z, employing the method described in [16].
Each pixel (x, y) ∈ W × H is assigned a velocity vector
(iflowX(x, y), iflowY (x, y)) ∈ Z2 in image coordinates that
indicates the displacement of pixel (x, y) with respect to the
previous timestep. The velocity vector represents both the
direction and the amplitude of the displacement.

To summarize, the output of the image processing sub-
system consists of the feature maps fj , idisp, iflowX and
iflowY .

B. Dorsal Attention

The dorsal attention sub-system as a whole operates on
the feature maps fj and consists of four processing steps:

• Bottom-up saliency,
• Top-down saliency,

Fig. 4. Overview of our technical system instance implementing the
proposed architecture.

• Saliency combination, and
• Maximum selection.

Except for bottom-up and top-down saliency, which run in
parallel, execution order is sequential. The implementation
of the dorsal attention sub-system corresponds to the work
presented in [7] and is briefly summarized in the following.

The bottom-up saliency combines the fj to a single
(bottom-up) saliency map sBU

dorsal : W × H → [0, 1]
by computing their weighted sum sBU

dorsal =
∑

j wBU
j fj ,

where the wBU
j ∈ [0, 1] are the bottom-up feature weights

corresponding to the fj , respectively. As opposed to the
top-down feature weights wTD

j (see below), the wBU
j are

specified in advance to have equal values wBU
j = 1

F and
are not changed at run-time. Thus, the bottom-up saliency
sBU

dorsal(x, y) ∈ [0, 1] of a pixel (x, y) ∈ W×H indicates the
extent to which features represented by the fj are present at
(x, y), abstracting from the information which of the features
are present.

The top-down saliency also combines the fj to a single
(top-down) saliency map sTD

dorsal : W×H → [0, 1] by com-
puting their weighted sum sTD

dorsal =
∑

j wTD
j fj , where the

wTD
j ∈ [0, 1] are the top-down feature weights corresponding

to the fj , respectively. Unlike the wBU
j , however, the wTD

j

are not constant but can be dynamically changed at run-
time. In our case, the wTD

j are defined by the expectation
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generation sub-system and indicate the extent to which the
different fj are characteristic for the expected object category
cexpected (see Sec. IV-D).

The two saliency maps sBU
dorsal and sTD

dorsal are combined to
a single saliency map sdorsal : W×H → [0, 1] by computing
their weighted sum sdorsal = λsTD

dorsal+(1−λ)sBU
dorsal, where

λ ∈ [0, 1] is a weighting factor. Like the wTD
j , the factor

λ can be dynamically changed at run-time. It reflects the
presence or absence of a task and, in our case, is set to
λ = 1 in the former case and to λ = 0 in the latter.

The maximum selection then determines the pixel pFoA ∈
W × H at which sdorsal has its maximum, i.e. pFoA =
arg maxp∈W×H{sdorsal(p)}. The pixel pFoA represents the
system’s current focus of attention and is the output of the
dorsal attention sub-system as a whole.

C. Classification

The classification sub-system as a whole operates on pFoA

and idisp. It consists of four sequential processing steps:
• Segmentation,
• Region selection,
• Classification, and
• Maximum selection.
The segmentation computes a region image iseg : W ×

H → N0 by performing a region growing procedure on idisp.
The region image iseg assigns a region label iseg(x, y) ∈ N0

to each pixel (x, y) ∈ W×H, and the region Rl ⊆ W×H
corresponding to region label l ∈ N0 consists of all pixels
that are assigned the region label l, i.e. Rl = {(x, y) ∈ W×
H|iseg(x, y) = l}. Due to the region growing approach, the
Rl are contiguous, except for R0 which consists of all pixels
(x′, y′) ∈ W ×H that are not assigned to any region. This
may occur because of invalid disparities idisp(x′, y′) < 0,
for example. R0 is not processed any further.

The region selection determines the region
RFoA = Rl∗ that is closest to pFoA, i.e.
l∗ = iseg(arg minq∈(W×H)\R0

{dist(pFoA, q)}), where
dist(pFoA, q) ∈ R+ denotes the Euclidean distance between
pFoA and q in image coordinates. By determining RFoA, a
transition from pixel level towards object level is achieved.

The classifier [17] is assumed to be pre-trained on various
object categories c1, . . . , cC that are typical for the domain
considered, such as “cars”, “pedestrians” and “traffic signs”
in the car domain, for example. The training set for each ci

consists of images depicting various objects of category ci —
one object per training image, including different viewpoints
and distances. The trained classifier operates on RFoA and,
based on its visual appearance, computes an activation vector
v = (a(c1), . . . , a(cC)) ∈ [0, 1]C , where each a(cj) ∈ [0, 1]
indicates the extent to which RFoA resembles the classifier’s
internal representation of object category cj .

The maximum selection then makes a decision by deter-
mining the object category cperceived = cj∗ with the highest
activation, i.e. j∗ = arg maxj∈{1,...,C} {a(cj)}. The object
category cperceived represents what the system is currently
perceiving and is the output of the classification sub-system
as a whole.

D. Expectation Generation

The expectation generation sub-system generates an ex-
pected object category cexpected based on the perceived
object category cperceived or based on a task. We follow a
similar approach for generating the expectation as in [18],
however, since we are not dealing with multiple modalities
such as vision and audition, the approach reduces in our
case to the use of an autocorrelation matrix A ∈ [0, 1]C×C .
Each value Ajk ∈ [0, 1] indicates the extent to which the
object categories cj and ck are correlated with each other.
Intuitively, a high value Ajk represents the knowledge that
objects of category cj are often seen together with objects
of category ck, e.g. a child is often seen playing with a
ball. Thus, cexpected = ck∗ is obtained from cperceived =
cj∗ by k∗ = arg maxk∈{1,...,C}(Av(cj∗)), where v(cj∗) =
(0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}C denotes the vector whose
j∗-th component is 1 and all others are 0.

The expectation cexpected = ck∗ is then translated back
from object level to feature level by a mapping m :
{1, . . . , C} → [0, 1]F . Remember that F ∈ N denotes
the total number of feature maps fj (see Sec. IV-A). The
resulting top-down feature weight set (wTD

1 , . . . , wTD
F ) =

m(ck∗) ∈ [0, 1]F is then propagated to the dorsal attention
sub-system.

E. Ventral Attention

The ventral attention sub-system as a whole operates on
iflowX and iflowY and consists of three sequential process-
ing steps:

• Radial inhibition,
• Maximum computation, and
• Thresholding.
The radial inhibition computes a ventral saliency map

sventral : W × H → [0, 1], based on iflowX and iflowY

on the one hand and a radial motion model on the other
hand. The radial motion model is defined by a center point
(cX , cY ) ∈ W×H in image coordinates and represents the
expectation of the system that, in the car domain, the ego-
motion of the system’s own car leads to radial optic flow and
that other traffic participants moving along the different lanes
of the road do as well. Since this model predicts the optic
flow best while driving along a straight road, our ventral
attention sub-system transiently deactivates itself by setting
sventral(x, y) = 0 for all (x, y) ∈ W ×H if it detects the
presence of globally uniform optic flow. This is determined
automatically from the displacement maps underlying the
computation of iflowX and iflowY (see [16]) and is important
for preventing false positives while following a curve or
driving on a bumpy road.

Otherwise, the sventral(x, y) ∈ [0, 1] are computed by
comparing the velocity vector (iflowX(x, y), iflowY (x, y))
at pixel (x, y) to the vector (x − cX , y − cY ), which
represents the direction of the velocity vector as predicted
by the radial motion model. The dot product δ(x,y) =

(iflowX(x,y),iflowY (x,y))
||(iflowX(x,y),iflowY (x,y))|| ·

(x−cX ,y−cY )
||(x−cX ,y−cY )|| ∈ [−1, 1] indi-

cates the extent to which the directions of the two vec-
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tors are similar. Thus, sventral(x, y) = 1−δ(x,y)

2 ∈ [0, 1]
indicates the degree of non-radiality and hence the un-
expectedness of (iflowX(x, y), iflowY (x, y)), ranging from
sventral(x, y) = 0 (not contradicting the expectations at all)
to sventral(x, y) = 1 (fully contradicting the expectations).

The maximum computation then determines the maximum
activity sventral(q∗) = maxq∈W×H {sventral(q)}, together
with the position q∗ ∈ W × H at which it occurs. The
position punexpected = q∗ represents the coarse spatial prior
that will be propagated to the dorsal attention sub-system if
a reorienting response is triggered.

A reorienting response is triggered when sventral(q∗)
exceeds a certain threshold θ ∈ [0, 1]. If so, punexpected is
sent to the dorsal attention sub-system and, at the same time,
the interrupt χ ∈ {0, 1} is sent to the expectation generation
sub-system, stopping the ongoing task and the influence of
the top-down feature weight set by setting λ = 0, thus
shifting the balance in favor of the bottom-up saliency.

V. EXPERIMENTAL RESULTS

All experiments described in this section have been con-
ducted using the technical system instance described in
Sec. IV, operating in an offline manner on stereo image
streams that have been recorded outdoors in real-world traffic
environments. The stereo images were recorded at 10 Hz by
a calibrated stereo camera mounted inside a car, having a
baseline width of 30 cm. The resolution of the images thus
obtained was 400 × 300 pixels. By careful implementation
in terms of efficient coding, our technical system instance
currently runs at a framerate of approximately 6 fps.

A. Unexpected Ball Stream

This experiment follows the scenario that was discussed on
a conceptual level in Sec. III, providing the corresponding
results on real-world data. These can also be seen in the
accompanying video. Note that the video is slower than the
actual framerate for better visibility of the dynamics.

Fig. 5 depicts the initial situation, in which the system
actively looks for a certain object category because of its
current task. Here, the system is focusing on the poles that
are mounted along the road (upper left). As can be seen
from the figure, the top-down saliency map is tuned to poles,
making them highly salient while other parts of the scene
are less salient (upper right). The bottom-up saliency map,
in contrast, exhibits activation at many parts of the scene due
to its lack of specificity (lower right). Internally, the system
is relying on the top-down saliency map, not the bottom-up
saliency map, as indicated by the red box (upper right). Note
that there is little activity in the ventral attention (lower left),
since the optic flow caused by the ego-motion of the system’s
own car is compliant with the expectations of the system.

Fig. 6 shows the situation when the ball rolls unexpectedly
onto the road (upper left). As can be seen, the ball is almost
not top-down salient at all (upper right), and the activity in
the bottom-up saliency map corresponding to the ball is by
no means outstanding, compared to other parts of the scene

Fig. 5. Frame 2. Initially, the system focuses its attention on the poles along
the road (upper left). This is task-driven and relies on the top-down saliency
(upper right), as indicated by the red box. Bottom-up saliency (lower right)
and ventral attention (lower left) are running in parallel, but do not yet
influence the focus of attention.

Fig. 6. Frame 13. In this moment, the ventral attention has detected the
unexpected ball because its direction of movement strongly contradicts the
system’s expectation of radial optic flow (lower left). Note that the ball is
neither salient in the top-down saliency map (upper right) nor sufficiently
salient in the bottom-up saliency map (lower right) for being detected
without the ventral attention.

(lower right). Thus, neither top-down saliency nor bottom-
up saliency are able to reorient the focus of attention to
the ball. The ventral attention, in contrast, has detected the
ball because its direction of motion contradicts the system’s
expectation of radial optic flow (lower left). This figure
depicts the moment in which the reorienting response is
triggered, as indicated by the red box (lower left).

Fig. 7 shows the situation of the system while reorienting:
Due to the interrupt sent by the ventral attention, the task of
searching for the poles has been stopped and the balance is
now in favor of the bottom-up saliency, as indicated by the
red box (lower right). In addition, the effect of the coarse
spatial prior provided by the ventral attention can be seen
in the bottom-up saliency map as well. As a consequence,
the activity in the bottom-up saliency that corresponds to the
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Fig. 7. Frame 15. Due to the reorienting response triggered by the ventral
attention, the system has redirected its focus of attention to the ball (upper
left). The effect of the coarse spatial prior provided by the ventral attention
can be seen in the bottom-up saliency map (lower right), and the interrupt
has shifted the balance to the bottom-up saliency (red box, lower right).

Fig. 8. Frame 18. By recognizing the ball, reorienting has finished and the
ventral attention returns to its normal state (lower left). The system is now
actively looking for the expected child/person running after the ball (upper
left). This is based on the top-down saliency again (red box, upper right).

ball becomes outstanding, hence the focus of attention is on
the ball now (upper left). Note that the classifier has not yet
recognized the ball.

In Fig. 8, the ball has already been recognized by the
classifier (not shown here, see video) and reorienting is over.
Consequently, the ventral attention has returned to its normal
state (lower left). The ball has raised the expectation of a
child (person) entering the scene from the side where the ball
came from, which is expressed by a new top-down feature
weight set (upper right). In particular, the balance has been
shifted in favor of the top-down saliency again, as indicated
by the red box.

As can be seen from the graph in Fig. 9 that plots the
maximum activity in the ventral attention sub-system for
each frame of the unexpected ball sequence, reorienting has
indeed been triggered in frame 13 by the ball (see Fig. 6).

Fig. 9. This graph shows the maximum activity in the ventral attention
sub-system for each frame of the unexpected ball sequence. The red line
indicates the threshold for triggering a reorienting response. Obviously,
reorienting was triggered in frame 13 by the unexpected ball (see Fig. 6).

Note that there is also some activity in the ventral attention
that does not correspond to the ball (see Fig. 5, lower left, for
example). Nevertheless, Fig. 9 clearly shows that this kind
of activity always remains well below the threshold, i.e. no
false positives have been introduced.

B. Inner-City Traffic Stream

In this experiment, we used an image sequence that has
been recorded while driving in an unconstrained, every-day
inner-city traffic environment in order to test our technical
system instance under realistic conditions for an extended
period of time. Focusing on the ventral attention sub-system,
we observed its activity over time and, in particular, which
situations triggered a reorienting response.

The result can be seen in Fig. 10. The graph shows
the maximum activity in the ventral attention sub-system
for each frame of this image sequence. The threshold for
triggering a reorienting response was 0.35 in this experiment,
which is higher than in the previous experiment because the
overall noise level is higher in the unconstrained inner-city
environment. As one can see from the graph, a reorient-
ing response was triggered exactly three times during this
experiment: the first time at frame 21, the second time at
frame 806, and the third time at frame 1368. Apart from
that, activity in the ventral attention always remained well
below the threshold — mostly between 0 and 0.2, with some
peaks of at most 0.3.

Fig. 11 shows what triggered the three reorienting re-
sponses. The first one was triggered by a car overtaking our
own car (left pair). The second one was triggered by a car
turning left at an intersection, thereby crossing our own lane
(middle pair). The third one was triggered after waiting at a
red traffic light, when the car in front of our own car started
to accelerate (right pair). Interestingly, when a second car
overtook our own car on the right, the focus of attention was
quickly redirected to this car instead of staying on the car
in front, because the car overtaking on the right was driving
much faster than the car in front of us.

To summarize, the ventral attention sub-system has redi-
rected the focus of attention three times within the 2.5 min
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Fig. 10. This graph shows the maximum activity in the ventral attention
for each frame of the 2.5 min inner-city sequence. The red line indicates
the threshold for triggering a reorienting response. Obviously, a reorienting
response was triggered three times.

Fig. 11. These images show the traffic situations in which a reorienting
response was triggered by the ventral attention sub-system, referring to the
three reorienting responses that occurred during the inner-city sequence (see
Fig. 10). For each of them, the first frame (top) and the last frame (bottom)
of the reorienting response is shown (left: frames 21 and 39, middle: frames
806 and 817, right: frames 1368 and 1377).

inner-city stream, and each time it did so because of an
unexpected situation that is relevant for the behavior of
driving. This supports the view that the ventral attention
plays an important role when driving a car in unconstrained
traffic environments.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper, we have presented a closed-loop system
architecture capable of detecting and dynamically reorienting
to unexpected but behavior-relevant stimuli, even if they are
not perceptually salient. This was possible by extending the
well-known concepts of bottom-up and top-down saliency
by the biological concept of ventral attention. In our ex-
periments, we have demonstrated the resulting attentional
dynamics of the system and the validity of our concept on
image streams recorded in unconstrained real-world traffic
environments. The results emphasize the important role of
the ventral attention while driving.

B. Future Work
In our future work, we plan to incorporate further as-

pects of the biological concept of ventral attention, since
unexpected motion is only one aspect. In addition, we want
to further optimize our system with respect to computation
time, aiming at a framerate that enables on-line operation
while driving.
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