
Determining an Object’s Shape with a Blind Tactile Manipulator

David Devereux
School of Computer Science

The University of Manchester
Manchester, M13 9PL, UK
devereud@cs.man.ac.uk

Paul Nutter
School of Computer Science

The University of Manchester
Manchester, M13 9PL, UK

p.nutter@manchester.ac.uk

Robert Richardson
School of Mechanical Engineering

The University of Leeds
Leeds, LS2 9JT, UK

R.C.Richardson@Leeds.ac.uk

Abstract— In situations where generating in internal repre-
sentation of an object’s shape can not be carried out via visual
methods, such as in low light conditions or due to a hardware
fault, an internal representation of the object must be built
from tactile information alone. Existing methods for doing so
rely on the availability of a complete force sensitive skin. The
work described in this paper shows a method that requires
no such equipment and in fact requires no external sensors at
all. The method demonstrates that an accurate representation
of the object can be built with the accuracy depending on
the number of attempts at contacting the object. This internal
representation of object can then be used for other tasks such
as planning grasps.

I. INTRODUCTION
Whole arm grasping is an extremely useful ability that

we as humans use near constantly to interact with our envi-
ronment. There are multiple stages to the grasping process
[1]:

1. Object recognition
2. Grasp planning
3. Initial touch and grab phase
4. Stable grasp phase

The work described in this paper focuses on the first
stage, object recognition. Humans and indeed animals use
a combination of tactile and visual information to decide
the best manner in which to grasp an object. There are
various methods of analysing visual data in order to extract
an object’s shape. Chinellato et al. [2] have a biologically
inspired approach, they generate, from an initially supplied
rough 3D estimation of the object’s shape, a more refined
estimation using an octree based reconstruction algorithm.
Hoppe et al. [3] can generate a very good estimation of
an objects shape from a set of unorganised point data. The
point data can be supplied from a variety of sources such as
laser range finding or feature extraction. Local groups of the
unorganised points are used to generate indications of the
tangent and normals at those positions. This is repeated over
the entire surface of the object. From this data a manifold
of the object’s shape is produced. The level of complexity
of both these examples is quite large. We shall see that
the proposed algorithm in this paper requires much less
complexity both in algorithm design and data analysis.

So there exists quite competent methods that can deter-
mine an objects shape from visual data but what happens
if the robot is put into a situation where it can no longer
see? Whether because of a fault (e.g. broken camera) or

because of external factors (dense smoke, lack of light). In
these situations reliance on a purely tactile input is necessary.

Existing approaches that use tactile information to provide
information regarding object shape use the assumption that
a force sensitive skin covers the entire surface of the ma-
nipulator [4] [5]. This skin provides information such as the
location of any contacts and the force between the manipu-
lator and object. This sensing capability would certainly be
useful but unfeasible with current technology [6] and adds
an extra layer of complexity that can be demonstrated to not
be required.

The work shown in this paper demonstrates that an object’s
shape can be determined for grasping and other purposes
from manipulator position information alone. More impor-
tantly it will do so without the need for sensors that measure
quantities external to the robotic manipulator. This means
that the only information available to the controller is the
current angles of the manipulator joints and the size of the
manipulator itself. It is assumed that the object to identify
is within reach of the manipulator, that the manipulator has
sufficient length to wrap around the majority of the object
and that the object is rigid and incompressible.

This paper will now discuss how to calculate the object’s
shape given that the positions of the manipulator’s links
when contact has been made are known. Discussion will
then progress on to how to get such link-contact position
information. The methods will then be applied to objects
and the resulting shapes compared to their originals.

II. EXTRACTING AN OBJECT’S SHAPE
Given that you have a method that can determine the

position of the manipulators links when contact has occurred
between the object and manipulator you can see that the
object’s shape is implied from the absence of link positions
such as in Fig. 1a. The absence in this case implies the
presence of a square. This section describes how to extract
the object’s shape implied by this absence of link positions.

Pi =
[

x
y

]
(1)

Pi =

 x
y
z

 (2)

ri =
√

Pi.Pi (3)

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4745

Fig. 1. Steps taken to generate the object’s shape

di(a) = r−a
i (4)

P inv
i = di(a)Pi (5)

The procedure to extract the objects shape from this
absence of link positions uses a function called the inverse
convex hull [7]. The inverse convex hull operates on discrete
points so the link positions are first discretised as in Fig. 1b.
The operation can operate on both 2D and 3D data, points
in 2D space being represented as in (1) and points in 3D
space being represented as in (2). A set of points are then
calculated from these points that have their distance inverted
using (5), where di(a) is defined in (4). The ‘a’ parameter
in (4) defines the coarseness of the generated object. ri is
the distance of point i from an origin point inside the object
and is calculated using (3), where ‘.’ is the inner or dot
product of a vector. Values of ‘a’ from between 0.05 and 0.5
have been tried but throughout this paper a value of 0.2 has
been settled on. Analysis of the performance of the algorithm
under varying values of ‘a’ is still required and is currently
left as future work (see section V-B). Fig. 1c shows the set
of inverted points P inv

i for the points shown in Fig. 1b, the
inversion means that the points that were originally closest
to the centre are now the furthest away. This allows for the
use of the convex hull algorithm to find the outer most points
of P inv

i and in turn those corresponding innermost points in
Pi that best represent the object’s shape. This is shown for
the running example as the solid inner line in Fig. 1d. The
points from Fig. 1b have also been plotted to show the points
chosen by the inverse convex hull.

The points Pi need to be defined relative to some internal
position of the object. This internal position can be found
by finding the mean of the discrete link positions. Such a
method works if the links are applied evenly over the surface
of the object. An alternative method is to find the min-max

extremes of the discrete points and select the mid-point of
them.

The object is represented as a polygon rather than using
some more complicated method. This means that curved sur-
faces can only be approximated but the level of information
that tactile sensors can provide is coarse relative to visual
data and as such although a more complicated representation
could be used it would not provide any extra accuracy.

An alternative method to the inverse convex hull that may
initially be considered but quickly discounted is to discretise
the contact links and simply take the points that are closest
to the centre. The first problem is that by simply taking the
closest points the algorithm will select many points from
the same link, it is more usually the case that only a small
number of points should be chosen. The second problem is
the choice of how many points to take, this value depends on
the level of discretisation and the number of links applied.
The third problem is concave elements in an object, the
algorithm will greedily accept all the concave elements as
they will tend to be closer than the rest of the object to the
centre and will thus ignore the equally important extremes of
the object. The last problem is that the chosen position of the
centre point will greatly effect the resulting shape, shifting
the centre more to one side will then cause the algorithm to
favour points from that side.

A. Error measure

An area error measure is used in the test cases to measure
the performance of the algorithm. If the area of intersection
of the two polygons is calculated as Aint, the area of the
original polygon is Aorig and the area of the calculated
polygon is Agen. Then the area error Aerr is:

Aerr = Agen + Aorig − 2Aint (6)

The intersection area is going to be smaller or the same
size as either the original object and the generated object’s
area. The difference between the actual object’s area and the
intersection area shows by how much the generated object
has entered inside the actual object. Likewise, the difference
between the generated object’s area and the intersection area
shows how much the generated area has overestimated the
size of the object.

A percentage error (Err in (7)) is used as a single glance
review of performance, 0% being the best possible result.

Err =
Aerr

Aorig
(7)

III. ENCIRCLING AN OBJECT

The previous section assumed that the contact positions
of the links of a manipulator are known for various attempts
at contacting the object. In this section an algorithm is
described that can provide such information. The method
described here assumes that the object to identify is within
reach of the manipulator and that the manipulator has suffi-
cient length to wrap about the majority of the object.

4746

The method for gaining contacts described in this section
is based on the movements of an octopus’s arm [8]. The
octopus’s arm has an amazing amount of flexibility but is
only used in relatively simplistic movements [9].

To encircle the object in the planar case the manipulator
must first be straightened out where it will not contact the
object. Then starting with the joint nearest the base of the
manipulator the joint moves towards object swinging the
more distal joints in with it. Upon contact the link maintains
its current position and the next most proximal link moves
inwards. This process repeats until the object has been fully
encircled. The straightening procedure ensures that the more
distal links will not prematurely contact the object before the
current link should.

Multiple attempts at this procedure should be accom-
plished but with the base joint terminating slightly before
its previous stop angle each time. By doing this the position
of the subsequent links when contacting the object will be
shifted in position supplying more information. As well as
multiple attempts at contacting the object with a different
angle each time, it is a good idea to grasp from different
directions as well. This is demonstrated more thoroughly in
the next section.

Contacts are detected here through the use of an open loop
reference controller although alternative methods could also
be used. The open loop reference controller states that there
is an expected amount of angular position error for each joint
during normal operation. If the error breaches this expected
amount then it must be due to a contact.

Each attempt at exploring the object will result in a set of
angles corresponding to the joint angles of the arm upon final
contact. Through the use of forward kinematics the angles
of the joints can be converted into positions in the Cartesian
domain. These link positions then need to be shifted by
an amount corresponding to the width of the manipulator
resulting in two lines for each link of the manipulator. The
outside line will rarely be chosen by the inverse convex hull
and only when exploring concave objects, therefore they have
been left out of any diagrams.

The discussion so far has been about planar manipulators,
the method can be applied to 3D situations as well. The
manipulator will be applied to the object in the same manner
as the 2D case but with a lot more search directions and
iterations such that the entire circumference of the object will
be systematically contacted. The coarseness of the resulting
object will be determined by the amount of directions and
iterations performed.

There are a number of matters that should be considered
as they further complicate the situation. The first is friction
and object mass, this is the friction between the object
and the surface it is sitting on rather than the friction
between the object and manipulator. The object is not fixed
in place, therefore the friction and mass of the object must be
sufficient to provide enough reaction force to the manipulator
to stop its movement enough to cause contact detections but
also not allow the object to move due to that contact force.
Ideally the manipulator should have a low weight such that

Fig. 2. The experimental setup, ready to encircle

Fig. 3. An example of the manipulator that has encircled an object

the contact forces are minimised.
The second consideration is concave elements in objects. If

the manipulator’s width is sufficiently small and the number
of directions and attempts chosen are sufficiently large then
concave elements should eventually be explored due to the
shifting of the end effector caused by the intentional retarding
of the initial position of the most proximal link. Of course if
the manipulator’s width is too large than there is no purpose
or possibility of exploring the concave elements as they
cannot be reached anyway. Exploration of concave objects
has not been further considered here due to the nature of the
experimental equipment but is left as future work.

A. The experimental equipment

Both of the algorithms described will now be used to
calculate the shape of a couple of objects. The experimental
hardware can be seen in Fig. 2 in its straight out configura-
tion. An example finished encirclement is shown in Fig. 3.
The manipulator consists of four modular links each powered
by an electric DC motor coupled to a gearbox.

The actuators are powerful enough to counter gravity for

4747

Fig. 4. The objects being identified

their own particular module but the combined weight of the
modules is too much therefore the robot is restricted to a
planar case such that gravity plays no part in the process.

IV. EXAMPLES OF OBJECT GENERATION

Fig. 4 shows the two objects that are to be identified. The
box shaped object had to be weighed down as its mass was
only 80g which, when compared with the combined mass
of the manipulator (4Kgs), is insignificant. Without being
weighed down the frictional force would cause a position
error that is less significant than the normal operating error.

The length of each module of the motor is 110mm whereas
the length of each side of the cube is only 80mm, whilst the
radius of the cylinder is 63mm. This shows that the link
length is relatively large when compared to the objects and
this may cause the generated object to be rather coarse.

Fig. 5 and Fig. 6 show the results of both the algorithms
when one direction of motion and position is attempted with
four different angles for the proximal link. The cylinder has
been approximated by a 100 sided regular polygon during
the analysis stage. In all the diagrams the positions of the
generated and actual objects are represented in the object’s
reference frame to allow for an easy visual comparison. Also,
bear in mind that the link positions shown in the figures are
not from the centre of rotation of one joint to the subsequent
one. They are the outer position of that particular link of the
robot. The links for this particular robot also extend past
the centre of rotation of the next link by a small amount
resulting in the small amount of extension viewable in the
figures. Both these items account for the links not matching
start and end positions.

Ideally in order to demonstrate the benefits of grasping
from a different direction the grasp would be repeated but
from a different start position and direction. Unfortunately
due to the configuration of the robot this is not possible
but the same effects can be found by mirroring the results
gained from the first example as demonstrated in Fig. 7. This
is a valid operation to do in this case due to the symmetry
of the object although normally this would not be possible.

Fig. 5. 1) The link positions of the multiple attempts applied to a cube
and 2) the generated object

Fig. 6. 1) The link positions of the multiple attempts applied to a cylinder
and 2) the generated object

Normally the manipulator should be moved around the object
by a known amount.

Fig. 8 and Fig. 9 show the results for the situation when
two directions are used. As you can see there is quite an
improvement. If a third direction was attempted at a position
90o around the object then the start position would also be
contacted, which is currently the only part that is largely
wrong.

To demonstrate how important having lots of small sized
links are to these algorithms a simulation was carried out to
contrast with the experimental situation. The experimental
situation had 4 links of length 0.08m repeated 8 times
totaling 32 link positions. The simulation instead has 320

4748

Fig. 7. Mirroring the example motion to simulate grasping from both sides

Fig. 8. 1) The link positions of the multiple attempts, mirrored attempts
applied to a cube and 2) the generated object

link positions of length 0.008m. The results are shown in
Fig. 10. The simulation is limited in that the positions of the
links are randomised rather than connected to each other but
the process does clearly show the benefits of increasing the
number of links.

The area of the square is 0.0064m2 whilst the area of
the circle is 0.0031m2. Table I summarises the various area
errors for the five different cases. Each additional direction
vastly improves upon the accuracy of the object and the
simulation with many small links performs very well with
only the corners being in error. This is caused by the value of
‘a’ during the convex hull algorithm. The higher the value,
the coarser the resulting object, the lower the value the closer
the object resembles the inside shape of the links. In these
results a value of 0.2 has been chosen for all cases, a lower
value improves the error for the simulated case but increases
the error for the experimental results and vica versa.

Each encirclement took roughly 100 seconds, this was

Fig. 9. 1) The link positions of the multiple attempts, mirrored attempts
applied to a cylinder and 2) the generated object

Fig. 10. 1) The link positions of a simulated attempt at encircling and 2)
the generated object

due to the high mass and kinematic coupling. In order to
compensate for these effects the movement must be slowed
down to allow the open loop reference controller to detect
more delicate collisions. If the manipulator was improved by
decreasing the weight and by supplying a velocity reference
to aid in position control then there is no reason why this
time can not be vastly reduced

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

It has been demonstrated that by using the two methods
described above it is possible to calculate the shape of an
object from the position of the manipulator during multiple
encirclements alone. It has also been shown that increasing
the number of directions and positions of movement during

4749

TABLE I
SUMMARY OF RESULTS

Object and style Area error (m2) Percentage error
Cube one direction 0.0026 40.6%
Cube two directions 0.0014 21.9%
Simulated Cube 0.00021 3.3%
Cylinder one direction 0.0013 41.9%
Cylinder two directions 0.00088 28.4 %

the encirclement algorithm greatly improves the accuracy of
the representation of the object. It has also been demonstrated
that it is far better to have a large number of small links than
a small number of large links.

The algorithms worked well for experimental setup con-
sidering the relatively large link lengths of the robot. The
control algorithms also had to deal with high friction in the
joints and non-linearities such as cogging and backlash in
the gearbox and kinematic coupling. If a manipulator was
designed for grasping purposes and overcame these short
comings then the speed of attaining the contact data and
accuracy of the resulting object could be greatly improved.

A source of error in the experimental situations was caused
by the relaxation of the joints once contact had occurred
for a link. Once contact has occurred the link reverts to
maintaining that position, unfortunately this means there is
now no position error and thus no torque directed towards
the object and the manipulator can move slightly away from
the object. If a small force was still applied directed into the
object, not enough to move but enough to maintain contact,
then that relaxation would not occur and the results should
be improved.

As already mention most of the errors in the resulting
shape were due to poor manipulator design rather than poor
algorithm performance, although even with the few large
links the method works well. The only source of errors due
to the inverse convex hull procedure are at the corners and
this could perhaps be improved upon by selecting a smaller
value of ‘a’ (see next section). Errors in shape generation
are not such a big problem for whole arm grasping purposes
as the control algorithms could take this into account. When
attempting to contact at a planned contact location that in
reality is too far out from the shape, then the manipulator
would find a lack of contact and could then update the
internal representation of object, re-plan the grasp and carry
on.

It is recommended to attempt grasps from as many differ-
ent positions and directions as possible in order that the entire
surface be contacted. In the examples shown above with only
two attempts the start position is not covered. If a third start
position was chosen that was rotated through 90o then the
start position would have been contacted and the resulting
shape made more accurate. As such it is recommended to use
three different positions and directions for the planar case.

In summary the algorithms described work well even for

a robot that has numerous design problems. The methods
described have advantages over existing methods as it re-
quires neither sophisticated external sensors such as cameras
or force sensitive skin nor complex computational activities
to extract the objects shape. The methods do require a certain
amount of patience in order to get a detailed picture of the
object but it does show that a blind robot can see objects.

B. Future Work
Apart from improvements to the control algorithms and

manipulator design there are several extra areas of explo-
ration worth pursuing. It would be useful to explore the
parameter space of the inverse convex hull in an attempt
to find the optimum values of ‘a’, and level of discretisation.

Further work that must definitely take place is the ex-
ploration of more complicated objects that include concave
object. This may require a redesign of the manipulator such
that it has more and smaller links.

A possible improvement to the encirclement algorithm is
also proposed here. Instead of holding the links of the arm
straight out and sweeping them around looking for contact.
The arm should instead begin by doing this but as soon as
the first contact occurs the distal most links from the point
of contact except for a few should curl back on themselves
following the path of the proximal links. As contacts are
found the arm should unravel itself around the object. Given
a smaller manipulator width this method may then be capable
of exploring most object types including concave objects.

Lastly, an interesting area for further future work would
be to develop a force sensitive skin for use in conjunction
with this work and compare the results against the methods
that assume the existence of such a sensor.

REFERENCES

[1] C. Bard, J. Troccaz, and G. Vercelli, “Shape analysis and hand preshap-
ing for grasping,” in IEEE/RSJ International Workshop on Intelligent
Robots and Systems (IROS) ’91, pp. 64–69 vol.1, 1991.

[2] E. Chinellato, G. Recatala, A. P. del Pobil, Y. Mezouar, and P. Martinet,
“3d grasp synthesis based on object exploration,” in IEEE International
Conference on Robotics and Biomimetics, vol. 0, pp. 1065–1070, 2006.

[3] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” ACM SIGGRAPH
Computer Graphics, vol. 26, pp. 71–78, 1992.

[4] D. Reznik and V. Lumelsky, “Multi-finger ”hugging”: a robust approach
to sensor-based grasp planning,” in IEEE Int’l Conf. on Robotics and
Automation, pp. 754–759 vol.1, 1994.

[5] F. Asano, Z.-W. Luo, M. Yamakita, and S. Hosoe, “Dynamic modeling
and control for whole body manipulation,” in Intelligent Robots and
Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International
Conference on, vol. 4, pp. 3162–3167 vol.3, 2003.

[6] M. Moll and M. Erdmann, “Reconstructing shape from motion using
tactile sensors,” in Intelligent Robots and Systems, 2001. IROS 2001.
IEEE/RSJ International Conference on, vol. 2, pp. 692–700, 2001.

[7] F. Snyder, D. Morris, P. Haley, R. Collins, and A. Okerholm, “Au-
tonomous river navigation,” in Proceedings of SPIE: Mobile Robots
XVII (D. Gage, ed.), vol. 5609, pp. 221–232, 2004.

[8] I. D. Walker, D. M. Dawson, T. Flash, F. W. Grasso, R. T. Hanlon,
B. Hochner, W. M. Kier, C. C. Pagano, C. D. Rahn, and Q. M. Zhang,
“Continuum robot arms inspired by cephalopods,” in SPIE Unmanned
Ground Vehicle Technology VII, vol. 5804, pp. 303–314, May 2005.

[9] Y. Y. Yoram, S. G. German, F. T. Tamar, and H. B. Binyamin, “How to
move with no rigid skeleton? the octopus has the answers.,” Biologist,
vol. 49, no. 6, pp. 250–4, 2002.

4750

