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Using Eigenposes for Lossless Periodic Human Motion Imitation
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Abstract— Programming a humanoid robot to perform an
action that takes the robot’s complex dynamics into account is
a challenging problem. Traditional approaches typically require
highly accurate prior knowledge of the robot’s dynamics and
environment in order to devise complex control algorithms
for generating a stable dynamic motion. Training using hu-
man motion capture is an intuitive and flexible approach to
programming a robot but directly applying motion capture
data to a robot usually results in dynamically unstable motion.
Optimization using high-dimensional motion capture data in
the humanoid full-body joint-space is also typically intractable.
In previous work, we proposed an approach that uses di-
mensionality reduction to achieve tractable imitation-based
learning in humanoids without the need for a physics-based
dynamics model. This work was based on a 3-D ‘‘eigenpose”
representation. However, for some motion patterns, using only
three dimensions for eigenposes is insufficient. In this paper, we
propose a new method for motion optimization based on high-
dimensional eigenpose data. A one-dimensional computationally
efficient motion-phase optimization method is implemented
along with a newly developed cylindrical coordinate transfor-
mation technique for hyperdimensional subspaces. This results
in a fast learning algorithm and very accurate motion imitation.
We demonstrate the new algorithm on a Fujitsu HOAP-2
humanoid robot model in a dynamic simulator and show that a
dynamically stable sidestep motion can be successfully learned
by imitating a human demonstrator.

I. INTRODUCTION

Imitation is an important learning mechanism in many
biological systems including humans [1]. Learning through
imitation is a powerful and versatile method for acquiring
new behaviors. In humans, a wide range of behaviors, from
styles of social interaction to tool use, are passed from one
generation to another through imitative learning. The poten-
tial for rapid behavior acquisition through demonstration has
made imitation learning an increasingly attractive alternative
to manually programming robots. Demiris and Hayes [2]
introduced the concept of imitative learning by demonstrating
a wheeled mobile robot that learned to solve a maze problem
by imitating another homologous robot. Billard [3] showed
that imitation is a mechanism that allows the robot imitator
to share a similar set of proprio- and exteroceptions with
teacher. Ijspeert et al. [4] designed a nonlinear dynamical
system to imitate the trajectories of joints and end-effectors
of a human teacher. The robot learned and performed tennis
swing motions by imitation. The resulting motions were
robust against dynamic perturbation. Our work aims to solve
a different challenging dynamics problem, namely, learning
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Fig. 1. Learning to walk through imitation. The pictures in the first row
show a human subject demonstrating a walking gait in a motion capture
system. The second row shows simulation results for this motion before
learning. The third row shows simulation results after learning. The last
row shows results obtained on the real robot.

bipedal locomotion in a humanoid robot based on imitating
a human.

It is straightforward to recover kinematic information
from human motion using, for example, a motion capture
(mocap) system, but imitating this motion with stable robot
dynamics is a much harder problem. A human demonstrator
and a humanoid robot learner may share similar kinematic
structure but their dynamics are usually very different. If the
robot imitates the exact kinematic movement of human, the
resulting motion is typically dynamically unstable as shown
in the second row of Fig. 1.
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Fig. 2.

Traditional model-based approaches based on zero-
moment point (ZMP) [5], [6], [7] or the inverted pendulum
model [8], [9] require a highly accurate model of robot
dynamics and the environment in order to achieve a stable
walking gait. The mimesis theory of [10] is based on action
acquisition and action symbol generation. This method also
relies on a model-based approach, the so-called dynamic
filter, to stabilize motion. Learning-based approaches such as
reinforcement learning [11] are more flexible and can adapt
to environmental change but such methods are typically not
directly applicable to humanoid robots due to the curse of di-
mensionality problem engendered by the high dimensionality
of the full-body joint space of the robot. Nonlinear dimen-
sionality reduction algorithms had previously been applied
to representation of human posture [12], [13]. Tatani and
Nakamura [14] explored using a low-dimensional subspace
to kinematically reproduce human motion on a humanoid
robot via non-linear principal components analysis (NLPCA)
[15]. However, these methods have some parameters that
have to be well-tuned. Properties of the resulting low-
dimensional subspaces used in these algorithms have not
been well studied. Principal components analysis (PCA) is a
linear dimensionality reduction technique whose properties
have been well studied. We utilize PCA for the motion
learning in our framework.

We previously introduced an approach for imitation learn-
ing that uses a compact low-dimensional representation of
whole-body humanoid posture for optimizing the robot’s
dynamics [16], [17], [18]. The method successfully learned
to imitate a human walking gait from mocap data. The
approach is depicted in Fig. 2. Human mocap data are
first mapped to the robot body. Motion data in robot joint
space are transformed into a small number of orthogonal
axes using linear principal component analysis (PCA). The
motion data represented using PCA are called eigenpose
data. For periodic motion, the eigenpose data are transformed
again into a cylindrical coordinate frame. The eigenpose
data in the cylindrical coordinate system are then modeled

Actual sensory feedback

A framework for learning human behavior by imitation through sensory-motor mapping in reduced dimensional spaces.

as a single parameter closed-curve function called action
subspace embedding (reviewed in section III-B). The single
parameter ¢ of the action subspace embedding is defined to
be the motion-phase angle. The motion-phase angle is the
parameter that has direct effect on the timing of movement
during motion.

At the beginning of the learning process, sensory feedback
is recorded from motion produced via the eigenpose com-
mands obtained from mocap data. Generally, this motion is
not stable enough to begin the learning process. In order to
be able to get a complete cycle of stable motion to begin
the learning, the unstable motion is scaled down by action
subspace scaling (reviewed in section III-C). The motion
is scaled down until a complete cycle of stable motion is
found. After sensory feedback from the first motion trial
is obtained, a model predictor is trained to predict sensory
feedback for the next time step based on the history of
eigenpose commands and past sensory feedback. Using the
model predictor, the eigenpose commands for a complete
motion cycle are planned subject to the objective function
of the motion. An optimal action plan can only be obtained
when sensory prediction is accurate. The model predictor
can deliver more accurate predictions only when it has
sufficient history information of actions and feedback. Thus,
an action plan for a complete motion cycle is achieved after
a sufficient number of learning trials. Our previous work [18]
demonstrated that the proposed approach allows a humanoid
robot to learn to walk based solely on human motion capture
without the need for a detailed physical model of the robot
(Fig. 1).

In our previous work [16], [17], [18], [19], the low-
dimensional eigenpose data used for motion learning were
three dimensional. This 3-D data is convenient for visu-
alizing and developing a motion optimization algorithm
through analytical geometry. Periodic motion patterns such
as walking gaits were successfully learned by the algorithm
using 3-D eigenposes. However, for some motion patterns,
using only three dimensions for eigenposes cannot preserve
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the significant characteristics of postures, which is crucial
for learning. In this paper, we extend our motion learning
algorithm to be applicable to any number of dimensions
of the eigenpose data. We develop a cylindrical coordinate
transformation technique for hyperdimensional space for
use with the one-dimensional action subspace embedding
motion representation. We demonstrate the new algorithm
by showing imitation learning of human side-step motion
using 20-dimensional eigenpose data, which achieve 100 %
accuracy of original posture data. The result is demonstrated
on a HOAP-2 humanoid robot model in the commercial
dynamic simulator [20].

II. HUMAN MOTION CAPTURE
A. Kinematic Mapping

We first need to solve the correspondence problem which,
in our case, is kinematic mapping of whole-body postures
between a human demonstrator and a Fujitsu HOAP-2
humanoid robot. The human subject and the robot share
similar humanoid appearances, but their kinematic structures
(skeletal models) are dissimilar. Initially, a set of markers
is attached to the human subject and the 3-D positions of
these markers are recorded for each pose during motion.
We use a Vicon optical system running at 120Hz and a set
of 41 reflective markers. These recorded marker positions
provide a set of Cartesian points in the 3D capture volume
for each pose. To obtain the robot’s poses, the marker
positions are then assigned as positional constraints on the
robot’s skeleton to derive the joint angles using standard
numerical IK routines of Vicon system. For example, the
shoulders were replaced with three distinct 1-dimensional
rotating joints rather than one 3-dimensional human ball
joint. The IK routine then directly generates the desired joint
angles on the robot skeleton for each pose. A limitation of
this technique is that we can only demonstrate actions that
the target robot can perform. For example, we avoid using
toes in our demonstrated walking gait.

B. Human sidestep motion

A motion capture session of a human demonstrator per-
forming a sidestep motion is shown in Fig. 3. In the figure
a human demonstrator was sidestepping to the right. The
motion sequence can be divided into four major phases,
which we term swing-off, landing, take-off and swing-in (see
Fig. 3 and caption). After the kinematic mapping process in
section II-A was applied to the mocap data, 20 dimensions
of joint angle data were obtained'. Subsequently, the joint
angle data were transformed into orthogonal principal axes
using PCA.

The reconstruction accuracy as a function of the number of
principal components is plotted in Fig. 4. When the first three
principal axes are used, only 71.92% reconstruction accuracy
for the original joint angle data is achieved. More than 98%
accuracy can be recovered when more than 10 dimensional

Note that the Fujitsu HOAP-2 robot has 25 joints but out of these, two
neck joints, two hand joints, and one torso joint are not used in the motion
patterns studied in this paper.

Fig. 3. Motion capture session of sidestep motion. Six samples of a right-
hand side sidestep motion sequence are shown in subfigures a) through f).
The motion sequence can be divided into four major steps starting from a
standing posture in subfigure a). First, the right leg swings off as in subfigure
b). Second, the right leg lands to the ground as in subfigure c¢). Third, the
left leg takes off the ground as in subfigure d). Fourth, the left leg swings
in toward the right leg as in subfigure e). Finally, we have the standing
posture in subfigure f). Note that the subfigure f) is a standing posture after
one more sidestep motion cycle has been performed. A sidestepping cycle
takes about 1 second. The sidestep motion shall be defined in four phases
labeled as swing-off, landing, take-off and swing-in.
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Fig. 4. Reconstruction accuracy as a function of number of principal

components of the sidestep motion in figure 3.

eigenposes are used. 100% accuracy can be obtained only
when all 20-dimensions are used. In this paper, we illustrate
the approach using 20-dimensional eigenposes.

Three-dimensional eigenpose data for the first three prin-
cipal components of the sidestep motion are plotted in Fig.
5 (black diamonds). The pattern of blue dots in Fig. 5 is
the sidestep motion pattern when a scaling factor 0.5 was
applied (described in section III-C). This scaling factor was
found to be stable enough to begin the learning process. The
phase-motion optimization was performed on this 0.5-scaled
pattern.

III. REVIEW OF 3-D EIGENPOSES

A. FEigenposes as Low-Dimensional Representation of Pos-
tures

Particular classes of motion such as walking, sidestepping,
or reaching for an object are intrinsically low-dimensional.
We apply linear PCA to parameterize the low-dimensional
motion subspace X. Vectors in the high-dimensional space
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are mapped to the low-dimensional space by multiplication
with the transformation matrix C. The rows of C consist of
the eigenvectors, computed via eigenvalue decomposition of
the motion covariance matrix. This results in transformed
vectors whose components are uncorrelated and ordered
according to the magnitude of their variance.

For example, let ® be the 20 x 1 vector of joint angles
(the high-dimensional space) and x be the 3x 1 vector in low
dimensional 3D space. We can calculate x in 3D space by
using p = CO, where p is a 20 x 1 vector of all principal
component coefficients of ® and C is the 20 x 20 PCA
transformation matrix. We then pick the first three elements
of p (corresponding to the first three principal components)
to be x. The inverse mapping © which is an estimation of
© from PCA can be computed by ® = C~1p when the first
three components of a full-rank-vector p are the elements of
x and the rest of the elements are zero.

B. Action Subspace Embedding

High-level control of the humanoid robot reduces to select-
ing a desired angle for each joint servo motor. As discussed
previously, optimization in the full space of all robot joint
angles is typically intractable. We leverage the redundancy
of the full posture space and use the reduced dimensional
subspace X to constrain target postures. Any desired posture
(also referred to as an action) can be represented by a point
aecX.

A periodic movement such as walking or sidestep can be
represented by a loop in X as shown in Figure 6. In the
general case, we consider a non-linear manifold representing
the action space A C X. Non-linear parameterization of
the action space allows further reduction in dimensionality.
We embed a one dimensional representation of the original
motion in the three dimensional posture space and use

Fig. 6. Embedded action space of a humanoid walking gait. Training data
points in the reduced posture space (shown in blue-dots) are converted to
a cylindrical coordinate frame relative to the coordinate frame xg,yg, Zg-
The points are then represented as a function of the phase angle ¢, which
forms an embedded action space (shown in red-solid-curve). This action
space represents a single gait cycle.

it for constructing a constrained search space for motion
optimization. Using the feature representation of the set of
initial training examples x* C X, we first convert each point
to its representation in a cylindrical coordinate frame. This
is done by establishing a coordinate frame with three basis
directions Xy, yg, Zzg in the feature space. The zero point of
the coordinate frame is the empirical mean of the data points
in the reduced space. We recenter the data around this new
zero point and denote the resulting data X°.
We then compute the principal axis of rotation zg :

LN (& x &)
B x x|

Next, xp is chosen to align with the maximal variance of
x’ in a plane orthogonal to zg. Finally, yg is specified as
orthogonal to xy and zgy. The final embedded training data
is obtained by cylindrical conversion to (¢, r, h) where r is
the radial distance, h is the height above the xy —yy , and
 is the angle in xp — yg plane measured counter-clockwise
from xg.

Given the loop topology of the latent training points, one
can parameterize r and h as a function of ¢. The embedded
action space is represented by a learned approximation of
the function:

(D

Zg

[Tv h] = g(‘P) 2

where 0 < ¢ < 2m. Approximation of this function is
performed using a closed-curve cubic spline method. The
angle ¢ can also be interpreted as the motion-phase angle
because when ¢ sweeps from 0 to 2, it creates an action
subspace A, which in our case is a walking gait. The
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parameter ¢ indicates how far the current posture is from the
beginning of the motion cycle. The first order time derivative
of ¢ also tells us the speed of movement.

C. Action Subspace Scaling

A high-dimensional joint angles data set is usually pre-
processed before dimensional reduction. In our case, we
performed data normalization which makes the raw data
have zero mean and unity standard deviation. Normalization
ensures that the data for each joint (each dimension), which
originally vary over different scales of values, are in the
same range. When the normalized data is multiplied by a
scalar value, the results are similar postures but with different
magnitude. On the other hand, multiplying a vector of raw
joint angles data by a scalar factor does not yield a similar
posture.

From our study of four different motion patterns in the
reduced subspace, we found that scaling the motion pattern
up and down produces similar motion patterns except for the
magnitude of motion. This means that posture scaling ability
is preserved after PCA. Thus, multiplication of the action
space A C X by a scalar value yields a similar action. If A
represents a walking gait, multiplying A by a factor f > 1
will result in a similar walking gait but with larger steps.
Multiplying A by a factor f < 1 results in a walking gait
with a smaller step size. Note that scaling of an action space
is always performed with respect to the mean value of A or
the origin of the cylindrical coordinate frame (xg,ys,2g).
An example of action subspace scaling is shown in Figure

7.

Fig. 7. Motion scaling of a walking gait. The first row of this figure shows
four different postures of a walking gait. The second row shows a scaled
version of this gait obtained when a multiplying factor f = 2.0 is applied
to the low-dimensional representation of the gait.

However, action subspace scaling only produces similarity
of kinematic postures. The result of scaling may not be
dynamically stable, especially when the scaling factor f > 1.
To achieve stable motion, the new motion has to be gradually
learned as originally proposed in [18].

IV. CYLINDRICAL COORDINATE TRANSFORMATION OF
HYPERDIMENSIONAL SUBSPACES

The motion-phase optimization is performed in a cylindri-
cal coordinate system. Transformation of data from a 3-D

Cartesian coordinate system to a 3-D cylindrical coordinate
is straightforward. However, that is not the case for transfor-
mation of data that have more than three dimensions. In this
section, we introduce a new concept of cylindrical coordinate
transformation for a hyperdimensional data.

For n-dimensional function f when n = 3, transformation
from a Cartesian space X to a cylindrical coordinate system
® is the mapping:

f(@,y,2) = f(p,r,h) 3)
where
Y= arctan(%), 4)
r= a2 +¢?, (5)
and

h=z. (6)

When n > 3, a function of n-dimensions may be written
as

f(d17d27d3a---adn) (7)

where d; when ¢ = 1,...,n and n > 3, represents a variable
in an orthogonal axis in R".
We can also express function (7) as:

f(-’l?,g,Zh...,Zn,Q) (8)

where z; wheni=1,...,n—2 and n > 3.

Since the cylindrical coordinate system is a 3-dimensional
coordinate system, transformation of a hyperdimensional
function f where n > 3 to cylindrical coordinate system
® is undefined. However, the hyperdimensional function f
can be represented by a set of multiple cylindrical coordinate
frames. Suppose that f is a 5-dimensional function. Then, f
can be expressed in the form of (8) by:

f(x,y, 21, 22, 23). &)
Mapping of f in (9) can be regarded as:
f(‘rayazl) f(QO,’I",hl)
f($7y722) = f((p7r7 h?) (10)
f(x7yvz3) f(<}97r7 h’3)

where transformation of ¢ and r follow (4) and (5), and
h1,ho and hs are defined as in (6). Thus, mapping of the n
orthogonal dimensions of f to multiple cylindrical coordinate
systems can be defined as:

shn2). (D

For the 20-dimensional sidestep eigenpose data, 18
cylindrical coordinate frames are needed to describe the
data-set. The first three cylindrical coordinate frames
for the sidestep motion are shown in Fig. 8. Let
fsidestep(@, 7, h1, ha, ..., hig) be a function in the cylin-
drical coordinate systems that describes the sidestep mo-
tion. Subfigure a), b), and c) depicts data points of

fsidestep((p>r7 h1)7 fsidestep(@a T, h2) and fsidestep(@y T, hd)
respectively. Notice that subfigure a) in Fig. 8 and the

f(x’yazlw'wzan)_>f(907747h17-~-
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Fig. 8. First three cylindrical coordinates of sidestep hyperdimen-
sional eigenpose data. Subfigure a), b) and c¢) show coordinate frames
(o,r,h1), (@, r,h2) and (p,r, hg) respectively.

blue dots in Fig. 5 both represent fsigestep(¢, 7, h1) but in
different perspectives. There is an opened gap in subfigure
a) and in subfigure c) because the data pattern was manually
segmented from human motion capture data. Even if the data
are not a perfect closed-curve pattern, its embedded action
subspace is modeled as a closed-curve function.

V. MOTION-PHASE OPTIMIZATION OF
HYPERDIMENSIONAL EIGENPOSES

To avoid the curse of dimensionality problem, we use the
one-dimensional optimization of motion-phase angle of the
3-D eigenposes [16] but extended for the hyperdimensional
case. For the 3-D case, the action subspace embedding
is a single parameter function of motion-phase angle ¢
that is mapped to values of the radius r and the height
h of a periodic motion pattern in a cylindrical coordinate
system ®. For a hyperdimensional case of n-dimensional
eigenpose data, the action subspace embedding is a single
parameter function of motion-phase angle ¢ that maps to
values of r,hy,hs,..., h,_o of a periodic motion pattern.
For example, in the case of the sidestep motion pattern, the
action subspace embedding is one-to-nineteen mapping:

[7‘7h1,h27...,h13} :g((p). (12)

We use a nonlinear autoregressive network with exogenous
inputs (NARX) [21] [22] for prediction of the gyroscope
signal instead of the time-delay RBF network used in our
previous work ([16], [17], [18]). The NARX network is
a recurrent dynamic network with feedback connections
enclosing several layers of the network. The NARX model
is based on the linear ARX model, which is commonly used
in time-series modeling. The NARX model for predicting
gyroscope signal from motion-phase angle input is:

Wit :F(wt,@t,(&%,h@t,l), (13)

where w is the three dimensional vector of gyroscope
signals along x,y,z axes. Block diagram of the NARX
predictor is shown in Fig. 9.
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Fig. 9. NARX predictor for motion-phase optimization.

We define an objective function that indicates torso stabil-

ity using the following function of gyroscope signals:
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I'(w) = \w? + Aywp + Aw?, (14)

where w,,w,,w, refer to gyroscope signals along the
X,y,z axes respectively. The constants A;, Ay, A, allow one
to weight rotation in each axis differently. Assuming that the
starting posture is statically stable, one may simply minimize
overall rotation of the robot body during motion to maintain
balance by minimizing the sum of squares of gyroscope
signals. Thus, the objective function (14) provides a measure
of stability of the robot’s posture during motion.

The embedded action in (12) and the NARX predictor
model in (13) can be directly applied to the motion-phase
optimization:

; = argminI'(F(wg, wi—1, 9t, Pe—1))- (15)

Pt

'.-" N, * Original posture
° Optimized posture

Fig. 10. Motion-phase angle optimization result of sidestep hyperdimen-
sional eigenpose data.

VI. SIMULATION RESULTS

Fig. 10 shows the optimization result in a 3-D coordinate
frame defined by the first three principal axes after five
learning episodes. The optimized eigenposes are points on
the original motion pattern but are distributed differently
from the original pattern because the motion-phase optimiza-
tion is one-dimensional optimization of the parameter ¢ of
(12). The optimized eigenposes are thus strictly constrained
to be within the original set of postures. Only timing of
postures during the motion has been altered. Notice in the
figure that the opened gap of the original pattern is now
closed by the optimized postures. There are two reasons
for this phenomena. First, the action subspace embedding or
the constraint pattern is modeled as a closed-curve. Second,
based on sensory feedback received during learning episodes,
the optimization algorithm found that it can achieve a lower
gyroscope signal oscillation by assigning some postures

b)

Fig. 11.  Simulation result of sidestep hyperdimensional eigenpose data
optimization. Subfigures in column a) show original sidestep motion se-
quence of the human demonstrator. Subfigures in column b) show the
sidestep motion sequence on HOAP-2 robot in a dynamics simulator without
optimization at the motion scale 0.5. Note the undesired rotation and lack
of displacement after executing the motion. Subfigures in column c¢) show
the sidestep motion after five learning episodes at motion scale 0.5. Robust
sidestepping motion is achieved.

in the opened gap, resulting in smoother motion. Another
attempt of the algorithm to obtain smoother movement can be
noticed in the lower-left corner of the pattern in Fig. 10: the
algorithm decided to plan the trajectory across an irregular
corner of the original pattern.

Simulation results of the sidestep motion are shown in
Fig. 11. Column a) in Fig. 11 shows the original sidestep
motion sequence of a human demonstrator. Column b) shows
the HOAP-2 robot performing the sidestep motion sequence
at motion scale 0.5 without optimization in a dynamics
simulator. Column c) shows the sidestep motion after five
learning episodes at motion scale 0.5. In Fig. 11, the first
row and the last row of subfigures in every column are
the standing postures at the beginning and the end of the
motion sequence, respectively. The second row is the swing-
off phase. The third row is the landing phase. The fourth
row is the take-off phase, and the fifth row is the swing-
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in phase. In column b), the right foot and the left foot
of the robot bounced at the landing phase and the take-
off phase, causing the robot to be unable to lift its left
foot up in the subsequent take-off phase. As a result, the
robot dragged its left foot along the ground during the
swing-in period, causing the body of the robot to turn as
can be observed from the last two images of column b).
In column c), which shows the optimized result, the robot
could perform the sidestep motion without this undesired
turn of the body. While all of the key postures in the figures
of column c) look very similar to the postures in column
a), the timing of the movements are significantly different.
The landing phase and the swing-in phase of the optimized
motion in column c) are relatively slower than the original
human motion. These can also be observed in Fig. 10 where
there are two parts of the motion pattern containing a high
density of optimized postures. These correspond to a slow
landing phase and swing-in phase. The slow landing phase
and swing-in phase also prevent the robot from dragging its
left foot on the ground, eliminating the undesired turn of
the body and allowing the robot to learn the sidestep motion
successfully.

VII. CONCLUSION

This paper proposes a new method for learning by imita-
tion that generalizes eigenpose-based motion optimization to
a large number of dimensions. A newly developed cylindrical
coordinate transformation technique for hyperdimensional
subspaces is used in conjunction with a one-dimensional
computationally efficient motion-phase optimization method.
The resulting framework allows fast learning and accurate
motion imitation. Results involving a Fujitsu HOAP-2 hu-
manoid robot model in a dynamic simulator show that a
dynamically stable sidestep motion can be rapidly learned
from a human demonstrator. Future work will focus on
scaling the approach to a wide class of motions, including
non-periodic motion, and integrating real-time feedback with
the learned motions on the actual humanoid robot.
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