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Abstract— Detecting already-visited regions in vision-based
navigation and mapping helps reduce drift and position un-
certainties. Inspired from content-based image retrieval, an
efficient approach is the use of visual vocabularies for measuring
similarities between images. In this way, images corresponding
to the same scene region can be associated. The state of the
art proposals that address this topic suffer from two main
drawbacks: (i) they require heavy user intervention, generally
involving trial and error tasks for training and parameter
tuning and (ii) they are suitable for batch processing only, where
all the data is readily available before data processing.

We propose a novel method for visual vocabulary navigation
and mapping that overcomes these shortcomings. First, the
vocabularies are built and updated online, during robot navi-
gation, in order to efficiently represent the visual information
present in the scene. Also, the vocabulary building process does
not require any user intervention.

I. INTRODUCTION

Global positioning from local observations represents a

topic with multiple applications in vision-based navigation.

It allows estimating the location of the robot within a visual

map with little or no a priori knowledge of its position.

This approach leads to multiple applications: loop closure

for positioning uncertainty reduction, positioning based on

previously created maps (kidnapped robot problem), position

recovery after occlusions or failures, etc.

In computer vision, these applications became possible

with the introduction of affine invariant features [20][17][4].

They allow visual tracking under various geometric transfor-

mations: rotation, scale and (to some extent) affine distor-

tions. Furthermore, by using feature descriptors as quantifi-

cations of image patches, the latter can be tracked with little

a priori knowledge of their position.

Nevertheless, when dealing with vast scenes, visual nav-

igation systems have to deal with thousands of features for

loop closure or position recovery. Matching features over

such an amount of data using standard methods would be

too confusing and computationally expensive. In order to

deal with data at this scale efficiently, the solution is to

represent visual information at a higher level of abstrac-

tion, using visual vocabularies [24], where each image is

described as set of visual word occurrences. Visual words

represent generalized image patch representations, obtained

by clustering (grouping) together similar feature descriptors.

Some proposals of visual vocabulary-based robot nav-

igation have been reported in the literature [8][9][25][1].

Inspired from image database retrieval and object recognition

methodologies [24][23][26], they use sets of pre-computed

visual vocabularies for online image indexing. Hence, the

building of visual vocabularies involves a series of steps

prior to navigation. First, visual data is gathered from the
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Fig. 1. Online visual vocabulary and image indexing. Every m frames,
the vocabulary is updated with new visual features extracted from the last m
frames. The complete set of features in the vocabulary is then merged until
convergence. The obtained vocabulary is used to index the last m images.
Also, the previously indexed frames are re-indexed, to reflect the changes
in the vocabulary.

area where the navigation will take place. Then visual

features are extracted and the visual vocabulary is generated.

Unfortunately, this is an inefficient approach since it requires

laborious preparations and involves strong a priori knowledge

of the navigation area.

We propose a novel framework for incremental visual

vocabulary building. It requires no user intervention and no a

priori information about the environment. The system creates

a reduced vocabulary as soon as visual information becomes

available during navigation. The vocabulary gets updated in

order to correctly model the visual information present in

the scene. The vocabulary is built using a novel clustering

method that takes into account the global distribution of

visual data, increasing its efficiency. Also, we present a new

method for feature-cluster association and image indexing,

suited for online applications.

The proposed method is implemented on a Structure From

Motion (SFM) algorithm oriented towards underwater navi-

gation and 3D mapping [22]. Here, the visual vocabularies

are used to quantify visual similarities between frames,

allowing the detection of loop-closures.

This paper is structured in the following way: first,

a detailed presentation of the novel vocabulary building

method is presented in Section II, along with online image

indexing in Section III. The fourth part discusses some of the

experiments that we have conducted, aimed towards testing

various aspects of the online visual vocabulary. The paper

concludes with some remarks and a proposal for further

work.
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II. VISUAL VOCABULARY

All the state of the art visual vocabulary-based navigation

proposals assume an initial off-line stage [9][1]. This stage

involves pre-acquiring visual features from the scene. These

features are then used to build the visual vocabulary by

means of some clustering method. Typical off-line vocab-

ulary building methods use K-means, K-medians or fixed-

radius clustering algorithms, which require the user to set

various parameters such as the number of clusters in the

vocabulary. Finding the adequate parameters for an optimum

vocabulary is a tedious task which generally involves a trial

and error approach. For example, a vocabulary with too many

words would not have enough abstraction power to detect

similarities between images. In contrast, a vocabulary with

too few words would be too confusing and generalized to be

discriminant.

We propose a novel visual vocabulary building technique

that is both scalable (thus suitable for on-line applications)

and automatic (see Figure 1). For this, we propose the use

of a modified version of agglomerative clustering [5]. Ag-

glomerative algorithms begin with each element as a separate

cluster (called hereafter elementary clusters) and merge them

using some similarity measurement into successively larger

clusters until some criterion is met (e.g. minimum number

of clusters, maximum cluster radius, etc.).

A. Vocabulary Building

In our proposal, the elementary clusters are generated from

visual tracking of scene points [21], with each elementary

cluster corresponding to one feature track. The visual vocab-

ulary is generated by incrementally merging these clusters.

The vocabulary building process can be summarized in two

steps (see Figure 2):

• Vocabulary initialization step. The vocabulary is ini-

tialized with the elementary clusters corresponding to

the first m images. The clusters are gradually merged

until convergence (the merging criterion is discussed in

detail in the last part of Section II).

• Vocabulary update step. As the robot moves, more

visual information of the scene becomes available that

needs to be contained in the vocabulary. Therefore, from

every block of m images, new elementary clusters are

extracted. These clusters are added to the vocabulary

and the complete set of clusters is gradually merged

until convergence. This step is repeated for each block

of m new images.

B. Cluster characterization

Each cluster in the vocabulary is defined by its position in

the n-dimensional space and its size (radius). This provides

complete information about both the cluster distribution and

the interaction between clusters. As previously shown, all the

input information (for both initialization and update) comes

from elementary clusters, such that all the other clusters in

the vocabulary are formed by merging these clusters. As the

elementary clusters are generated from feature tracking1, we

1Feature tracking provides multiple (noisy) observations of a scene point.
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Fig. 2. Iterative Visual Vocabularies. In the initialization step (bottom
part) the vocabulary is populated with elementary clusters (marked in
gray), extracted from the first m images. These clusters are merged until
convergence. The final clusters of the initialization step are marked in black.
In the update step (top part), new elementary clusters obtained from blocks
of m images are added to the vocabulary. The complete set of clusters are
then merged until convergence.

define them through:

Ck =

∑
f i

k

n
(1)

Rk =

∑
(f i

k − Ck)(f i
k − Ck)T

n
(2)

where Ck is the cluster centroid given by the mean of feature

vectors corresponding to scene point k in image i and Rk is

the covariance matrix of the observations of point k.

Each cluster merging involves the joining of two clusters

(see Figure 2). The parameters of the newly generated cluster

are obtained directly from the merging clusters, without the

need of recomputing them from the original data. This saves

both computational time and memory, especially in the case

of large clusters. The position and size of the new cluster

are given by [14]:

Cab =
naCa + nbCb

na + nb

(3)

Rab =
na − 1

na + nb − 1
Ra +

nb − 1

na + nb − 1
Rb

+
nb · na

(na + nb)(na + nb − 1)
[(Ca − Cb)(Ca − Cb)

T]

(4)

where Ca and Cb are the centroids of the merging clusters,

having na and nb elements respectively.

C. Cluster merging

Generally, clustering algorithms use some similarity mea-

surement to decide which data should be grouped into

clusters. Often, similarity measurements are represented by

distances in the n-dimensional data space, including: Eu-

clidean distance, Manhattan distance [15], Chebyshev norm

[12], Mahalanobis distance [18], vector angle, etc. These
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clustering criteria analyze the data only locally and can be

suboptimal, especially in high-dimensional, cluttered spaces

such as those used for visual feature representation.

We propose a novel clustering method that takes into

account the global distribution of data. The proposed method,

based on Fisher’s linear discriminant [11] [19], clusters the

data in order to maximize the following objective function:

Q =
tr(SB)

tr(SW )
(5)

where tr() is the trace operator, SB represents the between

clusters scatter matrix and SW represents the within clusters

scatter matrix given by:

SB =
1

N

∑
nk(C − Ck)(C − Ck)T (6)

SW =
1

N

∑
nkRk (7)

where C is the global centroid of the data, N represents the

total number of data elements and nk is the number of data

elements contained in cluster k.

Practically, the merging takes place in two steps:

1) For each cluster, we search for merging candidates in

its neighborhood (in the Euclidean sense), using a k-

dimensional tree (kd-tree) approach [2].

2) For each possible merging pair of clusters, we compute

the objective function Q′ that would be obtained if the

two clusters were merged. If there is an increase in the

value of the objective function, then two clusters are

merged and Sb, Sw are updated accordingly2.

Each merging step changes the distribution of data in the

vocabulary, requiring the re-computation of both SB and SW .

As a direct re-computation would be very costly, we propose

an incremental update scheme:

S′

B = SB +
na + nb

N
(C − Cab)(C − Cab)

T

− na

N
(C − Ca)(C − Ca)T − nb

N
(C − Cb)(C − Cb)

T

(8)

S′

W = SW +
na + nb

N
(Rab) −

na

N
(Ra) − nb

N
(Rb) (9)

where S′

B and S′

W are the updates of SB and SW , respec-

tively; Cab and Rab are the centroid and covariance matrix

of the merged cluster.

D. Convergence criterion

The two steps shown in Section II-C are repeated, grad-

ually merging clusters, until no more merges are possible

(that would increase the value of the objective function Q).

In this way, the method offers a natural convergence criterion,

eliminating the need of any user parameters.

2In practice, we first compute the gain in Q for each possible merging
pair, creating a list from the highest to the lowest gain. The clusters are
merged following the order in the list, making the merging step independent
of the order in which the clusters are analyzed.

E. Vocabulary update

During the vocabulary update step, new elementary clus-

ters are added, containing new visual features. For each

newly added elementary cluster ζe, SB and SW have to be

updated accordingly. Similar to the merging step, we avoid

recalculating the scatter matrices by proposing a novel update

method.

The update of SW simply involves the covariance matrix

Re of ζe, weighted by its number of elements ne
3:

S′

W =
NSW + Re

N + ne

(10)

Adding any new cluster in the vocabulary affects the global

data centroid C. The new centroid C ′ is obtained from:

C ′ =
CN + Cene

N + ne

(11)

Taking into account the changes in C, SB is updated using:

S′

B =
N

N + ne

(SB + δT

CδC − V TδC − δT

CV )

− ne

N + ne

(Ce − C ′)T(Ce − C ′)
(12)

where δC = C ′−C and V is the weighted sum of differences

between each newly added cluster centroid and global data

centroid. V is obtained incrementally using:

V ′ =
NV + NδC + ne(Ce − C ′)

N + ne

(13)

F. Linear Discriminant Analysis (LDA)

Using the cluster information contained in the visual

vocabulary, we aim to find a data transformation that would

maximize cluster separability and would allow us to reduce

the dimensionality of the data, thus increasing the speed of

both vocabulary building and image indexing. For this, we

consider maximizing the following LDA objective function

[11][19][10]:

J(w) =
wTSBw

wTSW w
(14)

where w is a vector determining the maximum cluster

separability direction. Formulating the maximization of J(w)
as a generalized eigenvalue problem, we obtain a data

transformation G from the eigenvectors corresponding to w.

By selecting m columns of G corresponding to the highest

values of w, we reduce the dimensionality of the data to s

dimensions.

III. IMAGE INDEXING

Inspired from text document indexing [16], visual bag

of words techniques use visual vocabularies to represent

the images by associating the features present in the image

with the clusters (visual words) in the vocabulary [7] [23]

[26]. The result is a histogram representing the number of

3The number of elements in an elementary cluster corresponds to the
number of frames in the feature track.
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Fig. 3. Feature-cluster association – classical approach. In (a) the feature
f is associated with cluster ζb, using feature-to-cluster centroid distance.
After the vocabulary update, clusters ζa and ζc are merged (b). The centroid
of the newly obtained cluster ζac is now closer to f , determining the
association of f with ζac.

?a
?b

f f

Fig. 4. Top-down feature-cluster association. The trees are visited by
comparing each node with the feature. If a node is too dissimilar to the
feature (marked in light grey), the rest of the tree corresponding to the node
is not visited. The feature is associated with ζa due to the highest similarity
between f and the leaf marked in black.

occurrences of each visual word in the image. The similarity

between images is calculated by comparing these histograms.

Generally, there are two aspects that define the efficiency

of a visual vocabulary: (i) similar image features should be

associated with the same clusters (repetitiveness) and (ii)

dissimilar image features have to be associated with different

clusters (discriminative power). We aim to maximize these

two properties by using the objective function presented in

Section II-C.

In the context of the on-line vocabulary, we define a third

property: stability. As the vocabulary is constantly updated,

the aim is to ensure that similar features are associated with

the same clusters at different stages of the vocabulary update.

We achieve this property through a novel feature-cluster

association technique.

A. Cluster association

The association between features and visual words is

performed by comparing each feature with all the clusters in

the vocabulary. The feature is then associated with the most

similar cluster. Most image indexing techniques calculate the

similarity between features and clusters using distances in the

feature space (see Section II-C). This approach is suitable for

image indexing in the case of static vocabularies4 [24].

As we use an on-line approach for vocabulary building,

such a feature association method would not be stable. In

Figure 3a, feature f is associated with the closest cluster

ζb. After the vocabulary is updated, clusters ζa and ζc are

merged, yielding a new cluster ζac (Figure 3b). As the feature

f is now closer to the centroid of the new cluster ζac, it would

be associated to it. In this case, feature f would be associated

with different clusters before and after the vocabulary update.

Alternatively, the proposed feature-cluster association

technique uses a tree-based approach. The trees are formed

during the vocabulary building process. The nodes of the

trees represent the clusters while the branches define the

cluster hierarchy. The roots of the trees correspond to the

visual words while the leafs of the trees correspond to the

elementary clusters (see Figure 2).

During the feature-cluster association, the trees are visited

top-down, calculating the similarity (Euclidean distance)

between each feature and the tree nodes. In order to speed

up the association process, we visit only those trees corre-

sponding to visual words in the vicinity of the feature. For

this, we calculate the distance between the feature and the

visual words and select the trees where:

D(f, ζk) ≤ τDm (15)

where D(f, ζk) is the distance between feature f and ζk;

Dm is the minimum distance between the feature f and the

visual words and τ is a user-defined constant (τ ≥ 1).

The selected trees are visited in parallel (see Figure 4). For

efficiency purposes, a stopping criterion similar to eq. 15 is

used, hence avoiding visiting branches that contain nodes

that are not close to f . The feature is finally associated to

the visual word corresponding to the most similar leaf.

B. Image re-indexing

During the update process, the configuration of the vocab-

ulary changes. Consequently, the similarity between images

indexed at different update stages cannot be computed. Also,

indexing the images after each vocabulary update is not a

viable solution due to its large computational cost.

We propose a novel solution to this shortcoming by

defining a transformation pTp−1 that embodies the changes in

the vocabulary during the update stage. This transformation

allows a fast re-indexing of the images (hence eliminating

the need of repeated image indexing):

H̃
p
I =p Tp−1H

p−1

I (16)

where H
p−1

I is the indexing of image I at vocabulary update

stage p−1 and H̃
p
I is an approximation of the image indexing

I at vocabulary update stage p.

During update, the visual vocabulary undergoes the fol-

lowing changes:

1) Adding of elementary clusters. If these new clusters

are not absorbed into already existing clusters, they

4A static vocabulary represents a vocabulary that is calculated before the
image indexing stage and does not change throughout it.
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contain new visual information. In this case, it is very

unlikely that any feature from any image before the

update would has been associated to them. Therefore,

the bins H̃k
I are initialized to 0.

2) Cluster merging. In the case that two (or more) clusters

merge, any feature previously associated with these

clusters would be associated to the newly formed clus-

ter. In this case, the number of occurrences associated

with the new cluster is the sum of occurrences of the

merging clusters.

To reflect these changes, pTp−1 has to initialize the his-

togram elements corresponding to newly added clusters and

sum the elements corresponding to merging clusters. For a

better understanding, let us consider the following example:

at stage p−1 the indexing of image I yields [h1 h2 h3]
T cor-

responding to the visual vocabulary containing (ζ1, ζ2, ζ3);

during the vocabulary update, clusters ζ1, ζ2 merge into ζ12

and a new cluster ζ4 is added. In this case, the transformation
pTp−1 becomes:




h12

h3

h4


 =




1 1 0
0 0 1
0 0 0







h1

h2

h3


 (17)

C. Image Similarity

The visual resemblance between images is quantified by

measuring the similarity of their corresponding histograms5.

As the histograms are represented by vectors containing the

occurrences of the visual words, we calculate their similarity

using the normalized scalar product (cosine of the angle

between vectors) [24]:

srq =
HT

r Hq

‖Hr‖2 · ‖Hq‖2

(18)

where srq is the similarity score between images Ir and

Iq , Hr and Hq are the histograms of the images; ‖H‖2 =√
HTH is the L2 norm of vector H .

In eq. 18, the similarity score is highly influenced by

histogram elements corresponding to visual words with high

occurrence. Generally, these words represent visual features

commonly found in the images, thus having low discrimi-

native power. In order to counterbalance this shortcoming,

the elements of the histograms are weighted using term

frequency-inverse document frequency [3]:

hk =
nki

oi

log
mp

Ok

(19)

where nki is the number of occurrences of word k in image

Ii, oi is the total number of words in Ii, Ok is the total

number of images containing word k and mp is the total

number of indexed images.

D. Cross-over detection

During on-line navigation and mapping, increased values

of srq between the current image and any previous one

5In this paper, the term “histogram” of image I refers to a vector
embodying the number of occurrences of each visual word in I .

indicate a high probability of the two images representing the

same scene region (i.e. loop closing). This information can

be used for both introducing new constraints in the mapping

model and reducing the navigation-related uncertainties.

Noise, low contrast and especially motion blur may some-

times decrease the efficiency of image indexing leading

to false positives when detecting cross-overs. Assuming a

smooth camera motion, there must be a certain degree of

overlap between neighboring frames in the image sequence.

In other words, if an image Iq has a high degree of visual

similarity with some other image Ir, the neighbors of Ir

must also be (at least partially) visually similar to Iq .

Seeing the similarity between image Iq and all the im-

ages in the sequence as a time-dependent measurement, we

employ individual compatibility test [6] to reject the false

positives.

IV. EXPERIMENTAL RESULTS

The proposed online visual vocabulary technique is im-

plemented on top of the Structure From Motion algorithm

presented in [21]. Given a sequence of images of a generic

scene, the SFM algorithm extracts and tracks visual features,

recovering the up-to-scale 3D geometry of the scene. The

visual tracker in the SFM algorithm uses state of the art

feature extractors and descriptors, including: SIFT [17],

SURF [4], MSER [4], Harris [13], etc.

In this section, we present two sets of experiments, aimed

at testing and validating the main stages of the online

vocabulary and image indexing.

The first experiment was carried out in the laboratory,

using a relatively flat scene that contains books, boxes and

magazines. The scene composition was chosen to be visually

complex, combining uniform (low texture) regions, natural

scenes, geometric figures and abstract drawings.

The test sequence consists of 215 images of 640 × 480
pixels, acquired using a Canon G9 compact camera (see

Figure 5 for some snapshots of the sequence). The images

contain a certain amount of motion blur and defocusing,

allowing us to test the robustness of the visual vocabulary.

The camera is moved while in a down-looking orientation,

describing a loop trajectory with a partial overlap between

the first and the last images. Figure 6 illustrates the resulting

scene model and camera trajectory, after applying SFM on

the image sequence. Hereafter, we discuss the vocabulary

building process, image indexing and cross-over detection.

The detection and extraction of features was carried out

using SURF, yielding ∼37,000 tracks corresponding to the

3D vertices. Each image feature is represented using a

64-element normalized vector, describing the Haar wavelet

responses in the neighborhood of the feature [4]. The vocab-

ulary was built incrementally, during the scene reconstruction

process.

The vocabulary was initialized using the visual informa-

tion extracted from the first 20 images and updated every

10 frames (with 21 updates in total). Figure 7 illustrates the

evolution of the vocabulary size as it gets updated. Towards

the end of the sequence, the increase rate lowers, stabilizing
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Fig. 5. Laboratory experiment: Input image sequence. Sample images
from the input sequence. The first and the last image have a partial overlap.
The blow-up shows the motion blur and defocusing.
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Fig. 6. Laboratory experiment: The result of the SFM algorithm.

The scene model contains ∼37,000 vertices (marked in green). The camera
describes loop a trajectory (marked in blue) with an overlap between the
first and last images.

at ∼ 4, 000 words. We test the quality of the data clustering

in the vocabulary and the efficiency of the proposed indexing

method, using a direct data association experiment. For

each image feature, we associate an elementary cluster that

corresponds to the smallest Euclidean distance in the feature

space. The image features are then “sent down” the indexing

trees. If the image features end up at the leaf corresponding

to the associated elementary cluster, it is considered a hit

and a miss otherwise. We conducted the test using various

LDA dimensionality reduction stages and different τ values

(see eq. 15). Due to space limitations, we omit a detailed

presentation of the results. It should be mentioned, however,

that reducing the feature dimension from 64 to 24 and

using τ = 1.4, we obtain a miss rate of 0.96%. These

parameters highly reduce the computational times for both

vocabulary building and frame indexing while maintaining

the properties of the vocabulary (see Section III). Figure 8

illustrates the execution time evolution for both vocabulary
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Fig. 7. Laboratory experiment: Vocabulary size evolution. The vocab-
ulary is updated every 10 frames. The final size of the vocabulary is 4271
words.

building and frame indexing6. For the whole sequence, the

average vocabulary update time was 1.36 sec./update and the

average frame indexing time was 0.23 sec./frame.

20 40 60 80 100 120 140 160 180 200
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Fig. 8. Laboratory experiment: Execution times. The vocabulary
building time (red bars) and the frame indexing time (blue line) evolution
vs. the number of frames.

The last part of the laboratory experiment consisted in

the detection of the loop closure. After image indexing, the

similarity matrix shown in Figure 9 clearly illustrates a high

degree of visual resemblance between the first images and

the last images of the sequence (upper-right corner).
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Fig. 9. Laboratory experiment: Image similarity matrix. High values
close to the main diagonal correspond to the similarity of the images with
their close neighbors. The bright region in the upper-right corner of the
matrix denotes an overlap between frames in the beginning and the end of
the sequence.

Figure 10 illustrates the similarity score between I215 and

all the images in the sequence. The peak at image I1 indicates

a high visual similarity between frames I1 and I215 of 0.8.

6The algorithms were mainly implemented in Matlab, with certain rou-
tines implemented in C. All the experiments presented in this paper were
carried out on a Intel Pentium Core Duo 2.13GHz machine with 4GB of
RAM, running Windows Vista.
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In order to see how well the similarity score represents

the actual overlap, we calculated the projective homography

between the two images shown in Figure 11. Using the

homography, we obtained an overlapping ratio of 0.82. This

shows that the similarity score accurately represents the

overlapping between frames.
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Fig. 10. Laboratory experiment: Image similarity for query image
I215. The plot shows the similarity between frame I215 and all the previous
frames. The peak on the far right of the plot correspond to the time-adjacent
frames. The peak corresponding to I1 indicates an overlap.

Fig. 11. Laboratory experiment: loop detection. Query frame I215
(top) and frame I1 (bottom) correspond to the loop closure in the camera
trajectory.

The second experiment presented here is aimed at testing

the efficiency of the online visual vocabulary method in

describing natural, unstructured environments for underwater

robot navigation and mapping. For this, we have chosen an

underwater dataset, acquired using a Remotely Operated Ve-

hicle (ROV) near Bahamas by the University of Miami. The

sequence is comprised by 235 frames of 720 × 530 pixels.

Figure 12 illustrates the result of the 3D reconstruction and

ROV trajectory estimation. In this experiment, we carried out

the online vocabulary building and image indexing using the

same parameters as in the previous experiment. The resulting

image similarity matrix in Figure 13 successfully points out

the cross-overs in the robot trajectory. An exemplification

of this is provided in Figure 14, where a query for frame
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Fig. 12. Underwater experiment: The result of the SFM algorithm.

The scene model contains 62,000 vertices. The trajectory of the ROV has
several cross-overs.

I204 shows two peaks at frames I52 and I155, with similarity

scores of 0.73 and 0.75 respectively. The estimated overlap

ratio between I204 and frames I52 and I155 is 0.78 and

0.8 respectively, showing that the similarity scores closely

represent the overlap between images. Figure 15 clearly

illustrates that the three frames correspond to the same region

of the scene.
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Fig. 13. Underwater experiment: Image similarity matrix. The bright
regions off the main diagonal correspond to multiple cross-overs.
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Fig. 14. Underwater experiment: Image similarity for query image
I204. The plot shows the similarity between frame I204 and all the previous
frames. The two peaks corresponding to frames I52 and I155 indicate that
all three frames correspond to the same region of the scene.

V. CONCLUSIONS

This paper presents a novel visual vocabulary building

method, oriented towards on-line robot navigation. The
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Fig. 15. Underwater experiment: loop detection. Query frame I204 (top)
and frames I52 (middle) and I155 (bottom) were successfully determined
as corresponding to the same region of the scene, defining a loop closure.

proposed method has contributions at different levels. The

visual vocabulary in built incrementally, eliminating the need

of the off-line training stage and increasing the flexibility

of visual-navigation. The feature clustering method uses a

global approach, ensuring a more efficient data distribution.

Also, a new hierarchical technique increases the feature-

cluster association robustness, in the context of a constantly

changing vocabulary. We also propose a novel image re-

indexing method that eliminates the necessity of repeated

indexing as the vocabulary changes.

Consequently, we discuss some experimental results that

show the applicability of the method in cross-over detection

for robot navigation and mapping.

Ongoing and future work includes testing a method for de-

creasing the memory usage of the vocabulary (for example by

eliminated small clusters at the bottom of the hierarchy), that

would allow testing the method for large scale navigation.
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