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Abstract— In the robotics and computer vision communities,
localization and mapping of an unknown environment is a well
studied problem. To tackle this problem in real-time using a
single camera, state-of-the-art Simultaneous Localization and
Mapping (SLAM) or Structure from Motion (SfM) algorithms
can be used. To create the model of the unknown environment,
the camera moves and adds to the map from point to point,
and assumes that these detected points are unique 3D corners.
However, the scene usually contains false 3D corners, lying
at e.g. occlusion boundaries. Inserting these points into the
map may lead to SLAM failure or to less accurate estimations
in SfM. In this work, a corner selection scheme is proposed
that exploits the amplitude and depth signals of a Time-of-
Flight (ToF) camera. The selection scheme detects false 3D
corners based on a 3D cornerness measure. We then prove
that the rejection of these corners increases the accuracy with
a simulated SfM example and show the results of using our
selection scheme with the ToF camera sequences.

I. INTRODUCTION

For mobile robotics or head gears in augmented reality

(AR) applications, it is essential to continuously localize

and estimate 3D positions of new landmarks in an unknown

environment. In robotics, this is required for navigation, in

AR to overlay virtual information correctly. The localization

and mapping can be addressed with an incremental prob-

abilistic approach as Bearing-Only SLAM [1], [2], [3] or

SfM [4]. The common task of these methods is localization,

but the difference between them is that SLAM commonly

builds a sparse map and SfM aims to produce a dense map

of the unknown scene. The roots of SfM can be found in

photogrammetry e.g. [5], and despite involving a non-linear

optimization technique it can work in real-time [4], [6]. The

main drawback compared to SLAM is that the projected 3D

corners have to be tracked from frame to frame, and the

motion drift can not be corrected after re-observing the same

place.

As input for SLAM, different kinds of sensors (e.g.

laser [7], sonars [8]) can be used. One of the most interesting

(cost, weight, etc.) and challenging SLAM sensors is a

single perspective-projection camera. When observing the

environment with a camera, the depth information of new

landmarks can not be directly acquired. To recover this

depth information, the camera has to move, and observe this

landmarks from different viewpoints.

Davison et al. introduced the first real-time Monocu-

lar SLAM (MonoSLAM) (recently summarized in [3]) al-

gorithm. The camera motion estimation and incremental

map building (from new landmarks) are computed within

a standard Extended Kalman Filter (EKF) SLAM frame-

work. An alternative SLAM framework is typically based

on FastSLAM-type [9] particle filter algorithms.

Another visual SLAM framework based on a FastSLAM-

type particle filter introduced by Eade and Drummond [10]

can incorporate hundreds of features in real-time. However,

the filter needs to be adapted for closing loops over large

trajectories.

Recently, a very interesting real-time parallel tracking and

mapping approach was introduced by Klein and Murray

in [11]. They proposed splitting the tracking and mapping

into two separate tasks, running in parallel threads. The result

is a system capable of estimating thousands of features in

real-time, but suitable for small workspaces.

When using a perspective-projective camera, landmarks

have to be seen from different viewpoints before they can

be inserted into the model of the scene. The state-of-the-art

model for these new features is the inverse depth parameter-

ization introduced by Civera et al. in [12]. In contrast to the

particle filter, feature initialization proposed by Davison et

al. in [3] the inverse depth parameterization has the ability

to estimate very distant features, possibly lying at infinity.

Above-mentioned Bearing-Only SLAM [3], [9], [10] and

SfM [4], [5], [6], [11] approaches can not infer the depth

information of the scene from a single view due to the

perspective-projective nature of the camera. To initialize new

landmarks’ positions, different views of the scene are usually

needed, and in Bearing-Only SLAM [3] this is known as

delayed initialization. However, in [13] an undelayed initial-

ization method is proposed, but only simulated results are

introduced. Despite these efforts, landmarks’ initialization in

Bearing-Only SLAM and SfM is still a challenging task,

because if these new landmarks do not represent distinct 3D

corners and lie at e.g. occlusion boundaries, it can lead to

SLAM [3] failure or SfM [4] inaccuracies.

In this work, a ToF camera capable of measuring the

scene amplitude and depth directly has been used. Due to the

available depth data, the geometry of the visible scene can be

inferred. We present a three-stage selection scheme capable
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Fig. 1. The only sensor input in MonoSLAM are images from a single camera (a). As the camera moves, new distinctive features are detected (b).
The output of MonoSLAM is the camera pose and a sparse, three-dimensional map of these distinctive features (c). An alternative to MonoSLAM sparse
mapping is a more dense structure reconstruction using bundle adjustment (d).

of pruning false landmarks lying at occlusion boundaries, for

example. The first stage of the presented selection scheme

uses a well-known corner detector applied to the amplitude

data. The second stage analyzes the geometry of the depth

measurements, and decides if the landmark is a valid 3D cor-

ner. If necessary, the third stage proves using RANSAC [14]

if the corner lies in a plane. To our knowledge, this is the

first use of such an approach to locate 3D corners in the

scene.

An alternative approach on how to use the depth ToF

measurements to initialize new landmarks could be Range-

Bearing SLAM, e.g. [15]. This SLAM algorithm only takes

advantage of the depth geometric information. However, the

contribution of our work focuses on how to combine the

amplitude and depth ToF measurements to select good scene

corners.

A comprehensive overview of the ToF principle and cam-

era which has been used in this work can be found in [16].

In this paper, the bundle adjustment used in SfM is briefly

introduced in Section II. Details related to the proposed

corner selection scheme are introduced in Section III. Sec-

tion IV explains how the false corners influence the structure

and motion recovery, analyzes the ToF data sequences, and

discusses the experimental results. Section V closes with a

discussion and an outlook to the future work.

II. BUNDLE ADJUSTMENT

In this section, a brief overview of SfM recovery al-

gorithm commonly known as bundle adjustment is given.

The difference between a Bearing-Only SLAM technique

like MonoSLAM and bundle adjustment is that MonoSLAM

recovers a rather sparse map of the scene in real-time. An

example is displayed in Fig. 1. When the camera moves,

new distinctive features can be detected (e.g. corners with

numbers 5-10 in Fig. 1-b and Fig. 1-c). The output of

MonoSLAM is the camera poses and a sparse map of

recovered features, as depicted in Fig. 1-c. Due to the real-

time demand, mapping in MonoSLAM does not play a

crucial role, and should rather support localization.

A. The Basic Perspective-Projective Camera Model

The perspective-projective, also known as the pin-hole

camera, maps 3D landmarks into a 2D image plane. This

mapping, in our case central projection Pi [17], [18], has

the following form

λijxij = PiXj , i = 1 . . .m, j = 1 . . . n , (1)

where Xj are the homogeneous 3D landmarks, xij are the

homogeneous 2D points and λij are the projective depths.

B. Iterative Non-linear Optimization

The recovery of an unknown structure and motion can

be solved, when this problem is formulated as Maximum

Likelihood Estimation [18]

L = max
∏

i,j∈I

e|xij−g(Pi,Xj)|
2/2σ2

, (2)

where g(Pi, Xj) represents the reprojected landmarks.
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Fig. 2. The Swiss Ranger
TM

SR3000 ToF camera (courtesy of Mesa
Imaging - http://www.mesa-imaging.ch).

False Corners

True Corners

Fig. 3. Our simulated scene contains one table and four chairs. In this
bundle adjustment example, twenty-two good corners were used, but in this
figure, only three of them are depicted as circles. We used up to three bad
corners, which are marked with arrows.

More commonly known is a standard reformulation of this

maximization problem. The result of this reformulation is the

following equation

f =
∑

i,j∈I

(xij − g(Pi, Xj))
2 , (3)

where the problem is to minimize the negative logarithm

of the likelihood function L [18].

The 2D reprojections xij of 3D corners Xj are calculated

as

xij = g(Ki, Ri, ti, Xj) . (4)

Central projection Pj in ( 1) encompasses the same camera

parameters (Ki, Ri and ti), where Ki are the intrinsic

parameters, Ri is the orientation and ti is the position.

The task of bundle adjustment is to minimize the deviation

between 2D measured and reprojected points in L2 norm.

The formulation is stated here

min
Ki,Ri,ti,Xj

∑

ij

(xij − x̂ij)
2 . (5)

To find a minimum to this formulation, an iterative non-

linear optimization method e.g. Levenberg-Marquardt can be

used.

For further camera geometry details and bundle adjustment

explanations please refer to e.g. [17], [18].
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Fig. 4. Simulated bundle adjustment reprojection errors using zero, one,
two or three false corners. It can be seen that the addition of a false corner
increases the reprojection errors.
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Fig. 5. The standard deviation of depth data as a function of amplitude
data. This function has been fitted using the non-linear optimization.

III. CORNER SELECTION SCHEME

In the real scenes it is obvious that there are usually

features which do not represent true 3D points, e.g. lying

at occlusion boundaries, caused by specular highlights or

curved surfaces. However, one of the underlying Bearing-

Only SLAM or SfM assumptions is that the scene is rigid,

which means that features are not expected to change their

position within the scene. The map management imple-

mented (e.g. in MonoSLAM) can prune some of these bad

corners, but using the depth information a further feature

validation can be performed.

Our proposed corner selection scheme contains three

stages:

• detect the best 2D corners using the amplitude data,

• compute the 3D cornerness measure at the found 2D

corner position using the depth measurements, and

• if the 3D cornerness measure is above a threshold, then

fit a plane to the depth data.

In the first stage, Fast feature detector [19] is applied to

the amplitude data. The best Fast features are then found

using the Shi and Tomasi [20] cornerness measure.

With the second stage we decide whether it is a good 3D

corner. To evaluate this, the standard matrix of image partial
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Fig. 6. Detection of new features using the real image and depth information. The upper row is a planar feature, the middle row depicts a good 3D
feature, and the bottom row displays a bad 3D corner. The first column displays the amplitude data provided by the camera. The second column depicts
measured depth information w.r.t. the world frame. The third column represents the visualization of the eigen decomposition of the 3D feature gradient
matrix. The structure tensor visualization of a good 3D corner is expected to have a sphere like structure, as displayed in the last column of the middle
row. The other two features did not pass the 3D cornerness measure.

gradients:

Si =

(
I2
x IxIy

IxIy I2
y

)
(6)

is extended to three dimensions as proposed in [21]

Sd =




D2

x DxDy DxDz

DxDy D2
y DyDz

DxDz DyDz D2
z



 , (7)

using the depth instead of the visual information. To

compute the 3D cornerness measures, two operators have

been compared. Rohr presented in [21] a survey on 3D

operators, and we selected the following one:

Op(x, y, z) =
det S

trace S
→ max, (8)

because it is related to the Shi and Tomasi [20] 2D cor-

nerness measure. Another 3D cornerness measure presented

by Arseneau and Cooperstock in [22] is based on the eigen

decomposition of the Sd matrix, where this matrix is called

the structure tensor. If a corner does not pass this stage, it

can still be a good corner, possibly lying in the plane.

In the third stage, a plane is fitted to the depth data at the

2D corner position found using RANSAC to test whether this

is a planar feature. We propose fitting the plane using two

criteria. The first is the distance of points to the fitted plane,

and the second one is the angle between the direction of a

new feature and the plane normal vector.

For the robust plane fit, the distance function between the

plane P and an array of measured depth points is computed

as follows

~n = (P2 − P1) × (P3 − P1)

di = |(Xi − P1) ~n|, i = 1 . . .m

where the plane P is a matrix defined column-wise by

three points, ~n is the plane normal vector, Xi are the

measured points, and di are the distances.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental setup as well

as simulated and real data results in three parts. Firstly, we

show on a simulated example that every false corner used

in the model of the scene increases the SfM inaccuracies.

Secondly, the measurement principle as well as the properties

of the ToF camera are briefly explained. Thirdly, the relation

between the amplitude and standard deviation in distance

information is estimated. Finally, our proposed feature ex-

traction scheme is evaluated.
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A. Simulated Bundle Adjustment Example

To prove how false corners influence the SfM results, an

unknown structure of a simulated scene and virtual camera

motion has been recovered. The simulated scene is depicted

in Fig. 3.

The evaluation criterion is the reprojection error f as

defined in ( 3). The empirical results are displayed in

Fig. 4, where it is obvious that every additional false corner

introduces inaccuracies to the reprojection errors.

We think that an additional comparison of how false

corners influence estimation results using a SLAM approach

is not necessary. As presented in e.g. [23], SfM using

Levenberg-Marquardt optimization can be used as ground-

truth.

B. ToF Camera

In this work, we have been using the state of the art Swiss

Ranger
TM

SR30001 ToF camera (see Fig. 2). The measure-

ment principle of this camera is based on the amplitude-

modulated, near infrared (NIR) light, which uses NIR light

pulses, and leads to the phase difference distance mea-

surement principle as explained e.g. in [16]. This principle

is complex and includes systematic (e.g. distance-related,

amplitude-related, fixed pattern noise) and non-systematic

(e.g. signal-to-noise ratios, rays reflection, light scattering)

errors, which are further described in [16], [24]. Except these

errors the camera has a limited field of view (horizontal

47.5◦, vertical 39.6◦), a small resolution (176x144pix), and

a depth range up to 7.5m.

The SR3000 ToF camera is using a perspective-projection

camera model [25] for the amplitude data. A model of the

distance information has not been used, but the distances

have been calibrated for every single pixel separately [16].

The amplitude and distance calibration has been performed

by the camera manufacturer.

Before capturing real data sequences, the camera integra-

tion time, which influences the measurement precision and

read-out speed, has to be adjusted. In this paper, the camera

integration time is adjusted to 7200µs, and the read-out speed

then equals approximately 21Hz. A faster read-out speed

would be suitable to reduce the motion blur. However, a

faster read-out leads to a higher signal-to-noise ratio (SNR),

and this introduces inaccuracies in feature extraction [26].

The ToF camera is calibrated by the producer, so the intrin-

sic parameters (optical center and focal length) are known,

and only the distortion coefficient needs to be adjusted.

The distance-related error calibration is also provided by the

producer, and it is done by reducing the measurement offset

using an acquired Fixed Pattern Noise matrix [16].

C. Static Depth Noise Modelling

To estimate the relation between the amplitude and the

standard deviation in depth measurements as proposed by

Kahlmann in [16], we perceived multiple measurements of

a white wall using several integration times (from 200µs

1Produced by Mesa Imaging - http://www.mesa-imaging.ch.

Fig. 7. An example of a ray reflection on a metallic surface, which is one
type of the possible non-systematic ToF camera errors.
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Fig. 8. Plane fitted to the depth data using RANSAC.

to 9800µs). The obtained relation between amplitude and

standard deviation in distance measurement for our camera

is depicted in Fig. 5.

D. Feature Extraction

To prevent inserting bad corners into the model of the

scene, we have implemented three validation stages, as ex-

plained in Sec. III. This sub-section presents the experimental

results using these three stages.

1) 2D Corner Extraction: The first validation stage is

used to detect the 2D corner in the amplitude data. As

displayed in the first row of Fig. 6(a), this validation stage

works well for most of the real corners.

However, we typically find occluded features as e.g. the

last row in Fig. 6(a). Using the ToF camera amplitude data,

other kind of bad features can also occur, e.g. caused by rays

reflection as depicted in Fig. 7. Davison et al. introduced

in [3] a map management algorithm, but this usually does

not prune these bad features.

2) 3D Corner Extraction: To improve the feature extrac-

tion, we have implemented two similar 3D feature cornerness

measures, as described in Sec. III. Both of these measures

use the depth gradient information, but the one proposed by

Rohr in [21] proved to be less depth distinctive.

In this validation stage, only the structure tensor [22]

cornerness measures have been used. The visualization of

a good 3D corner is expected to be similar to a sphere like
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structure [22]. A real good corner is depicted in the second

row of Fig. 6(c).

Our criterion for a good 3D corner (see the second row of

Fig. 6) is that the differences of the three computed structure

tensor eigen values have to be lower than a predefined

threshold. Using this criterion, planar features and bad 3D

corners are typically pruned (see the first and third row of

Fig. 6).

3) Planar Corner Extraction: The third stage is needed,

when a new real feature is pruned by the 3D cornerness

measure, but it can lie in a plane. To evaluate this stage, a

robust plane fit using RANSAC has been implemented, and

an example of the fitted plane is depicted in Fig. 8.

Using this RANSAC plane fit, planar features are detected

and initialized as depicted in the first row of Fig. 6(a).

V. CONCLUSION

The contribution of this paper is a three-stage corner selec-

tion scheme, which enables the rejection of false features ly-

ing at occlusion boundaries or curved surfaces, for example.

Our corner selection scheme takes advantage of a recently

introduced ToF camera, which can measure scene amplitude

and depth directly. We showed that our contribution can

help SLAM and SfM approaches to select good corners for

tracking.

A. Future Work

Current ToF cameras have several drawbacks (e.g. field of

view, noisy data) due to the complex measurement principle,

but enhanced sensors have already been announced. It is

obvious that this camera can ease the parallel localization

and mapping task significantly, and we think that it is an

interesting sensor for indoor robotics navigation and many

future applications.

The fusion of ToF amplitude and depth information for

parallel localization and mapping has been addressed in the

work of Weingarten in [27]. The conclusion is that the ToF

camera is less suited for localization and mapping than the

rotating laser scanner due to its noisy data and limited field of

view. However, with the advantage of excluding false corner

points this conclusion may now be revised.

In an offline 3D pose estimation and mapping approach

introduced by May et al. in [24], the Iterative Closest

Point algorithm has been used to register point clouds from

different perspectives, and KLT or SIFT features has been

applied to amplitude data. We think that our proposed corner

selection scheme could increase the performance of May et

al. approach.
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