
On the Performance of Random Linear Projections for
Sampling-Based Motion Planning

Ioan Alexandru Şucan and Lydia E. Kavraki

Abstract— Sampling-based motion planners are often used to
solve very high-dimensional planning problems. Many recent
algorithms use projections of the state space to estimate
properties such as coverage, as it is impractical to compute
and store this information in the original space. Such estimates
help motion planners determine the regions of space that merit
further exploration. In general, the employed projections are
user-defined, and to the authors’ knowledge, automatically
computing them has not yet been investigated. In this work,
the feasibility of offline-computed random linear projections
is evaluated within the context of a state-of-the art sampling-
based motion planning algorithm. For systems with moderate
dimension, random linear projections seem to outperform
human intuition. For more complex systems it is likely that
non-linear projections would be better suited.

I. INTRODUCTION
Sampling-based motion planners [1]–[5] are a class of

algorithms capable of quickly solving the motion planning
problem – finding a continuous path between a starting state
and a goal state for a robotic system under certain constraints
– even for high-dimensional systems [6]–[10]. Sampling-
based algorithms can be only probabilistically complete [11],
[12], which means if a solution exists, it will eventually be
found, but if no solution exists, termination is not guaranteed.
These algorithms implement a search in the continuous state
space X of the robotic system. X is assumed to be a
differentiable manifold consisting of all states x the robotic
system could be in. In a state space of dimension m, a single
element x ∈ X , x = (x1, ..., xm) completely describes the
state of a robotic system. This means that each component
xi, i ∈ {1, ...,m} defines a parameter of the system; such
parameters can be joint angles, positions in space, velocities,
accelerations, etc. It is often the case that systems of practical
interest have high-dimensional state spaces. For instance, a
typical manipulator arm has 6 or 7 degrees of freedom [13].
Considering only the position and velocity at each joint, a
12- or 14-dimensional state space is generated. In multi-
robot coordination [14] or modular robots [15], as more
robots/modules are added, the dimensionality grows even
higher.

When considering dynamic constraints of the robotic
system, such as bounds in accelerations, it is typical that
sampling-based planers perform the search by growing a tree
of motions [7]–[10], [16]–[24] in X , towards the goal region.

This work supported in part by NSF IIS 0713623 and Rice University
Funds. Equipment used for the development of this work includes equipment
purchased by CNS-0421109 ADA in partnership with Rice University, AMD
and Cray.

I. A. Şucan and L. E. Kavraki are with the Department of Computer
Science, Rice University, USA {isucan, kavraki}@rice.edu

The search progresses iteratively by building a tree with the
root at the initial state of the robotic system, as shown in
Figure 1. At each iteration, a state in the tree is selected
and expanded from, towards some direction. Under certain
conditions, this process can cover the state space X and find
a state in the goal region, if one exists. An important issue is
guiding the growth of this tree. This in fact has been one of
the important subjects of recent research in sampling-based
motion planning.

A. Guiding Tree Expansion

When searching high-dimensional state spaces using a tree
of motions, deciding which part of the tree merits further
exploration is not trivial. Various approaches have been tried
to address this issue. To name a few, Rapidly-exploring
Random Trees (RRTs) expand towards randomly produced
states [7], [17], Expansive Space Trees (ESTs) attempt to
detect less explored regions and expand starting from them
[8], [16], Utility Trees attempt to evaluate the utility of
expanding from a specific state [21].

Fig. 1. Example tree of motions grown in the state space X .

This work concentrates on recent algorithms [6], [9], [10],
[22] which employ a projection of the state space X to
make the decision of where to continue the tree expansion
from. We denote this projection space by E(X). Using E(X)
instead of X avoids the issue of exponential blow-up when
evaluating space properties such as coverage. This is an
approximation based on the assumption that if the tree of
motions covers E(X) well, it also covers X well. It has
not been proven when or whether this assumption holds for
projections that have been used in the literature. Previous
work has empirically shown that the tree exploration can be

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 2434

guided towards the goal region for some user-defined pro-
jections [6], [10], [22]. However, automatically computing
these projections remains an open question.

The advantage of having automatically computed projec-
tions is the potential of finding projections that are better
than what the user provides – in the sense that planners will
run faster, the possibility of using different projections for
different environments and simplifying the input to motion
planning algorithms. Moreover, as the complexity of robotic
systems increases, human intuition may fail to produce any
useful projections. For the purpose of this work, we will
make the simplifying assumption that a projection is specific
to the robotic system only and does not depend on the
environment.

B. Contribution

In [10] we showed that simple intuitive projections are
suitable for approximating state space coverage for the
purpose of motion planning. Using the robot’s workspace
as a projection has also been shown to be beneficial [22].
In this work, we evaluate the possibility of using random
linear projections for the same purpose and we present an
offline method to automatically generate such projections.
The feasibility of these random linear projections is com-
puted based on comparisons with user-defined projections.
In particular, we consider systems of varying complexity to
determine how a sampling-based motion planner performs
when using random linear projections as opposed to user-
defined projections. The planner we use for this purpose
is Kinodynamic Motion Planning by Interior-Exterior Cell
Exploration (KPIECE) [10], an effective state-of-the-art al-
gorithm that was designed to make use of such projection
spaces. The results presented in this work are generalizable
to other algorithms that employ such projections [6], [9],
[22].

II. METHODOLOGY

A. Using a Projection to Estimate State Space Coverage

When guiding the tree expansion based on a low-
dimensional projected space E(X), the question that arises
is how the coverage in this lower dimensional space is
computed. To the authors’ best knowledge, this is in general
done by discretizing E(X). Many options for discretization
exist: hierarchy of cells [6], grid [9], [10], [22], triangulation
[25]. We call an element of a discretization a cell. Once the
projection space E(X) is discretized, the tree of motions is
projected onto it, as it is being grown. The coverage of a
cell is typically a function of the cell’s size and the number
of states on the projected tree that are contained in that cell.

B. Generating a Random Linear Projection

The projections we are attempting to use are random linear
projections. The inspiration to use such projections came
from a theorem by Johnson and Lindenstrauss [26] which
states:

For any ε > 0, any n points from a l2 metric can be
embedded in a l2 metric of dimension O(log n/ε2), with (1+
ε) distortion.

The proof of this theorem uses random linear projections
to achieve this bound. Intrigued by this result, we decided
to investigate the performance of random linear projections
in sampling-based motion planning.

We will assume a tractable dimension for our projection
space; low-dimensional projection spaces are preferred: 2- or
3-dimensional. Using 4- or 5-dimensional projection spaces
is possible, but computationally expensive by today’s stan-
dards. For the purposes of this work, dimensions of k = 2
and k = 3 were used. Next, k vectors in Rn, where n > k
is the dimension of the space we are projecting from, are
randomly sampled according to a normal distribution (with
mean 0 and variance 1). Other methods of sampling, such
as uniform sampling, would work as well. The k vectors
already constitute a projection, but to avoid representing
the same information in multiple dimensions, the Gramm-
Schmidt process is ran to make the k vectors orthonormal.
For a state x ∈ X , a random linear projection V,

V = (v1, ...,vk), vi ∈ Rn,

the projection of x is p ∈ Rk, with

p = VT x,

assuming all vectors are column vectors.

C. Evaluating a Projection’s Score
Since the number of projections we could attempt to eval-

uate is large, a fast method of approximating a projection’s
feasibility is needed. As mentioned in Section I-B, we use
KPIECE for evaluating projections. KPIECE is ran twice
on a trial environment (defined in Section III-A) with a
relatively low time limit (shown in Table IV), using the
projection to be evaluated as input. If both times a solution
was obtained, this projection is considered valid and its score
is set to be the average runtime of the two runs. Otherwise,
its score is considered to be infinity. This is not an accurate
method of comparing projections, it is only intended to give
a rough idea of which projections are potentially good. As it
will be shown later, this is adequate for the purposes of this
paper.

D. Searching for a Good Random Linear Projection
Finding a good random linear projection proceeds as

described in Algorithm 1.
We generate Nattempts random linear projections, evaluate

them and sort them according to their score. We analyze the 3
projections (referred to as R1, R2 and R3) with lowest score
and the projection with median score (referred to as M) in
more detail. We do so by running the planner in different
environments, with the same random linear projection, and
averaging the runtime over Nruns runs, where Nruns is large
enough to obtain statistical significance. These are in fact
the values that are compared against running the planner on

2435

the same environments with user-defined projections. Other
than the projection, no other inputs to the motion planner
are changed. This requires that the same projection works
on different environments, so we can keep the projection
computation offline. Running the motion planner multiple
times on multiple environments with all projections would
be computationally expensive and the authors do not believe
this is needed. This is why we look at the top 3 projections.
The median is also analyzed to evaluate whether or how
much the quality of the projections decreases.

Algorithm 1 FINDPROJECTION(k, dim)
k // the dimension of the random linear projection

dim // the dimension of the space projecting from

for i = 1 to Nattempts do
// generate projection as in Section II-B

for j = 1 to k do
vj = RANDOMVECTOR() // with normal components

end for
V← (v1, ...,vk) // as in Section II-B

RUNGRAMMSCHMIDT(V)
score[i]← EVALUATEPROJECTION(V) // as in Section II-C

end for
(R1, R2, R3) ← the 3 projections with lowest score
M ← the projection with median score
return (R1, R2, R3, M)

III. EXPERIMENTS

KPIECE uses physics models for the robots it plans the
motion for. For this purpose, the Open Dynamics Engine
(ODE) [27] (version 0.10) physics simulation library is used.
A set of ODE models of increasing complexity are defined
in the following section. We consider a robot more complex
if it has a higher dimensional state space.

A. Employed Models

Car Robot. A model of a car was created. The model is
fairly simple and consists of five parts: the car chassis and
four wheels. Since ODE does not allow for direct control of
accelerations, desired velocities are given as controls for the
forward velocity and steering velocity (as recommended by
the developers of the library). These desired velocities go
together with a maximum allowed force. The end result is
that the car will not be able to achieve the desired velocities
instantly, due to the limited force. In effect, this makes the
system a second order one. The state space for this model is
X = {x | x = (x, y, θ, v, θ̇)}, where (x, y) denote the center
of the car chassis, θ is the car’s orientation and v is the
velocity along the orientation. The user-defined projection
U1 is the (x, y) coordinates of the center of the car chassis.
The environments the system was tested in are shown in
Figure 2.

Blimp Robot. The second robot that was tested was a
blimp robot [28]. The motion in this case is executed in
a 3D environment. This robot is particularly constrained in

Fig. 2. Environments used for the car robot (car-1, car-2, car-3). Start and
goal configurations are marked by “S” and “G”. The trial environment was
car-3.

its motion: the blimp must always apply a positive force
to move forward (slowing down is caused by friction), it
must always apply an upward force to lift itself vertically
(descending is caused by gravity) and it can turn left or
right along the direction of forward motion. Since ODE
does not include air friction, a Stokes model of drag was
implemented for the blimp. The state space for this model
is X = {x | x = (x, y, z, θ, v, ż, θ̇)}, where (x, y, z) denote
the center of the blimp, θ is the blimp’s orientation and v is
the forward velocity along the orientation. The user-defined
projection U1 is the (x, y, z) coordinates of the center of the
blimp. The environments the system was tested in are shown
in Figure 3.

Fig. 3. Environments used for the blimp robot (blimp-1, blimp-2, blimp-3).
Start configurations are marked by “S”. The blimp has to pass between the
walls and through the hole(s) at the center of the wall(s), respectively. The
trial environment was blimp-3.

Modular Robot. The model for this robot was imple-
mented in collaboration with Dr. Mark Yim1, and character-
izes the CKBot modules [15]. Each CKBot module contains
one motor. An ODE model for serially linked CKBot modules
has been created [23]. The task is to compute the controls for
lifting the robot from a vertical down position to a vertical
up position for varying number of modules, as shown in
Figure 4. Each module adds one degree of freedom. The
controls represent torques that are applied by the motors
inside the modules. The difficulty of the problem lies in
the high dimensionality of the control and state spaces as
the number of modules increases, and in the fact that the
maximum torques of the motors in the modules are only able
to statically lift approximately 5 modules. This is why the
planner has to find swinging motions to solve the problem.
The state space for a chain modular robot with m modules
is X = {x | x = ((x1, ẋ1), ..., (xm, ẋm))}, where xi is
the angle position of module i, i ∈ {1, ..,m}. Because this

1Dr. Mark Yim is with the Department of Mechanical
Engineering and Applied Mechanics, University of Pennsylvania
yim@grasp.upenn.edu

2436

system proved to be a more difficult one [23], we define
multiple user projections.

The projection U1 is a 3-dimensional one, the first two
dimensions being the (x, z) coordinates of the last module
(x, z is the plane observed in Figure 4) and the third
dimension, the square root of the sum of squares of the
rotational velocities of all the modules. This projection is
a difficult one to find, and was first suggested in [29]. A
simpler (more intuitive) projection is U2: a 2-dimensional
projection that takes the first two angles of the chain (the
first two components of a state). The intuition behind why
this projection could work is that the first two angles that it
considers cause the most variance in the positions of the tip
of the chain. The environments the system was tested in are
shown in Figure 4.

(a) (b)

Fig. 4. (a) Start and goal configurations. (b) Environments used for the
chain robot (example shown with 7 modules). In the case without obstacles,
the environments are named chain1-x where x stands for the number of
modules used in the chain. In the case with obstacles, the environments are
named chain2-x. The trial environments were chain1-x.

B. The ODE State Space

Physics simulation libraries usually define models in terms
of bodies and joints. This is the case for ODE as well. In
order for motion planning to be performed, the state of the
robot (in its ODE world) needs to be retrieved or set. For
this purpose, we define the ODE state of a robot to be the
set of parameters that completely describe each robot body
in the ODE world. For each body, we need the following 13
parameters:

• (px, py, pz), position of the body
• (ṗx, ṗy, ṗz), linear velocity of the body
• (rx, ry, rz, rw), quaternion describing the orientation of

the body
• (ax, ay, az), angular velocity of the body.
The set of ODE states makes up the ODE state space,

XODE. Although XODE is usually of higher dimension than
X , there is a one-to-one correspondence between states
in XODE and states in X . This is so because XODE may
contain redundant information. For instance, in an articulated
manipulator, joints constrain certain degrees of freedom.
However, specifying all the parameters for each body part
of the robot implies a state space where each rigid body is
free-flying (XODE). Of course, the actual states of the robot
exist in a usually lower dimensional manifold X , where the

manipulator links are connected by joints (i.e., joints are not
broken).

The ODE state spaces for the models defined in Section III-
A are of dimensionality 13 · 5 = 65 (we have 5 ODE bodies)
for the car, 13 · 1 = 13 (we have one ODE body) for the
blimp and 13 · m (we have m ODE bodies) for the modular
robot.

Since we are aiming to use random projections, having
redundant information is a plus. This is why we in fact
generate random linear projections from XODE to a low-
dimensional space instead of X to a low-dimensional space.
This increases the chances that a random projection will
account for pertinent components in the state definition.

C. Results and Discussion
All runtimes reported in this section are the result of

running KPIECE with different projections using a shared-
memory parallel implementation on an 8-core machine, with
16 GB RAM and a 10 minute time limit. For each value,
KPIECE was run Nruns = 50 times; the best 2 and worse
2 results (in terms of runtime) were dropped; the runtime of
the remaining 46 runs was averaged to produce the reported
value. All values are reported in seconds. The value of
Nattempts in Algorithm 1 was 150.

TABLE I
User-defined & 8 random linear projections (E) for the car robot. For each

environment, runtime (s) / succsess rate are reported.

E k car-1 car-2 car-3
U1 2 7.15 / 1.00 8.84 / 1.00 15.90 / 1.00
R1 2 5.77 / 1.00 7.93 / 1.00 14.62 / 1.00
R2 2 6.02 / 1.00 11.13 / 1.00 37.13 / 1.00
R3 2 5.58 / 1.00 8.82 / 1.00 24.03 / 1.00
M 2 6.30 / 1.00 8.82 / 1.00 17.72 / 1.00
R1 3 8.04 / 1.00 10.51 / 1.00 31.99 / 1.00
R2 3 9.27 / 1.00 12.84 / 1.00 37.06 / 1.00
R3 3 6.22 / 1.00 7.76 / 1.00 31.12 / 1.00
M 3 6.25 / 1.00 9.43 / 1.00 28.82 / 1.00

TABLE II
User-defined & 8 random linear projections (E) for the blimp robot. For

each environment, runtime (s) / succsess rate are reported.

E k blimp-1 blimp-2 blimp-3
U1 3 4.04 / 1.00 7.86 / 1.00 49.24 / 1.00
R1 2 6.69 / 1.00 132.76 / 0.78 307.61 / 0.13
R2 2 5.42 / 1.00 15.92 / 1.00 273.59 / 0.43
R3 2 4.12 / 1.00 12.10 / 1.00 136.74 / 0.59
M 2 10.67 / 1.00 125.47 / 0.93 371.79 / 0.26
R1 3 3.50 / 1.00 6.78 / 1.00 74.68 / 0.98
R2 3 3.43 / 1.00 7.10 / 1.00 38.50 / 1.00
R3 3 3.52 / 1.00 30.36 / 1.00 181.11 / 0.65
M 3 3.56 / 1.00 6.79 / 1.00 64.55 / 1.00

Tables I, II and III show the averaged runtimes of KPIECE
using different projections. The user projections were defined
by the authors. We tried our best to define projections that
work well. We tried different combinations of using the
velocity of the car and blimp in their projections but the
best results we obtained were with the simplest projections:
the workspace. For the modular robot, defining a more

2437

TABLE III
User-defined & 8 random linear projections (E) for each modular robot.

For each environment, runtime (s) / succsess rate are reported.

N E k chain1-N chain2-N
5 U1 3 3.11 / 1.00 3.14 / 1.00

U2 2 3.24 / 1.00 20.71 / 0.76
R1 2 3.63 / 1.00 29.67 / 0.87
R2 2 3.72 / 1.00 51.22 / 0.46
R3 2 3.33 / 1.00 24.66 / 1.00
M 2 3.64 / 1.00 86.40 / 0.61
R1 3 5.80 / 1.00 26.68 / 1.00
R2 3 5.10 / 1.00 9.20 / 1.00
R3 3 5.90 / 1.00 21.68 / 1.00
M 3 6.63 / 1.00 17.40 / 1.00

6 U1 3 3.26 / 1.00 3.34 / 1.00
U2 2 24.35 / 0.96 85.41 / 0.33
R1 2 150.18 / 0.78 41.48 / 0.13
R2 2 108.01 / 0.65 N/A / 0.00
R3 2 3.79 / 1.00 19.42 / 1.00
M 2 25.18 / 1.00 109.74 / 0.65
R1 3 7.94 / 1.00 7.68 / 1.00
R2 3 8.48 / 1.00 8.59 / 1.00
R3 3 10.10 / 1.00 60.09 / 1.00
M 3 38.65 / 1.00 131.63 / 0.39

7 U1 3 3.92 / 1.00 4.55 / 1.00
U2 2 120.40 / 0.04 N/A / 0.00
R1 2 10.06 / 1.00 74.95 / 0.67
R2 2 108.20 / 0.20 N/A / 0.00
R3 2 15.33 / 1.00 146.62 / 0.35
M 2 74.60 / 0.74 409.50 / 0.02
R1 3 19.88 / 1.00 30.32 / 1.00
R2 3 18.62 / 1.00 23.27 / 1.00
R3 3 34.67 / 1.00 41.67 / 1.00
M 3 72.12 / 1.00 138.81 / 0.11

8 U1 3 6.04 / 1.00 30.35 / 1.00
U2 2 N/A / 0.00 N/A / 0.00
R1 2 N/A / 0.00 N/A / 0.00
R2 2 31.14 / 0.17 N/A / 0.00
R3 2 62.67 / 0.13 N/A / 0.00
M 2 155.81 / 0.28 N/A / 0.00
R1 3 197.12 / 0.09 N/A / 0.00
R2 3 39.49 / 1.00 52.70 / 0.96
R3 3 162.81 / 0.76 N/A / 0.00
M 3 212.03 / 0.26 182.23 / 0.26

9 U1 3 37.24 / 1.00 133.84 / 0.48
U2 2 N/A / 0.00 N/A / 0.00
R1 2 N/A / 0.00 N/A / 0.00
R2 2 N/A / 0.0 N/A / 0.0
R3 2 N/A / 0.0 N/A / 0.0
M 2 N/A / 0.0 N/A / 0.0
R1 3 185.90 / 0.67 144.51 / 0.93
R2 3 139.60 / 0.41 228.04 / 0.13
R3 3 201.33 / 0.43 257.78 / 0.76
M 3 N/A / 0.0 N/A / 0.0

10 U1 3 214.85 / 0.41 656.44 / 0.02
U2 2 N/A / 0.00 N/A / 0.00
R1 2 N/A / 0.0 N/A / 0.0
R2 2 N/A / 0.0 N/A / 0.0
R3 2 N/A / 0.0 N/A / 0.0
M 2 N/A / 0.0 N/A / 0.0
R1 3 N/A / 0.0 N/A / 0.0
R2 3 N/A / 0.0 N/A / 0.0
R3 3 N/A / 0.0 N/A / 0.0
M 3 N/A / 0.0 N/A / 0.0

TABLE IV
The percentage of the projections that were considered valid by the

evaluation procedure in Section II-C. Maximum allowed time per trial
environment is presented as well.

2 dimensions 3 dimensions
Trial environment valid time (s) valid time (s)
car-3 52.7% 90.0 78.0% 90.0
blimp-3 83.3% 90.0 64.7% 90.0
chain1-5 100.0% 90.0 100.0% 90.0
chain1-6 84.0% 90.0 86.7% 90.0
chain1-7 42.7% 90.0 47.3% 90.0
chain1-8 10.0% 90.0 15.3% 90.0
chain1-9 0.7% 200.0 3.3% 200.0
chain1-10 0.0% 600.0 0.0% 600.0

complicated projection (U1) seems to help more [29]; for
comparison purposes, we also define a simple projection
(U2). The R1, R2, R3 and M projections were obtained as
discussed in Section II-D, by projecting from the ODE state
space XODE, with k = 2 and k = 3 (2- and 3-dimensional
projection spaces).

We mark in bold-face the random linear projection we
believe was best among the 8 tried for each robot model. We
observe that in the case of the car and the blimp, the random
projections actually do a little better than our user-defined
projections. This in itself represents an impressive result,
considering the simplicity of the process through which the
random projections were found. In addition, looking at Table
IV, we notice that the percentage of random linear projec-
tions that produce some results, as defined in Section II-C,
is very high (above 50%). This means that for systems of
moderate dimension, finding a good random linear projection
should be an easy task. Further evidence supporting this
observation is the fact that the M projections also perform
well. Of course, there may be other potentially non-linear
projections that could do better.

Looking at Table III, where we test systems with higher-
dimensional state spaces, random linear projections do not
perform as well as the non-linear user-defined projection
U1, which took us a long time to find. For 5, 6 and 7
modules we do however get results that are no worse than
5 times slower, with 100% success rate. For 8 modules, we
get similar results in terms of runtime but the success rate
drops under 100%. At 9 modules an interesting result is
observed. With the hard to find U1 projection, the success
rate is 0.48 (48%) for the chain2-9 environment while with
the best found random linear projection, the average runtime
is almost the same but the success rate is much higher: 0.93
(93%). At 10 modules, the process in Section II-D did not
find any projections, even though we increased the allowed
runtime for the trial environment (as shown in Table IV).
However, even with the U1 projection, we obtain poor results
(low success rate). The fact that the runtime is limited to
10 minutes is likely the primary cause for this low success
rate. It is possible that using a higher-dimensional projection
would also improve results. Comparing with the user-defined
projection U2, random linear projections do significantly
better.

2438

Given that the results for the modular robot could be im-
proved, if comparing to U1, we also looked at the possibility
that taking our projection from X instead of XODE could be
better. We used the algorithm in Section II-D projecting from
X , but the results did not improve. In fact, we found no
valid random linear projections for more than 7 modules with
this setup. This leads us to believe that indeed representing
parameters for all the robot’s body parts is a better approach.

Overall, for systems with moderate dimension it is likely
that easy to find random linear projections will perform well.
As the dimension increases, this is no longer the case, but
we still get reasonable results.

IV. CONCLUSIONS AND FUTURE WORK

We present an offline method to automatically compute
usable, low-dimensional projections for sampling-based mo-
tion planners. To the authors’ knowledge, this work is a
first step in acknowledging the need to carefully look at
such projections. A number of existing planners rely on
such projections in one way another, but these projections
are in general defined by hand. An exception to this is
[30], where PCA [31] is used locally, in narrow passages,
to attempt to find a good direction of growth for a RRT.
This is different from what we propose in the sense that our
projection is global and can be used at every step of the
planning algorithm. This has the advantage that it allows
faster computation, but may be less accurate for systems
where the dimensionality is high. In such cases, a local
approach can provide better results.

Last but not least, we do not claim linear projections
are sufficient. As our experiments show, a used-defined
non-linear projection (U1 for modular robot, Section III-A)
performs better than randomly produced linear projections.
This is a clear indication that more complex, non-linear
projections should be considered as well.

ACKNOWLEDGEMENTS

The authors would like to thank Mark Moll for his helpful
suggestions and Marius Şucan for help with the pictures in
this document.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, June 2005.

[2] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[3] S. Lindemann and S. M. LaValle, “Current issues in sampling-based
motion planning,” in Robotics Research: The Eleventh International
Symposium. Berlin: Springer-Verlag, 2005, pp. 36–54.

[4] S. Carpin, “Randomized motion planning - a tutorial,” International
Journal of Robotics and Automation, vol. 21, no. 3, pp. 184–196, 2006.

[5] K. I. Tsianos, I. A. Şucan, and L. E. Kavraki, “Sampling-based robot
motion planning: Towards realistic applications.” Computer Science
Review, vol. 1, no. 1, pp. 2–11, August 2007.

[6] A. M. Ladd and L. E. Kavraki, “Motion planning in the presence
of drift, underactuation and discrete system changes,” in Robotics:
Science and Systems, Boston, MA, June 2005, pp. 233–241.

[7] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[8] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,” International Journal
of Robotics Research, vol. 21, no. 3, pp. 233–255, March 2002.

[9] G. Sánchez and J.-C. Latombe, “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking,” International
Journal of Robotics Research, vol. 6, pp. 403–417, 2003.

[10] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in International Workshop on the
Algorithmic Foundations of Robotics, Guanajuato, Mexico, December
2008.

[11] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan, “Ran-
domized query processing in robot path planning,” Journal of Com-
puter and System Sciences, vol. 57, no. 1, pp. 50–60, 1998.

[12] A. Ladd and L. Kavraki, “Measure theoretic analysis of probabilistic
path planning,” IEEE Transactions on Robotics and Automation,
vol. 20, no. 2, pp. 229–242, 2004.

[13] “Barrett technology, inc.” http://www.barrett.com.
[14] J. Bruce and M. Veloso, “Real-time multi-robot motion planning with

safe dynamics,” Multi-Robot Systems: From Swarms to Intelligent
Automata Volume III, pp. 159–170, 2005.

[15] J. Sastra, S. Chitta, and M. Yim, “Dynamic rolling for a modular
loop robot,” International Journal of Robotics Research, vol. 39, pp.
421–430, January 2008.

[16] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in IEEE International Conference on Robotics
and Automation, vol. 3, April 1997, pp. 2719–2726.

[17] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation, 2000, pp. 995–1001.

[18] E. Plaku, K. Bekris, B. Chen, A. Ladd, and L. Kavraki, “Sampling-
based roadmap of trees for parallel motion planning,” IEEE Transac-
tions on Robotics and Automation, vol. 21, no. 4, pp. 597–608, Aug.
2005.

[19] L. Jaillet, A. Yershova, S. M. LaValle, and T. Siméon, “Adaptive tuning
of the sampling domain for dynamic-domain RRTs,” in International
Conference on Intelligent Robots and Systems, 2005, pp. 2851–2856.

[20] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “Resampl: A
region-sensitive adaptive motion planner,” in International Workshop
on the Algorithmic Foundations of Robotics, New York City, July 2006.

[21] B. Burns and O. Brock, “Single-query motion planning with utility-
guided random trees,” in IEEE International Conference on Robotics
and Automation, Rome, Italy, April 2007, pp. 3307–3312.

[22] E. Plaku, M. Y. Vardi, and L. E. Kavraki, “Discrete search leading con-
tinuous exploration for kinodynamic motion planning,” in Robotics:
Science and Systems, W. Burgard, O. Brock, and C. Stachniss, Eds.
Atlanta, Georgia: MIT Press, June 2007, pp. 326–333.

[23] I. A. Şucan, J. F. Kruse, M. Yim, and L. E. Kavraki, “Kinodynamic
motion planning with hardware demonstrations,” in International
Conference on Intelligent Robots and Systems, September 2008, pp.
1661–1666.

[24] ——, “Reconfiguration for modular robots using kinodynamic mo-
tion planning,” in ASME Dynamic Systems and Control Conference,
Michigan, Ann Arbor, October 2008.

[25] E. Plaku and L. E. Kavraki, “Impact of workspace decompositions
on discrete search leading continuous exploration (dslx) motion plan-
ning,” in IEEE International Conference on Robotics and Automation,
Pasadena, CA, May 2008, pp. 3751–3756.

[26] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings
into a hilbert space,” Contemporaty Mathematics, vol. 26, pp. 189–206,
1984.

[27] http://www.ode.org.
[28] A. M. Ladd and L. E. Kavraki, “Fast tree-based exploration of

state space for robots with dynamics,” in Algorithmic Foundations
of Robotics VI. Springer, STAR 17, 2005, pp. 297–312.

[29] A. M. Ladd, “Direct motion planning over simulation of rigid body
dynamics with contact,” Ph.D. dissertation, Rice University, Houston,
Texas, December 2006.

[30] S. Dalibard and J.-P. Laumond, “Control of probabilistic diffusion
in motion planning,” in International Workshop on the Algorithmic
Foundations of Robotics, Guanajuato, Mexico, 2008.

[31] I. Jolliffe, Principal Component Analysis, 2nd ed. New York, USA:
Springer, 2002.

2439

