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Abstract— In this paper, we propose a novel approach for the
visual navigation of unmanned aerial vehicles (UAV). In contrast
to most available methods, a single perspective camera is used to
estimate the complete set of 3D motion parameters undergone
by the UAV. We establish robust point correspondences between
consecutive image frames captured by the flying vehicle. Based
on the estimated motion parameters as well as the reconstructed
relative scene depth, a visual steering algorithm has been
realized so that the UAV is capable of avoiding obstacles during
navigation. The advantage of our approach lies in the fact
that decision for collision avoidance is made immediately, by
using purely visual information extracted from the live video
sequence. Furthermore, it eliminates the time–consuming steps
of explicit obstacle recognition and global reconstruction of
the environment. Experimental evaluation has been carried out
based on computer simulation as well as using a commercially
available flying drone. It has been shown that the UAV is
capable of autonomous navigation in unknown environments
with arbitrary configuration of obstacles.

I. INTRODUCTION

Biological systems use mainly visual information for

navigation in the external world. In combination with other

sensor modalities, vision–based navigation strategies have

been applied for a number of autonomous systems. The fre-

quently used sensors include laser range finder, IMU (inertial

measurement unit), GPS, stereo or omni–directional vision

systems. For the autonomous navigation of small–size UAVs,

it is usually not possible to use many sensors due to weight

or upload limit of the vehicles.

Shown in Figure 1 is the AR–100 UAV that we have

used for the development of visual navigation strategies. For

this UAV, only a GPS, a barometer sensor, an IMU and a

perspective camera are kept on board, as the weight limit

is 1 kg. GPS and barometer are mainly used for position

and height holding. The IMU is used for attitude holding.

The sensor used mainly for the purpose of visual navigation

is a single perspective camera. GPS has a lower resolution

and works only outdoors. Without spatial information of the

environment, GPS cannot be used for obstacle avoidance.

Neither is IMU used for navigation purpose, as our vision–

based algorithm can calculate the 3-DOF (degree of freedom)

orientation of the UAV in real time.

The AR–100 UAV is capable of vertical take–off and

landing as well as autonomous flight. It has a diameter of 1 m

and can fly at a speed up to 5 m/s. It can be tele–operated

either by a human pilot via a remote controller (in the form
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of 3D joysticks) or by a controlling software running on a

laptop which serves as the ground station of the UAV. In both

cases the controlling commands are sent via an interface built

upon radio communication and the control laws are carried

out internally on the drone. Image sequences captured by the

camera mounted on the UAV are also sent via radio link to

the ground station.

Currently, the main challenge such a UAV system faces is

the lack of efficient mechanisms for avoiding obstacles on

the 3D path of its mission. If the UAV can be controlled

completely via software by the ground station, it will then

be able to navigate with full autonomy. Our first step toward

this goal is to develop a visual steering approach capable of

determining the most favorable flying direction during the

course of UAV navigation.

II. MAIN CONTRIBUTION

In the literature, several authors have implemented ob-

stacle avoidance strategies based on simple 2D balance of

optical flow field, by calculating the divergence of optical

flow between selected directions (e.g. left and right) using

complex vision sensors [1] [2]. The divergence is then

used to guide ground vehicles in a corridor. Here the only

obstacles are the left and right walls. Although performing

well in the corridor environment, simple 2D balance of

optical flow fails to work in more complex environments.

It has been found that the 2D balancing strategy may drive

the robot straight toward walls and into corners, as it ignores

the frontal obstacle detection and avoidance [3]. In addition,

navigation of ground vehicles is a less challenging problem,

because their movement space is 3 DOF.

For ground vehicles as well as some air vehicles such

as helicopters without weight limit, another approach is to

use additional sensors such as stereo or laser range finder to

measure distance [4] [5] , which eases the problem of obsta-

cle avoidance substantially. Furthermore, most of the current

visual navigation approaches focus on visual odometry or

SLAM (simultaneous localization and mapping). Although

these approaches share some common visual processing steps

with our approach, our objective is neither localization nor

mapping but visual steering for safe navigation. Moreover,

we have implemented advanced strategies for achieving

fast and robust visual processing results. In this sense, we

contribute to the state of the art not only with perception but

also with decision generation from visual information.
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Fig. 1. AR–100 with camera mounted underneath the flight board.

In our point of view, both advanced visual processing and

effective guidance strategy are needed for air vehicles with

6–DOF motion space. Due to environmental factors, such

vehicles can have irregular rotations resulting e.g. from fast

3D turns. Navigation in such complex environment would

require the ability to sense all obstacles in front of the robot’s

path and to determine in an intelligent way the most favorable

flying direction based on the location and configuration of

these obstacles. To achieve this, it is important to recover

the full set of motion parameters including both heading and

rotation information of the UAV.

Based on above considerations, we develop in this work a

new approach toward autonomous visual navigation of UAV

that works in general unknown environments with arbitrary

configuration of obstacles. In particular, immediate decision

of the next flying direction is made once the current image

has been taken by a single perspective camera.

III. ROBUST MOTION ESTIMATION

Suppose we have two video frames captured by a camera

between time t and t + 1. Let the brightness of an image

point located at p(x, y) be f(x, y, t). Let’s use fx and fy to

represent the spatial image gradient and ft for the temporal

image derivative, the local smoothness constraint of optical

flow can be expressed as

ǫ(v) =
∑

(x,y)∈w

(fxu + fyv + ft) = 0 , (1)

where v = [u, v]
T

is the image flow of a 2D point p and

w a small neighborhood around p . The flow vector v can

hence be solved as

v = G−1b , (2)

with

G =
∑

(x,y)∈w

[

fx
2 fxfy

fxfy fy
2

]

, (3)

and

b = −
∑

(x,y)∈w

[

ftfx

ftfy

]

. (4)

This is the central concept of the Lucas–Kanade algo-

rithm [6]. We have made a pyramidal implementation of this

algorithm, which starts by creating a pyramid of downscaled

versions of the original images. Image flow is computed

in several iterative steps beginning with the smallest scale

images and then refined in consecutive steps.

A. Robust image flow measurement

In modeling optical flow, one assumes that the bright-

ness of a point does not change between frames. As a

consequence, illumination changes may corrupt the velocity

estimates and cause outliers in the set of image flow points.

We can imagine that flow vector for some points with

stronger brightness variations will be less accurate. In the

following, we refer to such points as outliers. To remove

these outliers resulted from the inherent deficiency of the

optical flow model, we use two different approaches.

Suppose we have calculated the flow vectors {vk} for a

set of 2D image points {pk} in frame f t. This means that

we can find another set of image points {qk} in frame f t+1

with

qk = pk + vk . (5)

Our first approach is to define a motion constraint and

try to find those scene points whose motion patterns are

inconsistent with the motion of the camera.

We parameterize the camera motion between the two

frames using a 2D rotation R, a 2D translation t and a scale

factor s so that

qk = sRpk + t . (6)

Using a least–squares estimation method [7], the three pa-

rameters {s,R, t} can be determined uniquely. For each

point pair (pk, qk), a distance measure dk is calculated,

where

dk = ||(pk + vk) − (sRpk + t)||2 . (7)

This distance measure determines whether the 2D velocity

of each point agrees with the motion model specified by

{s,R, t}. If a point pair (pk, qk) has a large distance, the

image flow vk can hence be regarded as an outlier.

Though it is possible to use a fixed threshold to separate

the inliers from outliers, e.g. by setting a fixed percentage

of flow points as inliers, we apply a different strategy. Based

on the distance {dk}, we build a distance histogram h(j),
with j = 0, . . . , L, where

L = max{dk} . (8)

Now the problem becomes finding a threshold κ so that

points whose dk is bigger than κ will be identified as outliers.

This is a general two–class pattern classification problem.

An optimal threshold κ can be found automatically by

maximizing the probability density function of the interclass

difference. For details of implementation, please refer to an

earlier work of Yuan [8].

By using an automatic distance threshold, those outliers

with bigger distance to the motion model can be removed

successfully. In order to achieve more accuracy in the esti-

mated 3D motion parameters, we use also a second approach,

which is done through backward calculation of flow vectors.

This means, a backward flow vectors v̂k is calculated for

each point qk in frame f t+1. Hence we can get another set

of points p̂k with

p̂k = qk + v̂k . (9)
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If a flow vector vk is correct, it should satisfy

ek =|| pk − p̂k ||= 0 . (10)

The final inliers are selected by choosing those points

whose ek < 0.1 pixel and whose motion agrees with the

motion model defined by {s,R, t}.

Based on the above two principles, we are able to achieve

an optimal measurement of image flow. The measurement

is optimal in the sense that now a data set {(pi, q i)} with

maximal accuracy of correct point correspondences between

f t and f t+1 is achieved.

B. Motion and depth estimation

Suppose that the 2D image flow is caused solely by a 3D

rigid motion between the camera and the scene. Let’s denote

the motion parameter with a rotation vector ω = [rx, ry, rz]
T

and a translation vector T = [tx, ty, tz]
T

, the following two

equations hold for a perspective camera with a unit focal

length [9]:

ui =
tx − xtz

Zi

+ [−rxxy + ry(x2 + 1) − rzy] , (11)

vi =
ty − ytz

Zi

+ [−rx(y2 + 1) + ryxy + rzx] , (12)

where Zi is the depth of a 3D point P i and v i = [ui, vi]
T

is the image flow calculated at the projected 2D point pi =
[x, y]

T
. As can be seen, the translation part of the motion

parameter correlates with the point depth, while the rotation

part does not. Without knowledge of the exact scene depth,

it is only possible to recover the direction of T . For this

reason, the recovered motion parameters are 5 DOF and the

recovered depth Zi is a relative scene depth.

The problem of motion and depth recover from 2D point

correspondences is an ill–posed problem. To achieve a solu-

tion, extra constraints have to be sought after. One possible

constraint is to use the epipolar geometry, by finding the

essential or fundamental matrix [10] first and then recovering

the motion parameters. We take a similar linear minimization

approach using a spherical representation of the scene points,

as suggested by [11]. The advantage is, after the parameter

T and ω are calculated, the relative depth of the detected

3D scene points can be obtained immediately as

Zi =
1 − (m i

TT )2

m i
T(ω ×T ) −m i

TT
. (13)

where m i is a spherical representation of the 2D scene point

pi, i.e., m i is the vector [x − cx, y − cy, f ]
T

normalized to

a unit length. Here the parameter f is the focal length, cx

and cy the coordinate of the principal point of the camera.

In order to achieve accurate estimation, we use RANSAC to

initialize and refine the 5 DOF motion parameters.

IV. VISUAL STEERING

Once the motion parameters as well as the relative scene

depths are calculated, we now obtain the heading direction

of the UAV together with the location of a set of 3D scene

points relative to the UAV. As each image point pi in f t

Fig. 2. Directional distance sensor and the depth clusters.

corresponds to a 3D point P i with a depth Zi, the depth

value indicates the time–to–contact of a possible obstacle

in the environment. Our algorithm for obstacle detection

does not try to reconstruct the global geometry of the

environment, as is the case in the state–of–the–art SLAM

approaches. Instead, we use a concept built upon directional

distance sensors to find the most favorable moving direction

based on the distance of nearest obstacles in several viewing

directions. This is done through a novel idea of cooperative

decision making from visual directional sensors.

A. Directional distance sensor

A single directional sensor is specified by a direction d

and an opening angle α which defines a viewing cone from

the camera center. All the scene points lying within the cone

define a single set of depth measurements given by

D(d , α) = {Zi|A(P i,d) ≤ α/2} , (14)

where A(P i,d) is the angle between the two vectors, which

can be computed as

A(P i,d) = arccos{
P i

Td

||P i|| ||d ||
} . (15)

According to the depth measurements, the set D can be

divided into several depth clusters. Each cluster K is a subset

of D with at least N scene points, which satisfy

∀Zi ∈ K : |Zi − d(K)| < λ d(K) , (16)

where d(K) is the mean distance of scene points belonging to

K. The parameter λ and N are chosen depending on the size

of the viewing cone and the density of depth measurements.

Shown in Figure 2 on the left is a directional distance

sensor with the set of detected scene points lying within the

viewing cone. Based on equation 16, the set is divided into

three depth clusters, as is shown on the right of Figure 2.

Now we can find the subset Kκ whose distance to camera

is shortest, which is represented by the bottom cluster in

Figure 2.

By examining the field of view using several directional

sensors, we obtain a set of nearest depth clusters Kκi
whose

distance to camera is dκi
. We encode each dκi

in a fuzzy

way as near, medium and far. Based on the nearness of

the encoded distances, preference values can be defined for

possible motion behaviors.
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Fig. 3. Five directional distance sensors arranged symmetrically around
the heading direction

TABLE I

DECISION RULES FOR HEIGHT CONTROL.

ty Distance to ground
near medium far

up keep speed decrease speed decrease speed

zero increase speed keep speed decrease speed

down increase speed increase speed keep speed

B. Visual steering strategies

In the current visual steering algorithm, three control

strategies are considered: height control, view control and

horizontal motion control.

A directional distance sensor looking downwards is used

for the height control of the UAV. It determines the nearness

of obstacles on the ground. In addition, we take into account

the vertical component of the estimated motion parameter,

which is ty . The direction of ty can be up, zero or down.

The goal is to let the UAV maintain approximately constant

distance to the ground and avoid collision with both ground

and ceiling. This is performed by setting the rising/sinking

speed of the UAV. Decision rules for the height control of

the UAV can be found in Table I.

The view control ensures that the camera is always looking

in the direction of flight. This is done by setting the rotation

speed around the vertical axis of the UAV.

The main visual steering is the horizontal motion control.

It has five possible behaviors: left (←), forward and left (տ),

forward (↑), forward and right (ր) and right (→). Once the

flying direction is determined, motion of the UAV is achieved

by setting the forward motion speed, left or right motion

speed and turning speed, which are defined in the interface

protocol of the AR–100 UAV respectively as pitch, roll and

yaw speed. The yaw control is necessary because we want to

ensure that the camera is aligned with the direction of flight

for maximal performance of obstacle avoidance. Hence a

left motion will also result in modifying the yaw angle by

rotating to the left via the view control.

For the horizontal motion control, we have altogether five

directional distance sensors arranged symmetrically around

the estimated heading direction. This corresponds to a sym-

metric division of the visual field into far left, left, front,

right and far right, as is shown in Figure 3.

For every fuzzy distance value obtained from each of

the five horizontal directional sensors, we define a set

TABLE II

PREFERENCE RULES FOR THE FRONTAL DISTANCE SENSOR.

Distance Behavior Preferences
← տ ↑ ր →

far AC AC FA AC AC

medium AC FA AC FA AC

near FA AC NA AC FA

TABLE III

PREFERENCE RULES FOR THE FAR–LEFT DISTANCE SENSOR.

Distance Behavior Preferences
← տ ↑ ր →

far FA AC AC AC AC

medium AC FA AC AC AC

near NA AC FA AC AC

of preference rules for all possible motion behaviors. The

preference values for each behavior are: favorable (FA),

acceptable (AC), not acceptable (NA). An example of rules

for the frontal sensor is given in Table II. A further example

is shown in Table III for the far–left sensor.

After evaluation of the output of all the five directional

sensors, the motion behavior with the highest preference is

selected. Suppose the fuzzy distance value of the five direc-

tional sensors (from left to right) are near, far, far, medium

and near, the preference values for each motion behavior can

be determined individually, as shown in Table IV. If we take

all the sensors into account by adding all the preferences

appeared in each column, the final preference value for each

motion direction can be obtained, as is shown in the second

line of Table IV from bottom. It can be seen that the highest

preference value is achieved for the forward direction. Hence

the safest flying direction is moving forward.

V. EXPERIMENTAL EVALUATION

The proposed approach has been implemented using C++

on a SAMSUNG M60 laptop. Beside the whole visual steer-

ing approach, we have also implemented software interfaces

for bilateral communication with the flying drone and the

grabbing of transmitted video images. While the control laws

incorporating system dynamics are implemented directly

on the drone by the UAV manufacturer, the controlling

commands for avoiding detected obstacles are calculated by

our visual steering algorithm and sent via radio transmission

to the drone. In order to test the proposed approach, we

TABLE IV

EXAMPLE OF DECISION MAKING BASED ON ALL DISTANCE SENSORS.

Sensor Distance Behavior Preferences
← տ ↑ ր →

far left near NA AC FA AC AC

left far AC FA AC AC AC

front far AC AC FA AC AC

right medium AC AC FA AC AC

far right near AC AC FA AC NA

All 1 NA 1 FA 4 FAs 5 ACs 1 NA
sensors 4 ACs 4 ACs 1 AC 4 ACs

Decision ×
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(a) (b)

Fig. 4. Experiment in the s-shaped corridor.

Fig. 5. The maze–like environment.

have carried out experiments in both simulated and real–

world environments. We vary the illumination in the simu-

lated environment to have lighting changes, which appear

usually in the real world. Considering speed, the system

can achieve a frame rate of 15 to 20 frames/s, including

robust image flow calculation, motion and depth estimation

as well as the fuzzy determination of flying direction based

on the output of several directional sensors. The accuracy of

the recovered motion parameters, which is calculated using

simulated environment where the ground truth is available,

is in average 1o for rotation and 2o for the heading direction.

The first visual steering experiment is carried out in an

s–shaped corridor. Shown in Figure 4(a) is an image of

the corridor. A top view of the whole corridor is shown in

Figure 4(b) in color red. After the motion and scene depth

have been calculated from two initial images, the UAV is set

to move in the direction determined by our visual steering

algorithm. Then the UAV captures the next frame, determine

its next moving direction and moves accordingly. During

the experiment, we have recorded the trajectory of the UAV.

Shown in Figure 4(b) in color green is the recorded trajectory

of the UAV. As demonstrated by this green curve, the vehicle

is able to navigate through the corridor without any collision.

Further experiments are carried out in a maze–like envi-

ronment with general configuration of obstacles, as is shown

in Figure 5. In the beginning, the vehicle is placed in an

arbitrary position within the maze. The flying direction is set

to the viewing direction of the camera, i.e., the forward di-

rection. Several experiments with different starting positions

show that the vehicle is capable of navigating safely within

the maze by finding its way automatically. Particularly, it

is able to regulate both flying direction and height to avoid

collision with walls, corners, building, the ground, the arch

etc. Some images showing the path of the drone during its

navigation are shown in Figure 6.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Autonomous navigation in the maze. From (a) to (b): The vehicle
has found free space for navigation and change its flying direction toward
the arch to avoid collision with walls and corners. From (b) to (c) and to (d):
Flying through the arch. From (d) to (e): Begin to turn around the corner.
(f): After having turned around the corner, flying along the wall and adjust
height due to the level of terrain and the obstacle floating in the air.

In addition to the corridor and maze experiments, we have

also performed real–word experiments. Several experiments

have been carried out in an indoor environment. As illus-

trated in Figure 7 and 8, one can see a T–shaped corridor

with isolated obstacles in it. Besides the static obstacles, the

doors may be closed and opened so that the environment

is unknown. This is indeed an environment with general

configuration of obstacles.

The first experiment is to keep the platform in the available

free space while avoiding different obstacles. We show in

Figure 7 the visual path of the flying platform together with

the decision made by our algorithm with red arrows. Note

that the different lengths of these arrows, which is set in

inverse proportion to the distance of obstacles. A longer

arrow indicates a shorter distance to the detected obstacle

and hence a faster speed needed by the UAV for flying away

from it. As can be seen, the platform is kept in the middle

of the free space. It turns to the left when it comes near to

the table.

A second experiment carried out in the same environment

is to fly the platform manually along the left side and see how

the system will react. We show in Figure 8 the results. As can

be seen, it always tells the system to fly in the forward–right

direction as the distance to obstacles on the left is smaller

than that on the right.
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Fig. 7. First experiment in the indoor environment.

Fig. 8. Second experiment in the indoor environment.

VI. CONCLUSION

Providing flying robots with autonomous visual navigation

capabilities for real–world operations is a challenging prob-

lem with high application potentials. In this work, we realize

a systematic approach for the accurate recovery of motion

and depth parameters from robust point correspondences and

propose an advanced approach for the visual steering of UAV.

Our vision–based approach requires no additional sensor

information and can work in real–word environment with

general configuration of obstacles. In our point of view, we

have developed a novel approach for the visual navigation

of light–weight UAV, which is not only new but also unique.

As demonstrated by several examples, the UAV is capable of

safe navigation in unknown 3D environments using entirely

visual information. Currently we are working parallel on the

detection of independently moving objects based on visual

motion information. With the estimated motion parameters

of both the camera and the individually moving objects, we

will be able to integrate our current visual steering approach

for the avoidance of both static and dynamic obstacles.
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