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Abstract— This paper presents a novel approach, compressive
mobile sensing, to use mobile sensors to sample and recon-
struct sensing fields based on compressive sensing. Compressive
sensing is an emerging research field based on the fact that
a small number of linear measurements can recover a sparse
signal without losing any useful information. Using compressive
sensing, the signal can be recovered by a sampling rate that
is much lower than the requirements from the well-known
Shannon sampling theory. The proposed compressive mobile
sensing approach has not only the merits of compressive
sensing, but also the flexibility of different sampling densities
for areas of different interests. A special measurement process
makes it different from normal compressive sensing. Adopt-
ing importance sampling, compressive mobile sensing enables
mobile sensors to move adaptively and acquire more samples
from more important areas. A motion planning algorithm is
designed based on the result of sparsity analysis to locate areas
of more interests. At last, experimental results of 2-D mapping
are presented as an implementation compressive mobile sensing.

I. INTRODUCTION

Nowadays, mobile robotic sensors are playing an im-

portant role in sensor networks due to their locomotion

capability [1], [2]. Unlike static sensors, which are deployed

in advance with limited sensing capability, mobile sensors

can move adaptively to specified areas of interests to acquire

desired information under a controlling mechanism. This

mobile robotic sensors are competent for quite a few fields,

including environmental monitoring [3], surveillance [4],

robotic mapping [5], etc. In this paper, an efficient robotic

mapping method is proposed, compressive mobile sensing,

which rebuilds a 2-D spatial map based on mobile sensors

in unknown areas.

In robotic mapping, different areas of interests always

require different mapping resolutions [2], that is, lower

resolutions in simple-shaped areas, and higher resolutions

for complicated areas, leading to different sampling densities.

With the mobility and a careful designed motion planning,

the proposed compressive mobile sensing approach enables

mobile sensors to sample different areas with different sam-

pling densities. They are flexible to collect more samples

at areas of more interest, and less samples from areas of

less interest. The difference in sampling densities takes best

advantage of samples, so as to make the compressive mobile

sensing more efficient to rebuilt a spatial map.

In addition to the motion flexibility, compressive mobile

sensing also has merits of compressive sensing [6] on sam-
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Fig. 1. A robotic mapping scenario using compressive mobile sensing: A
mobile robot is driven to map the hallway on the 8th floor of the EERC
Building at Michigan Tech. The circles represent sensing positions, and the
dash lines with arrows show a possible trajectory of the mobile sensor.

pling and reconstructing information. Compressive sensing

performs an under-sampling method to collect samples,

unlike most Bayesian updating models, [7], [8], which lie

on the prior information. Haupt [9] reconstructs sensing field

without any prior knowledge using an emerging compressive

sensing framework [10], [11]. The theory of compressive

sensing demonstrates that a sparse signal can be recovered

by a linear measurement process under some conditions

by solving convex optimization problems, so that no prior

information is needed in advance. Unlike the traditional

“sample and process” way, this approach acquires signal in

the condensed way directly.

Challenges of compressive mobile sensing include several

respects. Since the proposed compressive mobile sensing is

based on compressive sensing, sampling and reconstructing

the spatial map is the first concern. In compressive sensing,

signals are under sampled randomly and reconstructed by

solving non-linear problems [12], [13]. In compressive mo-

bile sensing, a special measurement model is established so

that some important areas are emphasized by higher sampling

densities. In this paper, an efficient method to sample the

environment will be presented, where importance sampling

is applied. Since encoders from mobile sensors cannot always

provide accurate motion information due to some unexpected

reasons, how to correct motion errors is another challenge,

which is going to be addressed and solved in this paper.

Fig. 1 shows a typical application of compressive mobile

sensing for robotic mapping. Adopting compressive mobile

sensing approach, only a small amount of samples is re-

quired, and the map is reconstructed by solving non-linear

problem. In this figure, corner and door areas are recog-

nized as sparsity after a sparsity analysis, so they require

higher sampling densities for better reconstructed result. A

carefully designed motion planning is applied so that the

mobile sensor can move adaptively to collect more samples
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Fig. 2. Sparse representation of under sampling model: y = Φx = ΦΨs.

from those areas. Finally, motion errors are corrected based

on a correlation based method. In the following sections,

compressive mobile sensing is illustrated in details, and an

experimental result is shown at last.

II. COMPRESSIVE MOBILE SENSING FRAMEWORK

The proposed compressive mobile sensing provides an

efficient way to sample and reconstruct signals. Compressive

mobile sensing is developed based on compressive sensing,

and enhanced by the importance sampling, so it outperforms

compressive sensing. In compressive sensing, a signal is

reconstructed from under-sampled data under a sparse do-

main. In compressive mobile sensing, additional samples are

collected adaptively by adopting importance sampling. More

samples are drawn from the non-zero entries in the sparse

representation to improve the reconstruction, so that collected

samples can be best used, and signals can be reconstructed

efficiently.

In compressive mobile sensing, an under-sampling pattern

is first established to collect samples. In this under-sampling

process, signals are sampled at a much lower rate than the

Nyquist frequency. Compressive sensing theory guarantees

that signal can be recovered with the incomplete information.

Fig. 2 shows the under-sampling pattern, where y is a

measurement vector, and x is the original signal. A random

measurement matrix Φ is chosen to project a signal from

higher dimension to lower dimension. In Fig. 2, s is a

sparse representation of x, where most entries are zero.

Compressive sensing tells that s can be solved by solving

a convex optimization problem. According to the linear

relationship between x and s, the original signal x can be

reconstructed. Up to here, we have exactly followed the

steps of compressive sensing in sampling and reconstructing

signals, [11].

The sparse representation s contains only a few non-

zero entries, which contains most useful information, and

more samples are collected adaptively from these areas in

compressive mobile sensing, while in compressive sensing,

signals are just under-sampled and reconstructed. We apply

the importance sampling idea to gather more samples from

these non-zeros entries. Importance sampling is developed

in probabilistic field to draw samples according to the

target distribution so that samples would finally converge

to the target distribution. In compressive mobile sensing,

importance sampling is applied in another way.

Note that the non-zero entries in the sparse signal s

contain most useful information, and more samples from

(a) 1D signal. (b) Target distribution.

(c) Even sampling density. (d) Importance sampling.

(e) Compressive sensing. (f) Compressive mobile sensing.

Fig. 3. One dimensional signal sampling and reconstruction.

these areas would benefit the signal reconstruction, so it

is very convincible to regard s as the target distribution,

and non-zero entries as targets. Before applying importance

sampling, we have two concerns. First, s is not any real

signal that can be sampled directly. But from the linear

relationship between x and s in Fig. 2, it is possible to

sample x according to the sparsity of s. Second, a pre-

requisite should be considered, how to acquire the sparsity of

s. So a sparsity analysis is carefully designed in compressive

mobile sensing. Once the sparsity information is acquired,

importance sampling can be applied to guide mobile sensors

to collect more sample from these sparsity locations.

What we have discussed above is focusing on 1-D situa-

tion, however, in a 2-D problem, which is always modeled as

a matrix, the situation is much more complicated. The 2-D

signal is vectorized into a long vector so that the model in

Fig. 2 can be used. The sparsity of a 2-D signal is different

from 1-D situation. It is not necessary for a 2-D signal

to regard non-zero entries as sparsity like what we have

discussed on 1-D case. Consider a 2-D indoor map in Fig. 1,

the sparsity is defined in another way. Note that most areas

are simple sharped like walls, only door and corner areas

are relatively complicated. These door and corner areas are

exactly areas requiring more samples, because a wall may

be well described by only two points, but a corner deserve a

lot more than that. So it is reasonable to define the sparsity

as door and corner areas.

Compressive mobile sensing is formulated to sample and

reconstruct a 1-D scenario shown in Fig. 3. In Fig. 3(a),

most information concentrates at convex areas, so Fig. 3(b)

is regarded as the target distribution. A normal sampling

method samples the signal evenly in Fig. 3(c). However, it

is not efficient, because most flat area in Fig. 3(b) contains

useless information. According to importance sampling, the

two convex areas deserve more samples to approximate the

target distribution. Fig. 3(d) shows a sampling pattern with

less samples from flat area and more sample from target

areas.

Starting with compressive sensing, Fig. 3(e) shows an

under-sampling pattern, where samples are thrown away at

some random chosen areas. This condensed sampling way

guarantees an efficient sampling way, but no emphasize on

the target areas. Note that this 1-D signal in Fig. 3(a) appears

sparse, so s and x in (2) are in the same domain. With the

small amount of samples in compressive sensing, the sparsity

analysis can be done to roughly locate targets. And more

3071



samples can be drawn adaptively from these areas, forming

Fig. 3(f). In Fig. 3(f), flat areas are paid less attention with

random samples, and target areas have been emphasized.

In the method of compressive mobile sensing, samples are

best used, that is, condensed samples with emphasize on

important areas.

III. 2-D SPATIAL MAP RECONSTRUCTION

In this section, compressive mobile sensing is discussed

in details for 2-D map reconstruction. In the subsections

followed, we will show why the compressive mobile sensing

outperforms the normal compressive sensing in several as-

pects, including sampling and reconstructing signals, adap-

tive movement, etc. A mobile robot equipped with a laser

scanner is used to implement compressive mobile sensing.

The basic working process of compressive mobile sensing is

shown in Algorithm. 1, in which each term is expanded into

a corresponding subsection in the following parts.

Algorithm 1 Algorithm for mobile compressive sensing

A. S ampling and reconstructing signals

B. S parsity analysis

C. Adaptive movement

D. Image S titching

E. Repeat A, B, ,C and D until it is done

A. Sampling and Reconstruction

The first step of compressive mobile sensing is to apply

compressive sensing to sample and reconstruct signals. In

this subsection, compressive mobile sensing is compared

with compressive sensing on how to sample and recover 2-

D mapping signals. In compressive sensing, two domains

of the signal to be reconstructed are involved, a sampling

domain and a sparse domain. In the proposed compressive

mobile sensing, sampling and recovering mapping signal

is formulated in a similar way, however, the two domains,

sampling and sparse domains, are combined into one domain

in compressive mobile sensing.

An indoor environment is modeled as a 2D grid-based

map, m =
{

mx,y

}

, where (x, y) denotes the coordinates of a

grid and a binary variable mx,y denotes its occupancy, either

the grid is occupied or it is free. We first adopt the normal

approach of compressive sensing to sample and reconstruct

the 2-D map, and then an improved method for sampling

and reconstructing is discussed.

1) Reconstruction from Random Samples under Haar

Wavelet Domain: The signal is sampled in spatial domain,

and recovered under Haar Wavelet domain, under which most

natural signals are sparse, including the spatial map signal.

A random projection is involved to sample the signal in

compressive sensing, so a random measurement matrix is

generated as follows:

a). Vectorize m into a 1D vector, m = {mi}, i =

1, 2, . . . ,N, where N is the total number of points;

b). Draw M samples uniformly from m mutually ex-

cluded, denoted as (s) =
{

si = mli

}

, i = 1, 2, . . . ,M

where li is the ith samples index in m;

c). Generate an M ×N measurement matrix, Φ, where

for each entry in Φ,
{

φi, j = 1, j = li
φi, j = 0. j � li

(1)

Each of the measurements is a linear combination of the

all elements in the sensing range with only one coefficient

equal to one and others zero. The measurement matrix Φ

is established by randomly sampling m under the spatial

domain.

Once measurements are collected, a sparse basis should be

selected, so that norm approach can be applied for recovery.

Most natural signals are compressible under discrete wavelet

basis, which describes the jumping rather the smoothness of

the signal. Therefore, discrete Haar wavelet basis is selected

as the sparse basis. Denote Ψ as the selected sparse basis,

so m can be expressed under Ψ, that is m = Ψz, where z is

a sparse representation of m. The compressive sensing mea-

surements can be expressed by y = Φm = ΦΨ−1z, similar

to Fig. 2. The sparse coefficient vector z is recovered from

y by solving (2), where total variation(TV) minimization

algorithm is applied to recover the grid-based map.

ẑ = arg min
z
‖z‖TV s.t. y = ΦΨ−1z (2)

Let ‖z‖TV be the TV norm of object z. And the map signal

can be solved by the linear projection between spatial domain

and Haar Wavelet domain.

The aim to express the original signal in another domain

is to make it sparse so that it can be reconstructed. However,

we have some interesting observations against this domain

transform. First, signal is sampled under a sparse domain.

What we reconstruct is a binary map containing only 1

and 0 values. Each time the laser scanner is used to collect

samples, there exists only one clear curve separating 1 value

and 0 value parts of the map apart. Second, Haar Wavelet

transition damages the sparsity actually. In spatial domain,

the map contains only two values 1 and 0, and they have

clear boundary. However, under Haar Wavelet domain, values

of signal representation would vary in a relative big range,

leading that when we consider the sparsity of signal, much

information would be neglected. Moreover, when TV-norm

method is applied to recover the map, which is to fill

gaps of signals, the domain we are concerned is the spatial

domain rather than the wavelet domain. Motivated by these

observations, a unique sampling and reconstruction method

is carefully designed in the following subsection.

2) Direct Reconstruction: 2-D TV-norm reflects the con-

sistency of a figure. If a sparse basis is selected to transform

the sensing data m into another domain for reconstruction,

the 2-D TV-norm would account for consistency of the signal

under that sparse domain rather than the original signal under

spatial domain. Therefore, the signal should be reconstructed

directly by minimizing the 2-D TV-norm of m in (3) to

achieve better reconstruction performance.

x̂ = arg min
x
‖x‖tv s.t. y = Φ1x (3)
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where the measurement matrix Φ1 is also different from the

random measurement matrix in Equ. (1).

Note that the mobile sensor used to rebuild the spatial

map is laser scanner, which is a quite special sensor that

senses the environment by shooting a bunch of laser rays

from the sensor with equal angle interval. So random samples

are not easy to be covered even in its sensing range. A mobile

sensor has to adjust several times to cover all the random

preselected samples in its sensing range at a certain sensing

position. That is a waste of time and energy. So we carefully

design the measurement matrix according to the special type

of sensor. For a sensing position, samples are drawn in the

corresponding grids along the laser rays, so Φ1 is designed

to specify the star-shaped sampling pattern as follows:

a). Vectorize m into a 1D vector, m = {mi}, i =

1, 2, . . . ,N, where N is the total number of points;

b). Draw samples (grids covered) along rays emitted

from the sensor, denote N as the total sample

number, and project them in the 1D vector;

c). Generate an M×N measurement matrix, Φ1 accord-

ing to the sample locations and projections similar

to Φ.

In description above, sampling and reconstructing are dif-

ferent from those in the normal compressive sensing method.

Only one domain is selected in order to take better advantage

of TV-norm method; a particular sampling pattern is used

rather than random projection to suit to a particular sensor.

So in compressive mobile sensing, a more efficient sampling

and reconstructing process is applied.

B. Sparsity Analysis for Importance Sampling

After signals are sampled and reconstructed, more samples

are about to be drawn to emphasize important areas. For

a 1-D sparse signal, non-zeros entries contain most useful

information. If more samples are collected from these areas,

the signal would be better recovered. This is similar to the

idea of importance sampling; the only difference is that one

involves real signals, while the other is in probabilistic field.

In the following paragraphs, we are focusing on how to de-

fine and analyze the sparsity of a 2-D mapping problem, and

how to apply the probabilistic method, importance sampling,

to real maps.

1) Sparsity Analysis: It is easy to define the sparsity of

a 1-D signal as the non-zeros entries. However, the sparsity

of a 2-D map is expressed in another way. For an indoor

environment, most areas are smooth like walls, and some

areas contain doors or at corner are relatively complicated.

We denote these relatively complicated areas as the sparsity

of the 2-D signal, which require more attention. However,

the sparsity would be different from the point of view of

a mobile sensor. Some areas, usually door or corner areas,

would be blocked from mobile sensor at different sensing

positions, and some other door or corner areas may be sensed

very well. So the sparsity is redefined as blocked areas from

mobile sensors.

Different methods can be applied to analyze the sparsity

due to different types of mobile sensors used. One general

way is to analyze the map contour. The contour of a

map would change smoothly if the mapping information is

collected properly. Sudden changes in a contour indicates

something is missing, because mobile sensor is blocked by

some objects in the map. So the sparsity features sudden

changes in this 2-D mapping problem.

Wavelet transform is an effective method for edge detec-

tion, so it is proper to be applied to detect sudden changes.

Equ. (4) is the wavelet transform for continuous functions,

where a and b are shift and scale parameters separately in

wavelet transform, f (t) and Wψ( f (t)) are the original function

and wavelet transform based on the wavelet function ψ(t). In

our approach, the contour map can be expanded into a 1-

D signal, so a discrete wavelet transform is used by simply

changing the continuous form described in (4) to discrete

form (5), i.e. changing the integral to sum, where ψ(θ) is

defined in (6).

Wψ( f (t)) = W(a, b) =

∫ ∞

−∞
f (t)

1
√

a
ψ∗a,b

(

t − b

a

)

dt (4)

Wψ(r(θ)) = W(a, b) =
∑

θ

r(θ)ψa,b

(

θ − b

a

)

(5)

ψ(θ) =



















−1, θ = 1

1, θ = 2

0. otherwise

(6)

After this transform, the sparsity can be roughly located,

which are denoted as important areas requiring more sam-

ples. Once the important areas are located, mobile robot

moves there for more samples to approximate the target

distribution in importance sampling.

2) Importance Sampling: Importance sampling is the the-

oretical basis to make compressive mobile sensing adaptive.

In importance sampling, samples are drawn according to the

target distribution so that sampled values can approximate

target accurately. In our algorithm, a bunch of many samples

in the sensing range of mobile sensor are drawn simultane-

ously each time according to the sparsity analysis from one

of the so-called sparse areas, and this process repeat until no

more samples are needed. In this sequential process, a bunch

of sensed data is regarded as one sample in normal approach

of importance sampling.

In Equ. 7, mi denotes a set of samples collected each

time, and q(m) and p(m) are sampling and target distribution

separately. If q(m) = p(m), which means the sampling distri-

bution is the same as target distribution, samples are drawn

according to target distribution corresponding to importance

sampling. From the right term of Equ. 7, it can be seen that

each sample has even weight. Since the target distribution is

not even, different areas have been paid different attention,

i.e. important areas have been emphasized.

∫

mq(m)dm =

∫

m

(

q(m)

p(m)

)

p(m)dm =
1

n

n
∑

i=1

mi

(

q(mi)

p(mi)

)

(7)
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The 2-D mapping has been simplified to a 1-D edge

detection problem, in which only the map contour is con-

cerned, when analyzing the sparsity. The sparsity exactly

reflects areas we want to apply importance sampling. After

new samples are collected, the 2-D spatial map is updated,

and then a new round sparsity analysis and importance

sampling would be applied. Since mobile sensors are being

discussed, a motion planning to collect more samples at

desired locations is required, which is designed in next

section.

C. Motion Planning

Every sensor has limited sensing range, including the

mobile sensor used to implement compressive mobile sensing

method. When a mobile sensor is deployed in a indoor

environment to reconstruct the 2-D spatial map, it can

sample and rebuild a certain part of the whole map at each

sensing position, and it also detects areas out of the sensing

range, which would return some certain special values, like

maximum. Denote Ei = {ei
j
, j = 1, 2, · · ·} as the set of these

areas out of the sensing range in the whole recovered map

at sensing position pi. Denote Lk
i
= {li

k
, k = 1, 2, · · ·} as the

sparsity defined in last section for position pi. These two sets

are kept updated to Ei+1 and Li+1 as long as the 2-D map

are updated.

For an indoor environment like Fig. 1, we propose a

straight line moving strategy, trying to avoid unnecessary

movement, and the mobile sensor makes turns at proper

positions to cover some sparsity areas. Our basic moving

algorithm for mobile sensor is to move to cover all the

important areas Li and then move to the out-of-range areas

Ei for more exploration.

A virtual tree structure is established, and the first sensing

is regarded as the root level. Suppose the mobile sensor is

initially deployed at one known end of the indoor environ-

ment to collect mapping data, and E1 and L1 are generated.

Each element in E1 or L1 would generate a new branch. An

e j is chosen, and mobile sensor move along a straight from

the sensing position to the e j area. When the robot is moving

along the straight line, it may pass by some l j. The motion

planning requires the mobile sensor to take a turn to face a

l j when passing by. If this l j is a dead end, the mobile sensor

turns back to continue the straight line movement until the

e j is achieved; if not, a new branch will expand like the

root level, and the mobile sensor would return to the root of

this branch after this branch is explored. At a certain level,

if no e j is available, mobile sensor goes along the current

direction to cover l j as the same as above. Each element of

Li and Ei will generate a new branch, and the same moving

strategy algorithm would apply to the new branch. Once the

algorithm is done, the 2-D map is finished.

A special case should be paid more attention. The tree

structure may be damaged, if a loop occurs, which is

entirely possible to happen in a real map. Compared with the

existing map, it can be detected whether the mobile moves

to somewhere it has been. If so, the current branch would

stop, and the mobile sensor returns to the branch root. The

moving strategy would go as shown in Algorithm. 2 for each

level in the tree structure.

Algorithm 2 Moving strategy

i = current

while Ei ∪ Li � ∅ do

if Loop Detected then

End Branch ; U pdate Ei&Li

Continue

end if

if Current Branch is Done then

Return to Branch Root

Continue

end if

if Ei � ∅ then

Go S traight to e
j

i
and Cover Elements in Li

U pdate Ei&Li

Generate New Branch

else

Go S traight and Cover Elements in Li

U pdate Ei&Li

Generate New Branch

end if

end while

D. Reconstructed Map Stitching

As the mobile sensor moves, pieces of reconstructed maps

are generated, however, motion errors are involved. In this

section, a stitching methods is used to correct motion errors,

so that pieces of maps can be merged together.

Encoders of a mobile robot do not always provide accurate

distance and angle information due to uneven wheels, slippy

floors, or some enforced movement. If maps are stitched

according to the position information returned from robot,

a blent or even massing map would show. We stitch pieces

of maps together based on the encoder feedback, and correct

motion errors using a correlation-based method [14].

Each time we have a new piece of map recovered, by

comparing the overlap part between the new piece and the

existing map, maps can be merged together. Define Ω as

the whole existing map, and ω(α, β, θ) as a new piece of

map, where α, β, and θ are the coordinates and orientation

parameters from robot, telling where this piece should be

in the whole map Ω. Let ω(α + ∆α, β + ∆β, θ + ∆θ) be the

corrected new piece, and S be the overlap part between ω(α+

∆α, β+∆β, θ+∆θ) and Ω. The corrected error is obtained by

(∆a,∆b,∆θ) = arg min
∑

i

(Ωi−ω(a+∆a, b+∆b, θ+∆θ)i)
2 , i ∈ S

(8)

where i indicates every grid of the overlap part.

In summary, compressive mobile sensing performs as a

sequential process to move adaptively, sample, reconstruct,

and stitch spatial maps. Once all the maps are stitched

together, the 2-D mapping for the indoor environment is

done.
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(a) (b) (c) (d) (e)

Fig. 4. Reconstructed results comparison. 4(a): original map. 4(b):
direct reconstruction. 4(c): reconstruction under Haar Wavelet domain. 4(d):
difference between 4(a) and 4(b). 4(e): difference between 4(a) and 4(c).

IV. EXPERIMENTAL RESULTS

In this section, the compressive mobile sensing is imple-

mented in experiment. A Pioneer III mobile robot equipped

with a LMS200 laser scanner is used to sample and recon-

struct the indoor environment shown in Fig. 1. The laser

scanner is configured to cover 180◦ for each scan with

181 readings and the sensing range is set to 8000mm. The

whole map is divided into many small grids corresponding

to 62.5mm × 62.5mm each. The final map is acquired by

stitching them together.

Two sensing and reconstructing methods are compared.

Fig. 4(a) is the original map of a certain part in Fig. 1. Fig.

4(c) shows the reconstruction result from random samples

under Haar Wavelet domain, while Fig. 4(b) shows recovered

map from laser samples in star-sharp under spatial domain

by 2-D TV-norm method. Fig. 4(d) and Fig. 4(e) shows the

difference between the original one and reconstructed results

in Fig. 4(b) and Fig. 4(c). Compared with Fig. 4(e), Fig.

4(d) shows a clearer map and less noise, indicating direct

reconstruction in Fig.4(b) outperforms.

We also provide a set of typical experimental results of

sparsity analysis in Fig. 5. Suppose one set of 181 laser

readings is r(θ), θ = 1, 2, 3 . . . 181 in which the radius r is a

function of angle θ. Fig. 5(a) shows a piece of real map at

one corner of the indoor environment. Fig. 5(b) is the laser

readings of Fig. 5(a). Fig. 5(c) illustrates the discrete function

r(θ) of laser returns in Fig. 5(b). A Wavelet approach in Equ.

5 is applied to the sensing data for sparsity analysis, and Fig.

5(d) shows the the sparsity clearly.

At last, a 2-D map is shown reconstructed by compressive

mobile sensing. Fig. 6 shows the reconstructed map with

about 27% samples. The important locations, including door

areas and corners, are determined by sparsity analysis, and

the mobile sensor is guided to move there and sense more

accordingly. Compared with the original map in Fig. 1,

most information has been retained by this small amount

of samples, and the reconstructed map is good enough to

represent the original one.

V. CONCLUSION

We have proposed compressive mobile sensing approach

for robotic mapping, which use much fewer samples to

reconstruct signals. Compared with compressive sensing,

it features a more efficient way in sampling and recon-

structing desired signals adaptively and sequentially. An

(a) Original map.
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(d) Wavelet transform.

Fig. 5. Discrete wavelet transform.

Fig. 6. Rebuilt map.

unique measurement model to emphasize important areas

is established, and motion errors are corrected. Based on

a mobile platform, compressive mobile sensing technique

guarantees an automatic map reconstruction. It proves to be

an efficient approach in robotic mapping.
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