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Abstract— One of the main challenges when creating an
undergraduate introduction to robotics course is connecting
the theory taught in the lectures with the current practices of
research. The primary cause of this difficulty is an inability to
find a hardware solution that is powerful enough to run complex
cutting-edge algorithms yet inexpensive enough to be purchased
by an undergraduate class budget. An ideal system needs to
have a gentle learning curve to allow students with minimal
background in the field to get a robot up and running. Lastly,
a fleet of classroom robots needs to be easy to administrate
and maintain given the limited time of a Teaching Assistant.

Our approach is to implement a centralized server system.
In this system individual robots are inexpensive yet capable
of establishing a WiFi link to a main server so that all the
compilation and system administration, as well as much of the
computationally intensive processing, are done on that server.
We find that this solution saves both time and money and
provides an effective teaching tool. This paper describes the
hardware and software architecture of the system, and example
applications implemented by undergraduate students.

I. INTRODUCTION

For many students, an undergraduate Introduction to

Robotics course represents the first taste of what it would be

like to work in the field. Invariably, one of the main purposes

of such a class is not just to provide a basic knowledge or

content of the history and current state of robotics, but at

the same time to motivate students and instill in them an

excitement for the subject.

A primary means of achieving this important thrust is

through a hands-on laboratory experience that engages stu-

dents to think more deeply about different approaches to

solving a variety of problems faced by roboticists. We

find that laboratory experiences which lead to “moments

of discovery” after a series of trial-and-errors, off-the wall

ingenuity, and a bit of luck make all the difference in

engaging students and making them want to learn even more.

This, we believe, cannot be reproduced by lectures alone, or

even a simulator-based lab.

However, like many universities which have offered these

type of courses [1], [2], [3], [4], in the past ten years the Uni-

versity of Southern California (USC) [5] has offered a cur-

riculum which has focused more on the mechatronics rather

than the computer science aspects of robotics. For example,

previous iterations of the class — using a microcontroller-

based system — could only implement robotic movement

at the level of PWM or PID control and had no facilities

to explore more modern probabilistic approaches to motion.

Our class was structured in this way only because the

university did not possess a suitable hardware platform to

run complex algorithms. Since the course’s creation nearly

ten years ago, the lab curricula has remained fairly static,

while robotics research had progressed considerably, thus

widening the gap between what is taught in the lab and the

state-of-the-art covered in the lectures. Thus, while lectures

could easily be updated to follow the latest advances in

machine vision, probabilistic learning, simultaneous local-

ization and mapping, group robotics, sensor networks, and

neuromorphic algorithms, none of these more advanced and

computationally-intensive techniques could be tested in the

lab. In essence, the lectures were keeping up with the

forefront of research but the lab was stuck at the hobbyist

level.

Prior to our proposed solution, we used LEGO as hardware

building blocks and the relatively low-cost of $250 ($ de-

notes US dollars hereafter) although computationally limited

Handyboard featuring a Motorola HC11 8-bit microprocessor

with 32KB RAM [6] as a computing platform in the class.

Despite the computational limitations of the Handyboard,

new students can learn most of the nuances of programming

them within a three-hour laboratory session through the use

of easily understandable Interactive-C software. Furthermore,

these boards are fairly lightweight, low-power and small in

size, which allows for a smaller, and thus, cheaper robot

locomotion system.

A very different approach which is taken by many uni-

versities [7], [8], [9], [10], [11] is to utilize much more

capable, though expensive (in the range of $3000 to well

above $10,000 per robot) alternatives such as MobileRobots

Pioneer [12], AIBO [13], and Chiara [14] robots for their

undergraduate robotics courses. These robots, which tend

to be larger in size, can carry a full-size laptop as the

designated main computing module. However, these complex

robot systems may not be as easily used by first-year students

or easily maintained by the Teaching Assistant. The ER1

by Evolution Robotics [15] is the most affordable in this

category of solution ($499) as it uses bare-bones 8020

aluminum frame to hold together the locomotion system and

the laptop. Note that the price of the laptop also has to be

accounted for as we cannot assume that students will be

able to provide their own. We decided to forego this type

of solution because we believe that building robots from the

ground up provides a valuable learning experience and a taste

of the cross-disciplinary requirements of the field.

We introduce a robotics system architecture (figure 1),

which is composed of a mobile robot platform that is capable

of communicating with a remote but powerful server. In this

way, the mobile robots are not bound by their own on-board

computational power. By adding seamless communication
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Fig. 1. ”Gumbot” Robot Controllers And Server

between server and robot, our system allows the implemen-

tation of much more advanced capabilities than is possible

with isolated systems. Additionally, the centralized server

environment lends itself to easy administration of the whole

system which is an important feature in the classroom.

II. DESIGN AND IMPLEMENTATIONS

In this section, we first describe the mobile robot’s on-

board hardware (subsection II-A), and then the software

components which run on that hardware and the centralized

server in the following subsection II-B. The key to the system

is the seamless integration between the two. Thus, we will

touch on communication issues such as establishing reliable

connection with enough throughput for high bandwidth data

such as images from the robot’s camera. In addition, we also

have to ensure that the on-board platform has enough ability

to perform most of the common tasks required for a mobile

system, while relying on the server to execute specialized

computationally intensive algorithms.

A. Mobile Computing Platform

The two tasks of the mobile robot’s on-board computer

are to control the robot and to be able to communicate with

the server. We decided early on to only research platforms

capable of running Linux. This would allow us to use our

in-house expertise to facilitate easy set up of a programming

and administration toolchain, as well as to reduce costs

by utilizing the many open source tools available for this

operating system. Furthermore, because of our familiarity

with the Handyboard controller, we decided to make our

feature wishlist resemble the low-level characteristics of the

Handyboard, but with much more computational power. Our

final feature requirements were as follows:

• Ability to run Linux with little hassle

• Minimum 500Mhz CPU

• USB Connectivity

• 802.11 Connectivity

• 10 Digital I/O

• 10 Analog I/O

• 6 Servo Outputs

• 4 DC Motor Drivers

• 8 - 13V input voltage for use with Ni-Cd batteries

• Cost below $500 per unit

In selecting a mobile platform, we were faced with many

options which were roughly broken into two categories:

microcontroller-based designs, and full-featured CPU-based

designs. Traditional microcontrollers [16], [17] were ruled

out as too limited and cumbersome to handle the types

of algorithms planned for the course. Additionally, there

were no plug-and-play solutions for performing the kind of

wireless communication we envisioned for the architecture.
We then researched many existing CPU-based systems, but

found all to be unsuitable for our exact needs due to factors

such as current consumption [18], limited computational

power [19], or unavailability [20]. The clear winner for our

needs was the Gumstix Verdex [21] (a miniature 600MHz

XScale-powered system), which could be coupled to both

a Robostix board (an I/O board designed around an Atmel

microcontroller), and a WifiStix board (an 802.11g board).

We passed on this design, however, because it lacked both

DC motor drivers and USB connectivity, despite meeting our

other criteria.
To remedy this, we decided to use the Gumstix Verdex

computer board and the WiFiStix, but replace the RobotStix

with a custom interface board to provide the remaining

basic robotics interfaces. A Console-Vx board adds both

USB connectivity as well as easily-accessible header pins to

functions such as I2C and UARTs on the XScale processor.

These header pins were used to provide easy electrical and

mechanical interfaces to the underlying baseboard. In order

to fulfill our remaining requirements the baseboard needed

to be able to drive up to 6 servos, provide up to 10 analog

inputs, and 10 digital I/Os, drive 4 DC motors, as well

as distribute power to the Gumstix and all other peripheral

hardware. Taken together, these components form a system

that we call the Gumbot (see Figures 2 and 3).
Satisfying all of these requirements with the Gumstix

alone would be impossible due to the low number of I/O

pins available. We thus decided to use a microcontroller to

implement the remaining functionalities, which would then

communicate with the Gumstix via a serial link through

the header pins of the Console-Vx board. The Parallax

Propeller [22] was chosen as the microcontroller due to its

impressive computational power (eight 80Mhz cores) and

32 I/O pins. These parallel cores enabled us to quickly

implement the many different functions required without

needing to implement a complex scheduler, and the high pin

count eliminated the need for any kind of I/O multiplexing.
The Propeller is connected to two Texas Instruments

L293N ([23]) 1-Amp dual H-Bridges capable of simultane-

ously driving four of the LEGO motors that are used in our

classroom. The Propeller also interfaces with three National

Semiconductor ADC0834 ([24]) 8-bit analog-to-digital con-

verters (ADC) with four channels each. These ADCs are

set up to sample voltages between 0 and 5V with optional
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Fig. 2. Gumbot Data and Power Connections.

pullups to 5V. Digital I/O and servo control is shared between

the remaining twelve pins of the Propeller, and operate with

3.3V output and 5V tolerant input. An onboard 20A DC-DC

switching power supply provides power regulation from any

8V-15V input down to the 5V required by the board and any

attached servos, and a single 3.3V linear regulator provides

power to the Propeller.
The software side of the classroom system consists of three

components:

1) Server side software which allows students to log into

the centralized server, compile code, and run it on their

robots;

2) Software on the Gumbot which is mostly in charge of

interfacing with the physical world (reading sensors,

activating actuators), possibly via the Propeller;

3) A set of software libraries (both server-side and

Gumbot-side), which provide functionality for basic

access to the controller board’s hardware interfaces,

as well as image processing and other advanced func-

tionalities.

1) Server Side Software: The machine designated as the

server is a quad-core 3.6 Ghz Xeon server running Mandriva

2008 with a GNU C++ cross-compilation toolchain set up

for the XScale processor on the Gumstix. Additionally, the

machine runs an SSH server and has user accounts for every

student team in the class. SSH clients are installed on all of

the existing Windows terminals in the lab so that students

can use any of the available machines, or their own laptops,

to log into the server. A source code management system

[25] enables seamless backups of students’ code to an off-

site storage machine and allows for easy updating of shared

code libraries. GNU Make was used to create scripts which

allow the compilation and transfer of student code to their

robots via SCP.

As mentioned above, one of the motivations for using a

centralized server was to be able to provide extended com-

putational power in order to remotely run algorithms which

would otherwise be impossible on an embedded platform. In

our undergraduate class, we like to give the students a broad

overview of many of the available state of the art vision

algorithms. By implementing these algorithms as server-side

applications, we not only offload the computation but also

abstract away the details of the algorithm to a level that is

easily manageable by an undergraduate student. The details

of the actual image transfer from the Gumbot to these server-

side applications are made trivial by an RPC library from

ZeroC called the “Internet Communication Engine”, or “Ice”

[26]. The use of Ice allows us to concentrate solely on the

implementation of the needed algorithms rather than being

burdened by the details of the transport.

B. Software System

1) Robot Side Software: In order to keep Gumbot ad-

ministration as simple as possible, the Gumstix run a light

distribution of Linux 2.6 with an SSH server. Cross compiled

binaries are transferred to the boards via SCP from the server,
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Fig. 3. Features of the Gumbot.

and are then run remotely through an SSH connection. All

of this communication takes place over an 802.11g WiFi

connection so that robots may be left on the lab floor while

students program them and monitor their programs’ output

from their desks. Additionally, the Gumstix is loaded with

a USB camera driver so that students may acquire images

from commonly available webcams.

To perform physical actions, the Gumstix sends control

words over a serial connection to the attached Propeller

microcontroller. The Propeller is running very simple soft-

ware which waits for control words from the Gumstix, and

on receiving a valid command executes the proper action

and returns a value if one was requested. Example serial

commands include setting a motor speed, setting a digital

output, or requesting a voltage reading from one of the

analog to digital converters. More complex functionalities

were also implemented allowing easy communication with

some of the common sensors that we use in the classroom

such as compasses and sonars.

2) Software Libraries: In order to concentrate students’

lab time on the development of robotics algorithms, a set of

C++ software libraries was written to abstract away many of

the details of the hardware. A single C++ class encapsulates

simple methods for accessing all necessary functionality of

the robot. Additionally, a sophisticated Image class allows

easy access and manipulation of image data, including

many built-in primitive image processing operations (see

http://iLab.usc.edu/toolkit/).

For example, the following code demonstrates the simplic-

ity of writing a program for the Gumbot. In this program, we

turn the robot, access the commonly used sonar and compass

sensors, and grab an image from an attached USB webcam.

Then, we run a visual saliency algorithm, which analyzes the

image along several multiscale feature dimensions thought

to exist in the primare brain, to find the most “interesting”

point in the image. The algorithm used for this computation

is an implementation of Itti et al.’s model [27]. Because

this algorithm is computationally intensive (12 multiscale

image pyramids are created for each input image), we offload

the processing to the central server, yet the details of this

are hidden from the user. This function call shows both

the simplicity and power afforded by the centralized server

architecture.

#include "gumbot/Gumbot.H"

int main()

{

Gumbot g;

//Set motor 0 to 75% power forwards,

//and motor 1 to 100% power backwards

g.setMotor(0,75);

g.setMotor(1,-100);

//Get a heading from a CMPS03 compass

//connected to pin 1

int heading = g.getCompass(1);

//Get a distance from an SRF04 sonar

//connected to pins 2 and 3

int distance = g.getSonar(2,3)

//Grab a new image from the

//USB webcam, draw a red pixel

//in the middle, and send it to a

//server side application for display

Image<PixRGB<byte> > img;

img = g.getImage();

img.setVal(img.getWidth()/2,

img.getHeight()/2,

PixRGB<byte>(255,0,0)

);

g.displayImage(img);

//Ask the server to compute saliency

//(Itti & Koch, 2001) on the image,

//and return the location of the

//most salient point.

Point2D<int> p =

g.getSalientPoint(img);

return 0;

}

In order to compile and run an application like the one

written above, a student needs only to:

1) SSH into the server

2) Write the above code in their favorite text editor or

IDE

3) Compile the code using a provided makefile by typing

make

4) Transfer the compiled binary to robot by typing make

install
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Fig. 4. Students completing coursework with the Gumbot and Server in the lab.

5) Run the program by executing a shell script gen-

erated automatically by the makefile by typing

./run MyProgramName

The shell script generated by the makefile opens an SSH

connection to the Gumbot and executes the binary that was

created in step 4.

III. EVALUATIONS

In the first semester of using this system, we found

both the hardware and the software components to have

exceeded our expectations in easing the job of teaching

robotics algorithms. The Gumbot boards were very stable

and hassle free. For example, the high efficiency DC-DC

converters allow for a very good runtime. During normal

operation, the board draws only ∽1 Amp, giving students

up to 2 hours of runtime using 2000mAh NiCad batteries.

The on-board WiFi connection proved to be indispensable

for both programming the robots wirelessly and for printing

out debugging information during testing.

Architecturally the system worked very well, as the cen-

tralized server allowed for an extremely fast initial setup. The

process of installing Linux and the GNU cross-compiling

toolchain, as well as setting up the necessary user accounts

took only a day. Administration of the class was equally easy,

as all user accounts were accessible from a privileged teacher

account. A few shell scripts were all that were required to

update the software on all user accounts, and such updates

could be performed in minutes. Having only one set of

shared libraries eliminated any potential versioning problems

that could arise from trying to create build environments on

multiple machines, and any problems that were found could

be fixed on all user accounts simultaneously.

Because of the increased power and flexibility of the

system over our old Handyboard based lab, we were able

to vastly increase the scope of material that was covered.

The first lab session taught the basics of DC motor control,

and had the students implement PWM bit-banging directly

on the Propeller microcontroller. By the second lab session,

the students had learned the details of the server compilation

system and were able to write code for the Gumstix to drive

their robots around the classroom remotely. Over subsequent

lab sessions, the students learned and implemented concepts

in both control theory and sensor filtering. We then moved

on to cover basic image processing, in which the students

developed their own blob tracking algorithms which they

used to follow various objects around the classroom. The
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final assignment in the lab was to implement a grid-based

Bayesian Markov localization algorithm to localize and nav-

igate their robots in an arena on the floor of the classroom.

The cost of the system consists of the price of the server,

a WiFi router and the Gumbots. The Additional costs of

terminals to log into the server, sensors, and LEGO parts

to build physical robots are left out as they are outside the

scope of this paper, and independent from the system we

have described. The cost of an individual Gumbot is:

• Gumbot: $377 each

– Carrier Board PCB: $11

– Carrier Board Components: $93

– Gumstix Verdex Pro XL6P: $169

– Gumstix Console VX: $25

– Gumstix WiFiStix: $79

The exact specifications of the server are determined by

the unique needs of a class. In particular, the number of

students in the class will determine how powerful a server

is necessary. In our case we had 5 groups (robots) per lab

session, and a quad-core Xeon 3.6 GHz machine with 4GB

of RAM and a 200GB harddrive was more than sufficient.

Such a machine typically runs in the $1500 range.

IV. CONCLUSIONS AND FUTURE WORK

While the system is currently fully usable, there are

many additions and modifications that are planned for the

future. The current Gumbot boards are only a first pass,

and there are a few minor kinks that will be worked out

in the next revision. For example, a few of the mechanical

interfaces on the boards ended up being a source of trouble

as the connectors chosen proved quite fragile for every day

classroom use. The main structure of the boards was quite

robust, however, and was shown to be more than capable of

the demands we required. If time and funding allow, we plan

to build a new version of the boards based on Gumstix’s new

Overo platform [21]. The design of the board will remain

similar, but the new Overo modules will allow us to decrease

size and costs as well as provide a direct image sensor

interface and an upgrade to USB 2.0. The Overo modules

can also have a much sturdier mechanical connection to the

Gumbot main board due to their connector layout.

On the software side, we plan to make only additions to

the system in the form of more image processing modules

to be run on the server. Currently in the works are a SIFT

[28], gist [29], face detector, and shape recognizer modules,

but more will be developed as the lab curriculum matures.

The main benefit of these modules is that it allows us to

brush on advanced topics in vision and allow the students to

get a feel for the tools without necessitating a level of detail

inappropriate for an undergraduate class.

Importantly, we found that this new platform has also

allowed us to significantly enhance the lecture portion of our

class. This was not only achieved by allowing the students

to gain hands-on experience with algorithms covered in

the lectures, but also by introducing students to modern

computer science tools used in today’s robotics research.

Indeed, an ancilliary benefit was to present a more modern

view of robotics, which is closer to the research state-of-the-

art and farther removed from hobbyist-grade microcontroller

hacking. Namely, students spent little time worrying about

microcontroller or assembly-code details, except during an

introductory lecture to the Propeller. In further lectures,

students were exposed to a robotics platform that employs

distributed Linux-based computing, cross-compiling, remote-

login into your robot, wireless communications, the Ice

transport library, using a central source code versioning sys-

tem, makefiles, the C++ Standard Template Library, etc. We

believe that using these essential computer science tools on

a robot provides a drastically different perspective, whereby

classroom robots become powerful computing machines with

sufficient brainpower to support high-level algorithm design

using modern tools, rather than being limited to spinal-cord-

grade algorithms designed using low-level tools on limited-

computation microcontrollers.
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