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Abstract— By combining a low-order model of forecast
errors, the extended Kalman filter, and classical continuous
optimization, we develop an integrated methodology for plan-
ning mobile sensor paths to sample continuous fields. Agent
trajectories are developed that specifically take into account
the fact that data collected will be used for near real-time
assimilation with large predictive models. This aspect of the
problem has significant implications because the trajectories
generated are very different from those which do not take
the assimilation step into account, and their performance in
controlling error is notably better.

I. INTRODUCTION

Modern atmospheric and oceanic circulation studies de-

pend increasingly on autonomous fixed and mobile sensor

agents for continuous sampling. Rapid communication of the

resulting data provides a fundamental coupling of large-scale

numerical models and experiments: agents that are able to

take targeted measurements will position themselves, either

individually or as a group, so as to best observe the physical

phenomena of interest. Model errors can then be reduced

through the data assimilation process, akin to the update step

in traditional state estimation. If the model errors can be kept

small, predictions will be more accurate.

Intelligent or adaptive mobile sampling toward this end

can be posed in a quasi-static sense, and as a dynamic,

online data-driven process. For instance, a group of vehicles

tracking a gradient or a level contour constitutes a very

dynamic system, and the model of the physical process

in this case could be quite simple, involving perhaps only

a continuity and monotonicity assumption, along with a

length scale for the process. Indeed, underwater vehicles

and coordinated groups of vehicles have been successfully

deployed so as to track ocean fronts [6].

In work employing more detailed, numerically generated

forecasts of the field, it is desirable to motivate the tra-

jectories of such agents with the prior predictions; this is

the quasi-static scenario. The agents can take measurements

where expected future errors are significant, for example at

an inflow boundary or in areas of high forecasted gradients.

Until recently, the optimal placement of sensors for environ-

mental monitoring was described primarily in a stationary

sense, e.g., [1]; in the fields of system identification and

control, sensor layout is a discipline in its own right. Work in

optimal sensor trajectory planning and sampling in the ocean
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environment especially, however, has been growing rapidly

in recent years. As described in Lermusiaux [13], F. Chavez

planned an autonomous vehicle path in Monterey Bay so as

to focus the data on gradients. Several additional examples of

intelligent sampling in the ocean environment are given also

in this reference. Yilmaz [18] has created a path-planning

scheme for an autonomous underwater vehicle based on the

predictions of a highly-refined ocean dynamics model, and

Leonard et al. [15] have carried out an extensive set of full-

scale experiments in Monterey Bay, demonstrating the effec-

tiveness of gliders flying in synchronized loops. Objective

analysis was used to quantify the information gained, based

on an unstructured exponential form of the field error covari-

ance. We note that the detailed discussion of practical issues

in deployment of large-scale observation systems provided

by [15] is extremely valuable to the community. Heaney et

al. [9] similarly optimized a number of parameters defining

fairly simple trajectories for many agents, in a complex ocean

field. Such approaches are suitable for open-ocean operations

as well as in harbor environments (see Figure 1). Overall,

these schemes are computationally tractable for the time

scales involved for directing the vehicles, and the focus is

on simple trajectories for complex fields.

The objective in the present paper is to explicitly take the

assimilation step into account in path planning; we develop

the problem statement in the next section. In comparison with

the above works, our method allows a complex trajectory and

vehicle dynamics, with a somewhat simplified field variable

model. Such a low-order modal model is appropriate for

Fig. 1. Autonomous marine vehicles are employed in Singapore Harbor for
environmental sensing and modeling, through the Singapore-MIT CENSAM
Program. Singapore Harbor presents an extremely challenging environment
for such operations, with strong, variable currents and winds, and heavy
shipping traffic.
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global weather systems and open-ocean circulation modeling,

but may not be for coastal oceanic processes. The new

procedure gives dramatic model error reductions in several

examples of sampling a single field variable, while incurring

a high but tangible computational cost.

II. APPROACH AND METHODS

Our key starting point is the fact that the data assimilation

step, for the most part, has been developed independently of

the placement or path design of mobile sensor networks. Yet

today’s sampling objective is often specifically to provide a

correction to the state of a large model using the available

sensors, in the sense of the Luenberger observer or, more

popularly, variants on the Kalman filter. We argue that

data assimilation should be an integral part of the sensor

placement design. This depends closely on the growing

ability of agents to communicate their measurements in near

real-time, and we make the specific assumption here that

the vehicles have unlimited communication bandwidth to

a central processing agent who can coordinate the maneu-

vers through the optimization relative to the model. The

assumption is certainly reasonable for slow-moving vehicles

and for vehicles that have occasional surface access to

wireless/satellite communications.

We note that there is a strong link for this integrated plan-

ning idea with the robotic map-based navigation community.

Huang et al. [11] discuss the use of multi-step optimization

in mobile agents, for the main purpose of refining maps

of the environment - the explicit minimization of error

covariance in the landmark locations mirrors our objective.

Huang et al. reported only modest gains with respect to a

greedy (one-step) optimization, and so the case for multi-

step optimization for mapping is not strong.

A. Scaling of the Discretized Integrated Problem

For the purposes of this paper, we will focus on the case of

vehicles moving in a plane, for example autonomous surface

vehicles, with only one field quantity under consideration,

for example sea surface temperature. The scale of this basic

integrated data assimilation-planning problem has to include

the vehicle states as well as the field variable error states and

is roughly as follows:

1) There are at least two vehicle states, Cartesian X
and Y say, for a single vehicle moving in the planar

domain; dynamic equations enforce the speed and

maneuvering constraints of the vehicle. Let the number

of different vehicle state variables be M , and the

number of agents be Z . Hence the states of all the

agents are described with MZ elements.

2) There are typically two control input variables per

agent of this type, e.g., forward speed and heading

commands. For agents designed to operate at a given

speed, a simpler vehicle model can be used, with only

one control input (heading).

3) There are N field state variables, typically N ampli-

tudes that are functions of time, each coupled with a

known basis function on space [X, Y ].

Considering discretization of all the N + ZM aggre-

gate state variables into b quanta, then the discrete state

space for the overall optimization problem is of size

O
(

bZM
× bN2/2

)

. Assuming a Kalman approach for as-

similation, the N 2/2 term here is the number of unique

elements in the error covariance matrix of the field variable.

Clearly the total is an unreasonable number of states, even

for small b and N , exceeding easily the many millions

of states that can be solved using optimization procedures

today, for example employing value iteration, reinforcement

learning, or approximate dynamic programming (e.g., [17]).

Indeed, current large finite-element models for atmospheric

or oceanographic processes routinely employ N ≈ O(10 7)
states; spectral methods may have O(100).

B. Rationale for a Continuous, Low-Order Approach

The first scaling difficulty above results from the dis-

cretization of states and controls into quanta. The state vari-

ables do not have to be discretized in the general case, how-

ever. Instead, we may consider a continuous-state approach,

so that deterministic optimization tools can be employed;

these are based on Pontryagin’s Maximum Principle. A fully

continuous gradient problem of size ZM + N 2/2 results.

With regard to the cost of data assimilation, the ex-

tended Kalman filter (EKF) is the optimal result of objective

analysis, and hence is a natural choice for the task. The

computational burden of the EKF, however, is well-known

and problematic, whether it is used only for ”open-loop” data

assimilation or as part of the integrated optimization problem

we describe here. The sheer scale of the N 2/2 elements

involved in the classical evolution of error covariance has led

to the successful ensemble Kalman filter (EnKF, reviewed

in [5]), among other treatments. But the EKF remains the

”gold standard” in numerical weather prediction [12], and in

our developments below we prefer to keep with the classical

formulation of error covariance rate Ṗ . This is for the main

reason that the gradient optimization method requires us to

evolve the optimization adjoint backwards in time - no such

operation can be performed if the covariance is evolved using

forward-only time simulations as in the EnKF.

An obvious avenue that can connect our approach with real

applications is the spectral formulation. Global numerical

weather prediction (NWP) models with spectral discretiza-

tion in the horizontal plane are one good example (e.g., [12]);

spectral models are, however, less common in oceanic mod-

eling due to complex boundaries and topographies in coastal

regions. Low-order models have been constructed also with

the empirical orthogonal function (EOF) method by Zhang

[19] for hurricane prediction. The EOF analysis was applied

in an ocean setting by Fukumori and Malanotte-Rizzoli [7],

to a three-dimensional jet model, to represent the variability

with low order. They found that about ninety percent of

the variability could be accounted for in five EOF modes,

and these modes were used effectively in the construction

of an accurate low-dimension filter; more recent work in

this area is reported by [4], with O(100) modes. In general,

such analysis shows that some of the error modes can be
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growing while others are decaying, hence providing clear

directions for the targeted placement of sensors. Further,

although apparent coupling of such experimentally derived

modes may or may not exist, they also are strongly driven by

white noise processes that encompass environmental inputs

as well as modeling errors.

C. The Filtering Aspect

Following the above rationale, we employ the fully

continuous-time extended Kalman filter, wherein the ob-

servation of field states is determined by the vehicle pose

within the environment. The vehicle states are governed by

ẋv = fv(xv, u, t), where xv is the aggregate state vector

for all the agents, of size MZ . u is the corresponding

aggregate control vector, and t is time. For the purposes of

the optimization, the nominal field state variables (whether

comprising one or more physical quantities) are forecasted

as x̂f , subject to dynamics ˙̂xf = ff (x̂f ). We assume that the

state of the vehicle is fully known, either through competent

sensors or through a separate estimation process. The N×N
field variable error covariance propagates according to the

standard equations [8]:

Ṗ = F (x̂f , t)P + PF (x̂f , t)
T

+ Q (x̂f , xv, t) −

PHT (xv, t)R−1 (x̂f , xv, t)H (xv, t)P,

where x̂f is the forecasted field variable as a function of X ,

Y , and t, F is the gradient of ff() with x̂f , H is the gradient

of the observation with x̂f , encoding the mode shapes, and Q
is the process noise. Thus H - a direct function of the agents’

states - plays a critical role in modulating the covariance.

We allow that the process noise Q and the sensor noise

R intensities can depend on any of the agent or field state

elements, although in most practical situations they do not.

For notational convenience, we assign the content of matrix

P to a column vector xP , that has length ≈ N 2/2.

Employing the EKF, the field state would normally be

updated with the measurements according to

ˆ̇xf = f (x̂f , t) +

PHT (xv, t)R−1 (x̂f , xv, t) (z − h(x̂f , xv, t)) ,

but our path-planning method in fact does not require this

or any explicit estimate of the actual states. Further, the use

of the EKF in the optimization step does not imply that the

EKF has to be used for the actual data assimilation.

D. Optimization

Different practitioners of optimization will choose differ-

ent methods, and there is no particular advantage to our

current approach, except that the method is continuous in the

state variables and so accommodates nonlinear, continuous

behaviors quite naturally. These may be useful, for example,

in capturing maneuvering constraints, current effects, and

nonlinear interaction of spectral modes. We employ the

gradient method [3], augmented with a simulated annealing

perturbation [14] to enhance robustness against local minima.

Between simulated annealing perturbations to the control, we

take advantage of an adaptive gain, e.g., [10]. We focus for

the present on the unconstrained problem with fixed terminal

time, because of its simplicity. Beginning with initial state

x(0) and a trial control trajectory u(t), for the gradient part

we iteratively perform the following loop:

• Propagate ẋ = f [x, u, t] .
• Evaluate λ(T ) = ∂Ψ [x(T )] /∂x.
• Sweep backward in time: λ̇ = −fx(x, t)λ.

• Modify the control: δu = −K
[

fT
u [x, t]λ + lTu

]

.

Here the aggregate state is x = [xv, xP ]T , and f is comprised

of two parts: agent dynamics fv(), and the state-space

equivalent of the Ṗ error covariance equation above. The

total state thus has size ≈ ZM + N 2/2. Ψ(x) is the cost of

the terminal state at fixed time T , λ is the adjoint, fx and

fu are the derivatives of f with the aggregate state and the

control, respectively, and lx and lu are the derivatives of the

cost integrand l(x, u, t); the total cost is defined as

J = Ψ(x(T )) +

∫ T

0

l(x, u, t)dt.

We then aim to minimize the integral trace of P through

choosing control action u. This is possible because the

optimization explicitly includes both the error covariance

evolution and update steps; they are posed in continuous

time. Lack of hard constraints in the gradient optimization is

a casualty of the continuous-time approach, although there

do exist some methods for constrained control action and

constrained states (e.g., [3]). In practical terms, optimization

that neglects saturation in the control is often still useful,

because a feedback system will often be able to account for

their effects. Alternatively, modern constrained optimization

tools may be applied to this problem [2].

E. Remarks on the Integrated Process

The path is laid out based only on the forecast, without

measurements; it is completely deterministic. The state vec-

tor comprises a portion that captures the physical state of the

agents (speed, heading, position, etc.), and a portion that is

the error covariance of the field variable. On the filter side,

process noise on the agent states has the interpretation of

physical disturbances such as wind or ocean waves, while

process noise on the field states provides uncertainty in the

evolution of the errors. Sensor noise appears only in the

(small) matrix R.

Computational Cost. We envision that the proposed algo-

rithm could be used as part of a continuing simulation and

update strategy, in the manner of NWP, and, more recently,

oceanographic modeling. Computational cost is therefore

an important consideration. Leonard et al. [15] used quite

simple structures (or collectives) of underwater vehicles,

and discuss near-optimal solutions, found by parameterizing

collective motions on so-called super-ellipses. In contrast,

Yilmaz [18] solves an unstructured problem using mixed

integer programming - the costs are significantly higher. The

current proposed method is clearly even more expensive.

Nonetheless, while an argument can be made that optimiza-

tion should be straightforward and computationally cheap,
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at the same time massive resources are regularly brought to

bear on the actual forecasts. If a more difficult optimization

problem brings additional value from the models and from

the field assets, then its effort should be well rewarded.

The computational effort here includes propagating for-

ward and backward the states and co-states for the field

variable error modes; for coupled modes with a single field

quantity, the cost goes with N 3, because of the matrix

operations in the Ṗ equation. The number of iterations for

convergence in the optimization does not depend strongly on

the number of agents Z . Instead, it depends on the tuning pa-

rameters of both the gradient method (e.g., the adaptive gain

dilation and contraction rates), and the simulated annealing

(e.g., the maximum probability of a non-improving step, and

the schedule for the temperature parameter). Overall, for the

example given below, we find practical convergence within

several thousand iterations, and often within one hundred.

Physical Agent Model. The continuous-time formulation

of system dynamics is well-suited to capturing the physical

behavior of dynamic vehicles. This fact is important for

vehicles moving at significant speeds, where fluid lift and

inertial effects may be pronounced. On the other hand, when

the length scales of the mission are very large compared

to the vehicle’s maneuvering capabilities, one may simply

eliminate the higher derivatives from the state equations

and increase the time step. We do not take into account

uncertain vehicle disturbances (e.g., currents or wind) in

our examples; known, time-varying disturbances are easily

incorporated into the dynamic equations, however. Needless

to say, for slowly moving vehicles, strong disturbances,

known or unknown, may make efficient observation of the

field impossible.

Energy Budget. All users of marine autonomous systems

are aware of the limitations on mission duration that are

posed by finite energy storage. Hence any optimization

routine has to include some account for efficient usage of

these resources. An integral cost is very natural in this

regard, because the energy consumed by streamlined vehicles

often scales with the integral of the speed cubed - a drag

force that scales with the square of speed, times the speed.

Cubic functions are smooth enough to be incorporated into

continuous-time optimization problems.

Multiple Agents. Multiple vehicles do not substantially

change the cost or size of the filter, because the major

effort is spent in propagating error covariance of the field.

Close proximity of vehicles is penalized through a simple

added term in the cost function, for example of the form

[(xi − xj)
2 + (yi − yj)

2]−1. Heterogeneous vehicles pose

no particular difficulties in the formulation, except that the

time step for the overall process has to be fine enough to

resolve the fastest elements. These elements include sensors

and actuators insofar as they impact the positioning and the

sampling. In all cases, we assume the low-level positioning

problem to be solved by vehicle controllers and a reliable

navigation system, e.g., a long-baseline acoustic net for

underwater vehicles, or GPS for surface of flying vehicles.

The open-loop trajectories that are created by our proposed

algorithm are dynamically constrained by the equations of

motion, and form a basis for the linearized control or gain

scheduling that is common in many types of vehicles.

Other Costs. Additional components in the construction

of the cost function, in the spirit of Heaney et al. [9] can be

included in our formulation; a notable example would be the

variance of the field variable prediction along the path.

III. EXAMPLE

In order to illustrate the technique described here, tra-

jectories for a pair of ocean surface vehicles sampling a

wave field are considered, for the case of ten complex

modes. This problem scale (232 continuous states) is easily

managed on a personal computer, and the number of modes

is on a par with EOF analysis. There is assumed to exist

a prediction of the wave field, created in accordance with

the standard directional spectra [16]. The goal is that the

vehicles will maneuver through the wave field in such a way

as to optimally track each of the component amplitudes. In

the larger context of ocean data assimilation, these waves

represent the dominant EOF’s or spectral modes in the error

of a measurable field.

The results of our optimization with assimilation are

compared explicitly with related straight-line trajectories that

are also the initial guesses in the gradient iteration, and with

trajectories resulting from a cost function that seeks extrema,

uniformly weighted over the time window. Many mobile

sampling cases in the oceanic and atmospheric sciences use

this metric today: the vehicle takes data where the aggregate

predicted errors are highest.

In this example, the waves are made up of components

having random heading; hence this sea state has no dominant

wave direction, and no basis exists up front for choosing

the best directions of straight-line paths. We consider three

main situations which represent the basic choices one would

have in designing good straight-line paths: the two vehicles

starting at the same point but with opposite headings (east

and west), with right-angle headings (north and east), and

with the same heading (east and east). In this last case,

the covariance provided by the straight lines is very poor

because the two vehicle paths are the same - very little

if any information is gained by the second vehicle. They

also turn out to be the same paths in the extrema case

(although no longer straight), because we did not include in

the cost function any penalty for proximity. The cost function

integrand has roughly equal parts quadratic penalty on the

control channels, and penalty on the field error covariance

trace; there is no terminal cost.

We use a time window of fifty seconds, with fourth-order

Runge-Kutta integration and time step 0.1 seconds. The ten

wave components have a peak frequency of 0.7rad/s, so that

the time window covers the passage of at least five maxima -

this is a very dynamic situation. The vehicle dynamic models

are appropriate for a high-speed unmanned surface craft. The

sensor noise intensity matrix R is diagonal, and has value

0.01m2 for each of the two craft - the typical aggregate

wave elevation is 0.5m. Each wave modal amplitude is
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Fig. 2. Convergence behavior for the example, with extrema-seeking (left)
and with assimilation (right). The cost shown is normalized with the cost
on the initial trial: a pair of straight lines at constant speed. Note that
convergence data shown in the extrema-seeking case is inconsistent with

the Table 1, because the extrema cost function is not related to
∫

tr(P )dt.

TABLE I
∫

tr(P )dt PERFORMANCE, TWO VEHICLES;

MIN DIMENSIONAL VALUE IS 393 ≃ 202 .

East-West I.C., North-East I.C., East-East I.C.,
Path Type Relative Value Relative Value Relative Value

Straight 1.48 5.43 163
Extrema 10.8 3.91 60.6

Assimilation 1.13 1.00 1.06

modeled as an undamped oscillator with natural frequency

0.1rad/s, driven by uncorrelated process noise of intensity

0.01m2/s4. This corresponds to a rapid loss of confidence in

the amplitudes, with rather poor measurements. Note that in

this example we do not account for variations in frequency,

wavenumber, phase, or direction of any given mode, although

such extensions are quite reasonable with the method.

Figure 2 shows the convergence behavior of the extrema

and assimilation optimizations. The extrema-seeking cases

show modest improvement over the straight-line initial tra-

jectories; this means that extrema are already covered to

some extent on the initial paths. The best improvement in

the extrema cost function, as provided by the optimization,

is by about a factor of six. The assimilation cases penalize

the error covariance directly and are consistent with Table 1.

These curves show improvement over the initial trajectories

by about 24% (east-west initial condition), 81% (north-east),

and a factor of over one hundred (east-east).

In Table 1, the assimilation runs give better covariance re-

sults than the extrema cases for all three initial conditions, by

a factor of 3.9 or more. Note that one extrema-seeking case

(east-west) controls the covariance worse than its straight-

line version; this is not unexpected since the covariance is

not part of the cost function when extrema are tracked.

Interestingly, the east-west straight-line course provides

error control only slightly worse than the assimilation case.

We argue that this success in a straight-line course is merely

a fortunate coincidence - the confused wave field gives
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t: 21.0 t: 24.5 t: 28.0

t: 31.5 t: 35.0 t: 38.5

t: 42.0

east, m

n
o

rt
h

, 
m
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0

100

t: 45.5 t: 49.0

Fig. 3. Optimized trajectories overlaid on the wave field with two vehicles,
having initial headings of zero and ninety degrees. Contours give the wave
elevation, two red lines give the paths accounting for assimilation, and two
blue lines give paths seeking extrema; the starting point at the origin is
shown with a white dot.

the user no clear insight on what directions should be

pursued to minimize the errors. In additional simulations

not shown here, we did find that when the waves are more

unidirectional, straight paths normal to the crests are very

effective, as expected.

The explicit optimized paths for the north-east initial con-

dition are given in Figure 3, along with the predicted wave

field through time. As expected, the extrema paths shown

generally pass through the largest peaks and troughs of the

predicted waves. The assimilation trajectories take different

directions and with an accentuated curvature, possessing

no intuitive correlation with the wave field. This apparent
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TABLE II
∫

tr(P )dt PERFORMANCE, TEN VEHICLES;

MIN DIMENSIONAL VALUE IS 13 ≃ 3.62 .

All-East I.C., Spread I.C.,
Path Type Relative Value Relative Value

Straight 4635 1.17
Extrema 1120 1.62

Assimilation 1.14 1.00

TABLE III
∫

tr(P )dt PERFORMANCE, ONE VEHICLE;

MIN DIMENSIONAL VALUE IS 2920 ≃ 542 .

East I.C.,
Path Type Relative Value

Straight 21.2
Extrema 11.2

Assimilation 1.00

disorder occurs because the path is designed to track each

modal amplitude according to the forecast, and this may or

may not be connected with the local wave elevation.

Performance summary results from some other runs are

given in Tables 2 and 3, for ten vehicles and one vehicle,

respectively. In the ten-vehicle case, little is gained by

optimization according to any rule, simply because there is

redundancy provided by so many sensors. The ”spread” ini-

tial condition - which has the vehicles starting from a single

point but evenly spaced in heading - is particularly effective,

as expected. On the other hand, in the single-vehicle case, the

optimization brings a full order of magnitude improvement

in cost compared with the single-vehicle, extrema solution.

The dimensional cost for one vehicle, however, is over two

hundred times that of ten vehicles, and more than seven times

that of two vehicles. With or without optimization, having

more agents is desirable. The computational requirements for

all these cases are roughly the same, because the number of

states is dominated by the covariance matrix (210 states) -

each vehicle adds only six states, and the number of iterations

is very similar. On a desktop PC, one such optimization,

whether for an extrema or assimilation cost function, takes

several hours.

IV. CONCLUSION

We posed and solved a mobile sensor planning problem

that takes into account specifically the data assimilation step,

so as to minimize error growth in the constituent modes of

a distributed field variable. This is a departure from many

approaches in use today for such sampling, which target the

areas of highest predicted error. While computationally ex-

pensive, the new method is practical today for relevant small

and mid-sized problems. Given the significant reductions in

error that we observed in simple examples, however, a broad

argument could be made for committing substantially more

resources to optimization and to the creation of accurate

low-order, spectral models. This decision is an application-

specific tradeoff involving the phenomena under study, the

agents available and their capabilities relative to the physical

domain, and computing resources.

A number of other questions are raised by this investiga-

tion into integrated planning. There are strong connections to

be explored between the problems of autonomous mapping,

and optimized ocean or atmospheric sampling. Communi-

cation and navigation constraints on the agents should be

taken into account. Perhaps most importantly, approaches

for decoupling error modes should be considered so that

the computational costs can be reduced, enabling solution

of problems with > O(100) modes.
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