
Multiple Incremental Fuzzy Neuro-Adaptive Control of
Robot Manipulators

Chang-Hyun Kim, Joon-Hong Seok, Byoung-Suk Choi, and Ju-Jang Lee, Fellow, IEEE

Abstract— An adaptive control using multiple incremental
fuzzy neural networks (FNNs) is proposed for robot manipula-
tors. The structure and parameters of the FNNs are determined
dynamically by using an incremental FNN. By incorporating
incremental learning and adaptive control with multiple models,
the proposed method not only reduces complexity and compu-
tation induced by the use of multiple models, but also provides
favorable transient and tracking performance. The multiple
FNNs are switched or blended to improve the transient response
when manipulating objects are changed. The parameters are
refined adaptively to compensate for system uncertainties. The
resulting closed-loop system with a switching or blending law
is proven to be asymptotically stable. The proposed scheme is
applied to control a two-link robot manipulator in conjunction
with varying payloads.

I. INTRODUCTION

Robot manipulators are essential components for improv-
ing product quality and productivity in automated facto-
ries. Because, robot manipulators have complex nonlinear
dynamics with uncertainties such as payload, friction, and
disturbances, it is difficult or even impossible to construct
an accurate robot model. Therefore, much attention has been
paid to model-free control methods such as neural networks
and fuzzy systems.

As for robot control, many adaptive control strategies with
neural networks (NNs) or fuzzy systems have been presented
in the literature [1], [2]. Most of these strategies use FNNs
to approximate nonlinearity such as the inverse dynamics of
the manipulator and unknown disturbances. However, these
FNN based control methods all require predefined and fixed
fuzzy rules or a NN structure, which is difficult to determine
in advance due to the tradeoff between the structure and
accuracy. Numerous rules or neurons may be required to
cover all possible input domains, especially in a case such
as robots where the dimension of the input is high, which
results in redundant or inefficient computation.

Several self-organizing FNNs have been applied to the
control problem [3], [4]. Fuzzy rules are built up incre-
mentally, starting with none at the beginning. Incremental
algorithms can run efficiently, but their performance may
depend on the data presentation order. Most self-organizing
FNNs explicitly or implicitly utilize some sort of hierarchi-
cal learning switching from initial coarse learning to fine
learning. After convergence of learning, FNNs have problems
coping with changing environments due to the discrepancy
between the previously learned rule and a new rule.

The authors are with the Department of Electrical Engineering, Korea
Advanced Institute of Science and Technology, 305-701 Daejeon, Korea
(e-mail: sunnine@odyssey.kaist.ac.kr).

Task variation such as replacing tools or manipulating
different objects is common in industrial fields. In this
case, switching control from one task to another is useful.
Although FNN based methods show good performance in
robot control problems, there are unavoidable transient errors
at the time of task variation. Multiple models are used for
this purpose. Switching of multiple adaptive models has been
proposed [5]–[7]. Model reference adaptive control or neuro-
controllers based on a set of fixed NNs are used to deal with
each model. For the neuro-controllers, the NNs are trained
offline and the switching parameters are adapted online.
Therefore, they have disadvantages such as difficulty of
structure assignment, necessity of many neurons, and a high
computation load, as mentioned earlier. Moreover, the burden
is increased because multiple models are stored. Online
generation and pruning of multiple models are necessary,
which has yet to be addressed in the literature.

In this paper, an adaptive control scheme using multiple
incremental FNNs is proposed. The overall controller is
comprised of a feedback controller and multiple FNNs that
learn inverse dynamics of the robot manipulator for different
tasks. The multiple FNNs are generated dynamically using
an incremental hyperplane-based fuzzy clustering algorithm
[8]. To compensate for unknown disturbances of the system,
the parameters are adapted online and a robust controller with
adaptive bound estimation is included. Asymptotical stability
of the closed-loop system with a switching or blending of
multiple FNNs is established using the Lyapunov theory.
By incorporating incremental learning and adaptive control
with multiple models, the proposed method not only reduces
complexity and computation induced by the use of multiple
models, but also provides favorable transient and tracking
performance.

II. PRELIMINARIES

A. Dynamics of an m-Link Robot Manipulator

The dynamic equation of an m-link robot manipulator can
be expressed in the following Lagrange form:

M(q)q̈ +C(q, q̇)q̇ +G(q) = τ + d (1)

where q, q̇, q̈ ∈ Rm are the vectors of generalized coordi-
nates, velocities, accelerations, M(q) ∈ Rm×m the positive
inertia matrix, C(q, q̇)q̇ ∈ Rm the Coriolis and centrifugal
torques, G(q) ∈ Rm the gravitational torques, τ (t) ∈ Rm

the applied torque, and d(t) ∈ Rm is bounded disturbance
vector representing torque disturbance. The following prop-
erties of the robot manipulator are well-known.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5382

Property 1: There exist known positive constants Mm,
MM , CM , and GM such that Mm ≤ ‖M(q)‖ ≤ MM ,
‖C(q, q̇)‖ ≤ CM , ‖G(q)‖ ≤ GM .

Property 2: Ṁ(q)− 2C(q, q̇) is skew-symmetric.
Assumption 1: It is assumed that d(t) is bounded as

‖d(t)‖ ≤ ρd = wT
dφd (2)

where wd ∈ R3 is an unknown vector, and φd =
[1, ‖q‖ , ‖q̇‖]T is a chosen regressor vector.

It is noted that the friction term, which depends on q̇, is
assumed to be included in d(t).

B. Nonlinear Function Approximation with Multiple FNNs

FNNs are used to approximate a nonlinear function.
Especially, Takagi-Sugeno-Kang (TSK) fuzzy models can
provide a suitable framework for function approximation [9].
The rule consequents are represented as linear functions of
the model inputs, while the antecedent part specifies the
operational region of a rule.

Let x = [x1, . . . , xn]T ∈ Rn be the input variable and
y ∈ Rm be the output variable. A symmetric Gaussian mem-
bership function (MF) and the weighted sum defuzzification
are used. For any given input vector x, the output can be
written in the following matrix form:

y =

wT

1 ψ1(x)
wT

2 ψ2(x)
...

wT
mψm(x)

 = W T Ψ(x) (3)

where wj and ψj(x) are the consequent parameters and the
regressors of the jth output with appropriate dimensions. The
number of rules and parameters (mean, deviation, and linear
weights) are defined differently for each output.

Next, multiple FNNs are considered. Let there exist N
FNNs. The output of each FNN is multiplied by the blending
coefficient αi to get the overall output as

y =
N∑

i=1

αiW iΨi(x). (4)

The blending coefficients αi are scalar values which
satisfy

∑N
i=1 αi = 1 and αi ≥ 0. These coefficients enable us

to combine all FNNs or to switch from one FNN to another.

III. MULTIPLE INCREMENTAL FUZZY NEURO-ADAPTIVE
CONTROL

In this section, an adaptive controller with multiple FNNs
that learn inverse dynamics of the robot manipulator for
different tasks is presented. In the proposed method, any self-
organizing modeling method can be used for this purpose.
An incremental hyperplane-based fuzzy clustering (IHFC)
[8] is adopted in this research because it is adequate for
system modeling and generates interpretable fuzzy rules.
Some requisite relations are introduced first.

For the given trajectory, the error signal is defined as

e , q − qd (5)

where qd ∈ Rm is a twice differentiable and bounded desired
trajectory. And define the filtered tracking error as

s , ė+ λe (6)

where λ is a scalar design parameter.
The dynamics of s may be written as

M(q)ṡ=M(q)(q̈ − q̈d + λė)
=−M(q)(q̈d − λė)−C(q, q̇)q̇ −G(q) + τ + d
=−C(q, q̇)s−M(q)(q̈d − λė)
−C(q, q̇)(q̇d − λe)−G(q) + τ + d

=−C(q, q̇)s− fd −∆w + τ + d (7)

where fd and ∆w are defined as follows

fd = M(qd)q̈d +C(qd, q̇d)q̇d +G(qd) (8)

∆w = M(q)(q̈d−λė)+C(q, q̇)(q̇d−λe)+G(q)−fd. (9)

The computed feedforward (or inverse robot dynamics)
term fd may be represented by multiple FNNs as

fd =
N∑

i=1

αiW iΨi(x) + ea (10)

where x ∈ Rn,(n = 3m) is the input vector of the
FNNs, which consists of qd, q̇d and q̈d. ea ∈ Rm is the
approximation error referred to as the network reconstruction
error or modeling error.

Assumption 2: It is assumed that ea is bounded as

‖ea‖ ≤ ρe = wT
e φe (11)

where we is unknown vector, and φe ∈ Rp is a known
positive function.

From the universal approximation property [9], Assump-
tion 2 is reasonable. We can find that the norm of fd in (8)
is bounded by a positive function from Property 1. From the
linear relation in the output and accompanying equations,
the norm of

∑N
i=1 αiW iΨi(x) is bounded by a positive

constant and ‖x‖. Therefore, φe in Assumption 2 can be
defined as φe = [1, ‖qd‖ , ‖q̇d‖ , ‖q̈d‖]T ∈ R4, (p = 4).

Multiple FNNs are generated dynamically using IHFC to
estimate fd. IHFC determines the structure and parameters
of the FNN, which is characterized by W i and Ψi. After the
initial value of the weight W i0 is obtained from the IHFC
algorithm, W i is further adjusted online to compensate for
modeling errors of the multiple FNNs. The IHFC learning
operates in discrete time at every sampling time and the
adaptation of the weight W i occurs in continuous time.
Therefore, W i and Ψi may vary in dimension concurrently
to reflect the structure of the multiple FNNs during the
control process. Assumption 2 can be fulfilled with various
choices of W i and Ψi and we further assume that IHFC can
always find one of these choices. In the IHFC algorithm, if
the modeling error becomes large, a new rule is created, and
as a consequence a different choice is selected to reduce
the modeling error. Also, the structure of Ψi is expected to
vary slightly during the process of online adaptation, since

5383

-

+

ddd qqq ,,
Robot

Manipulator

+

+
-

-

+

d

qqq ,,
ee s

Multiple Fuzzy Neural

Controller

FNN1

FNN2

FNNN

0
,W

1

2

N

e s

s
ed)(

seKsKeK nvp

2

Robust Controller with

Error Bound Estimation

PD+Nonlinear

Controller

Multiple IHFC

Learning

Cluster

Partition

Cluster

Merge

Fig. 1. Multiple incremental fuzzy neural control architecture.

adaptation is performed along the bounded desired trajectory
until the next sampling time. Thus, we fix Ψi and only W i

is further adapted to reduce the error. Therefore, the error
becomes smaller and this assumption seems feasible.

Finally, the adaptive controller in the following theorem
is proposed. The PD controller and the nonlinear controller
guarantee asymptotic stability during the learning phase.
In addition, we include the robust term with the bound
estimation to remove the effects of unknown disturbances
and modeling error. Fig. 1 depicts the architecture of the
proposed controller.

Theorem 1: Under Assumptions 1 and 2, if the following
control and adaptation laws are applied to the manipulator
(1), then the tracking errors converge to zero asymptotically.

Control Law:

τ =
N∑

i=1

αiŴ iΨi(x)− (ρ̂d + ρ̂e)
s

‖s‖
−Kn ‖e‖2 s

−Kpe−Kvs (12)

where Kn = knI , Kp = kpI and Kv = kvI are
sufficiently large constant diagonal positive definite gain
matrices (kn, kp, kv > 0), Ŵ i, ρ̂d and ρ̂e are the estimates
of W i, ρd and ρe, respectively.

Adaptation Law:

˙̂
W ij =−αisjΓ1jΨij ,

i = 1, . . . , N ; j = 1, . . . ,m (13)
˙̂wd = ‖s‖Γ2φd (14)
˙̂we = ‖s‖Γ3φe (15)

where Ŵ ij and Ψij is the estimated consequent parameters
and the regressors corresponding the jth output of ith FNN’s
parameter matrix given in (3), sj is the jth element of the
vector s, ŵd and ŵe are the estimated parameters of wd and
we, and the adaptation gains Γ1j , Γ2 and Γ3 are all positive
definite matrices with appropriate dimensions.

Proof: Consider the following Lyapunov function

V =
1
2
sTM(q)s+

1
2
eTKpe+

1
2

N∑
i=1

m∑
j=1

W̃
T

ijΓ
−1
1j W̃ ij

+
1
2
w̃T

d Γ−1
2 w̃d +

1
2
w̃T

e Γ−1
3 w̃e (16)

where W̃ ij = Ŵ ij −W ij , w̃d = ŵd − wd, and w̃e =
ŵe −we.

Then, the time derivative of V is obtained by using (7)
and (10) as

V̇ =
1
2
sTṀ(q)s+ sTM(q)ṡ+ eTKpė

+
N∑

i=1

m∑
j=1

W̃
T

ijΓ
−1
1j

˙̃W ij + w̃T
d Γ−1

2
˙̃wd + w̃T

e Γ−1
3

˙̃we

=
1
2
sTṀ(q)s− sTC(q, q̇)s+ sT (−fd −∆w + τ + d)

+
N∑

i=1

m∑
j=1

W̃
T

ijΓ
−1
1j

˙̃W ij + w̃T
d Γ−1

2
˙̃wd + w̃T

e Γ−1
3

˙̃we

+ eTKpė

= sT (−
N∑

i=1

αiW iΨi(x)− ea −∆w + τ + d)

+
N∑

i=1

m∑
j=1

W̃
T

ijΓ
−1
1j

˙̃W ij + w̃T
d Γ−1

2
˙̃wd + w̃T

e Γ−1
3

˙̃we

+ eTKpė

≤ sT (−
N∑

i=1

αiW iΨi(x) + τ) + ‖s‖ (ρd + ρe)

+
N∑

i=1

m∑
j=1

W̃
T

ijΓ
−1
1j

˙̃W ij + w̃T
d Γ−1

2
˙̃wd + w̃T

e Γ−1
3

˙̃we

+ eTKpė− sT ∆w (17)

where the skew-symmetric property is used.
By applying the control law (12), then we obtain

V̇ ≤ sT (
N∑

i=1

αiW̃ iΨi(x)− (ρ̂d + ρ̂e)
s

‖s‖

−Kn ‖e‖2 s−Kpe−Kvs) + ‖s‖ (ρd + ρe)

+
N∑

i=1

m∑
j=1

W̃
T

ijΓ
−1
1j

˙̃W ij + w̃T
d Γ−1

2
˙̃wd + w̃T

e Γ−1
3

˙̃we

+ eTKpė− sT ∆w

= sT
N∑

i=1

αiW̃ iΨi(x)− (ρ̃d + ρ̃e) ‖s‖

+
N∑

i=1

m∑
j=1

W̃
T

ijΓ
−1
1j

˙̃W ij + w̃T
d Γ−1

2
˙̃wd + w̃T

e Γ−1
3

˙̃we

+ kpe
T ė− kn ‖e‖2 sTs− kps

Te− kvs
Ts− sT ∆w

(18)

where ρ̃d = w̃T
dφd and ρ̃e = w̃T

e φe. Substituting ˙̃W ij =
˙̂
W ij , ˙̃wd = ˙̂wd, and ˙̃we = ˙̂we yields

V̇ ≤
N∑

i=1

m∑
j=1

W̃
T

ij(Γ−1
1j

˙̂
W ij + αisjΨij)

+ w̃T
d (Γ−1

2
˙̂wd − φd ‖s‖) + w̃T

e (Γ−1
3

˙̂we − φe ‖s‖)
+ kpe

T ė− kn ‖e‖2 sTs− kps
Te− kvs

Ts− sT ∆w

5384

(19)

where the summation is divided by each element. If the
adaptation law of (13)–(15) is applied, the above equation
is written as

V̇ ≤ kpe
T ė−kn ‖e‖2 sTs−kps

Te−kvs
Ts−sT ∆w. (20)

We can use the result in [10] to obtain the upper bound
on ∆w by

‖∆w‖ ≤ b1 ‖e‖+ b2 ‖e‖2 + b3 ‖s‖+ b4 ‖s‖ ‖e‖ (21)

where b1, b2, b3, and b4 are positive bounds which depend
on the desired trajectory and the physical properties of the
manipulator. By using (6) and (21), a new upper bound on
V̇ can be obtained as

V̇ ≤− kpλ ‖e‖2 − kn ‖e‖2 ‖s‖2 − kv ‖s‖2 + ‖s‖ ‖∆w‖
≤− kpλ ‖e‖2 − kn ‖e‖2 ‖s‖2 − kv ‖s‖2 + b1 ‖s‖ ‖e‖
− b2 ‖e‖2 [1/2− ‖s‖]2 − b4 ‖s‖2 [1/2− ‖e‖]2

+ (b2 + b4) ‖e‖2 ‖s‖2 + (b2/4) ‖s‖2 + (b3 + b4/4) ‖s‖2

=− (kpλ− b2/4) ‖e‖2 − (kv − b3 − b4/4) ‖s‖2

+ b1 ‖s‖ ‖e‖ − (kn − b2 − b4) ‖e‖2 ‖s‖2

− b2 ‖e‖2 [1/2− ‖s‖]2 − b4 ‖s‖2 [1/2− ‖e‖]2. (22)

If the control gain kn is chosen as

kn > b2 + b4 (23)

and the other non-positive terms on the last line of (22) are
eliminated, we obtain

V̇ ≤ −(kpλ−b2/4) ‖e‖2−(kv−b3−b4/4) ‖s‖2+b1 ‖s‖ ‖e‖
(24)

This equation can be written in the matrix form:

V̇ ≤ − [‖e‖ ‖s‖]Q
[
‖e‖
‖s‖

]
(25)

where

Q =
[
kpλ− b2/4 − b1/2
− b1/2 kv − b3 − b4/4

]
. (26)

The application of Gerschgorin theorem gives the suf-
ficient conditions on kp and kv that ensures the positive
definite Q as

kp > (b1/2 + b2/4)/λ (27)

and
kv > b1/2 + b3 + b4/4. (28)

Therefore, from (25), s and e are asymptotically stable
and, hence, ė is also asymptotically stable (e, ė → 0 as
t→∞).

To prevent the chattering phenomenon of the control input,
we can modify the robust control law as:

−(ρ̂d + ρ̂e)
s

‖s‖+ ε
(29)

where ε is a small positive constant. However, we can show
the ultimate uniform boundedness of the system instead

Two-link Robot Manipulator

Motor Driver Board

Computer Control System

End-effector

Fig. 2. Image of the robot manipulator and the control system for the
experiment.

of the asymptotical stability in this case. Furthermore, σ-
modification or e-modification laws can be used to inhibit
infinite growing of ŵd and ŵe.

From Theorem 1, blending between multiple models does
not affect the closed-loop stability, and several strategies can
be used to determine the blending coefficients effectively.
Some objects are registered and the change of object can
be recognized by various sensors such as tactile, force,
and vision sensors. For known tasks, one of the blending
coefficients is set to 1 and the fuzzy models can be switched
simply. For unknown tasks, the blending coefficients can
be selected to simply switch to the closest fuzzy model or
to mix several sets of fuzzy models. Automatic switching
using several criteria based on the estimation error [5], [6]
is another possible alternative.

IV. EXPERIMENTAL RESULTS

Some experiments have been carried out for a two-link
robot manipulator where the load mass is varied. We com-
pare the proposed multiple incremental fuzzy neuro-adaptive
controller (MIFNAC) with a conventional PID controller,
an adaptive controller [11], and a multiple neuro-adaptive
controller (MNAC) [7]. MNAC has NNs with predefined
fixed Gaussian radial basis functions (RBFs). It uses quite
similar control and adaptation laws to MIFNAC except for
the nonlinear terms and the structure of the NN. We also
include single model versions (NAC and IFNAC, respec-
tively) of MNAC and MIFNAC in the comparison to show
the advantages of using the multiple models.

The used manipulator and its control system are depicted
in Fig. 2. Two dc motors are used and a TMS320F2812
digital signal processor (DSP) is used to interface with the
encoder and driver circuits. The control interval is chosen to
be 2 ms, and the IHFC learning operates at 100 ms.

The desired trajectories are given as qd =
[cos(πt), sin(πt)]T . λ = 1 is used and all initial conditions
of the robot axes are set to zero.

During operation, the mass of the load changes as follows:

m3 =

0.0 kg, if 0 ≤ t ≤ t1 Task 1
0.5 kg, if t1 < t ≤ t2 Task 2
0.0 kg, if t2 < t ≤ t3 Task 1
0.2 kg, if t3 < t ≤ t4 Task 3
0.35 kg, if t4 < t ≤ t5 Task 4

5385

where t1 = 9, t2 = 19, t3 = 29, t4 = 39 and t5 = 50 second.
For convenience, the robot manipulator changes objects when
the end-effector of the robot reaches its lowest position. The
objects for Task 1, Task 2, and Task 3 are assumed to be
known but the object for Task 4 is not. Therefore, we prepare
3 multiple models for the experiment. In this experiment, the
blending coefficients are determined in advance considering
the task variation. Task 4 is similar to both Task 2 and Task
3, and thus the blending coefficients of Task 2 and Task 3
are set to 0.5.

PID gains are selected as Kp = 250I and Ki = Kd =
50I . The adaptive controller uses control gain Kv = 7I
and adaptation gain Γ = 5.0I . The parameters of NAC
and MNAC are as follows: Γ1j = 5.0I, j = 1, 2, . . . ,m,
Γ2 = Γ3 = 0.005I , and Kv = 7I . Also, 121 basis
functions are assigned evenly on the region of controllability.
For incremental rule generation of IFNAC and MIFNAC, the
parameters of IHFC are chosen as [σI , ε, τ] = [0.2, 0.1, 0.05].
The adaptation and control gains are selected as follows:
Γ1j = 5.0I, j = 1, 2, . . . ,m, Γ2 = Γ3 = 0.005I , and
Kp = Kv = Kn = 3.5I .

Fig. 3 and Fig 4 show the tracking errors for link 1
and link 2, respectively. With the elapse of time, adaptation
occurs and the tracking error is reduced. The PID controller
achieves the best rising time by applying large torque, but
gives poor tracking performance. The adaptive controller
gives the worst transient response and similar steady-state
tracking performance to the PID controller. NAC (MNAC)
and IFNAC (MIFNAC) give a similar transient response, but
IFNAC (MIFNAC) provides a better steady-state tracking
error.

At t = t1, the task is changed to Task 2 and thus
the system dynamics also changes for t1 < t ≤ t2. The
performance of the PID controller does not improve, since it
does not use any knowledge about the robot. Other adaptive
controllers again start their adaptation to learn the dynamics
and some transient errors appear. In this case, MIFNAC can
give less tracking error after learning is finished, because
supervised IHFC learning is used to approximate the inverse
dynamics. However, IFNAC shows residual steady state
error, resulting from the single fuzzy model having already
learned the dynamics of Task 1. The IHFC learning hardly
adapts to the new environment after the learning is finished
as other self-organizing FNNs do.

For t2 < t ≤ t3, the task is changed to the former Task
1 again and multiple models prove their strengths here. The
single model approaches (adaptive controller and NAC) have
to be adapted to Task 1 again, since it forgot the control skill
for Task 1 while it learned a new control skill for Task 2.
Therefore, some transient errors due to the task transition are
also seen. On the other hand, small transient errors can be
found with multiple models (MNAC and MIFNAC) that have
the control skill for Task 1 as one of the multiple models.
In addition, IFNAC also gives small tracking error because
it has the previously learned memory of Task 1.

For t3 < t ≤ t4, the task is changed to Task 3. All
controllers except for the PID controller again start their

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

time (sec)

N
u
m

b
e
r

o
f
fu

z
z
y
 r

u
le

s

Task 1 Task 2 Task 1 Task 3 Task 4

τ
1

τ
2

Fig. 5. Number of fuzzy rules.

adaptation, and similar descriptions can be made for t1 <
t ≤ t2. Finally, the task is changed to unknown Task 4 for
t4 < t ≤ t5 and the control skills for the known tasks that are
similar to this unknown task will be used. The control skills
for Task 2 and Task 3 are blended for Task 4. By using these
control skills, the adaptation time and the transient error due
to task transition can be reduced.

Fig. 5 illustrates the generation of fuzzy rules of MIFNAC.
At the beginning of learning when the task transitions occur,
the fuzzy rules are generated and merged dynamically. After
the learning is converged, 3–9 rules are sufficient to fulfill
the desired tasks, which is very parsimonious in comparison
with non-incremental methods (NAC and MNAC).

We compared the control performance by averaging the
integrals of the absolute magnitude of the error (IAE).
Table I summarizes the comparison results. The tracking
performance of NAC is improved slightly compared with the
adaptive controller. Multiple model approaches provide better
tracking performance relative to other controllers, especially
their single versions. Through the whole experiment time,
MIFNAC gives superior IAE over other methods. In partic-
ular, during the interval t ∈ [t2, t3], where the former Task 1
is revisited, multiple models improved IAE significantly and
MIFNAC improved IAE even more. While IFNAC can give
quite good IAE during this interval, the overall performance
is not good, because it showed biased behaviors in the
tracking control of other tasks. For the unknown Task 4,
t ∈ [t4, t5], IAE for MIFNAC is improved slightly.

V. CONCLUSION

In this paper, an adaptive control scheme for robot manip-
ulators using multiple incremental FNNs is proposed. The
multiple FNNs are used to approximate the changing system
dynamics for various tasks. The multiple FNNs are generated
dynamically by using incremental hyperplane-based fuzzy
clustering. Although multiple models use more neurons or
rules than a single model in general, the incremental scheme
relaxes this requirement considerably, since the rule has
its own MFs and only necessary rules are generated. For
repeated jobs, the proposed control scheme reduced transient
errors due to task transition effectively. Also, the incremental

5386

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
1
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(a) PID controller.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
1
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(b) Adaptive controller.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
1
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(c) NAC.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
1
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(d) MNAC.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
1
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(e) IFNAC.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
1
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(f) MIFNAC.

Fig. 3. Experimental tracking results of link 1.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
2
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(a) PID controller.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
2
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(b) Adaptive controller.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
2
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(c) NAC.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
2
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(d) MNAC.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
2
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(e) IFNAC.

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

e
2
 (

ra
d

)

Task 1 Task 2 Task 1 Task 3 Task 4

(f) MIFNAC.

Fig. 4. Experimental tracking results of link 2.

TABLE I
EXPERIMENTAL PERFORMANCE COMPARISON OF MIFNAC WITH OTHER CONTROLLERS

of Rules IAE
Method /Neurons t ∈ [0, t5] [0, t1] [t1, t2] [t2, t3] [t3, t4] [t4, t5]

PID Controller - 4.8169 1.0252 0.9781 0.9093 0.9448 0.9595
Adaptive Controller [11] - 3.2209 1.5100 0.4481 0.6071 0.3667 0.2891

NAC [7] 121 3.2050 0.6506 0.3890 0.6335 0.7446 0.7572
MNAC [7] 121 2.0778 0.6653 0.3972 0.2611 0.3943 0.3598

IFNAC 4–11 4.0770 0.9104 1.5901 0.2983 0.5317 0.7465
MIFNAC 3–9 1.7686 0.6348 0.4250 0.1853 0.3263 0.1972

scheme achieves better tracking performance with less fuzzy
rules.

REFERENCES

[1] F. L. Lewis, A. Yeşildirek, and K. Liu, “Multilayer neural-net robot
controller with guaranteed tracking performance,” IEEE Trans. Neural
Netw., vol. 7, no. 2, pp. 388–399, Mar. 1996.

[2] E. Kim, “Output feedback tracking control of robot manipulators with
model uncertainty via adaptive fuzzy logic,” IEEE Trans. Fuzzy Syst.,
vol. 12, no. 3, pp. 368–378, Jun. 2004.

[3] S. Wu, M. J. Er, and Y. Gao, “A fast approach for automatic generation
of fuzzy rules by generalized dynamic fuzzy neural networks,” IEEE
Trans. Fuzzy Syst., vol. 9, no. 4, pp. 578–594, Aug. 2001.

[4] C.-S. Chen, “Dynamic structure neural-fuzzy networks for robust
adaptive control of robot manipulators,” IEEE Trans. Ind. Electron.,
vol. 55, no. 9, pp. 3402–3414, Sep. 2008.

[5] K. S. Narendra, O. A. Driollet, M. Feiler, and K. George, “Adaptive
control using multiple models, switching and tuning,” Int. J. Adaptive
Control and Signal Process., vol. 17, no. 2, pp. 87–102, Mar. 2003.

[6] C.-Y. Lee and J.-J. Lee, “Adaptive control for uncertain nonlinear
systems based on multiple neural networks,” IEEE Trans. Syst., Man,
Cybern. B, vol. 34, no. 1, pp. 325–333, Feb. 2004.

[7] ——, “Multiple neuro-adaptive control of robot manipulators using
visual cues,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 320–326,
Feb. 2005.

[8] C.-H. Kim, M.-S. Kim, and J.-J. Lee, “Incremental hyperplane-based
fuzzy clustering for system modeling,” in Proc. IEEE Conf. Ind.
Electron. Soc., Taipei, Taiwan, Nov. 2007, pp. 614–619.

[9] H. Ying, “General SISO Takagi-Sugeno fuzzy systems with linear
rule consequent are universal approximators,” IEEE Trans. Fuzzy Syst.,
vol. 6, no. 4, pp. 582–587, Nov. 1998.

[10] N. Sadegh and R. Horowitz, “Stability and robustness analysis of a
class of adaptive controllers for robotic manipulators,” Int. J. Robot.
Res., vol. 9, no. 3, pp. 74–92, Jun. 1990.

[11] J.-J. E. Slotine and W. Li, “Adaptive manipulator control: A case
study,” IEEE Trans. Autom. Control, vol. 33, no. 11, pp. 995–1003,
Mar. 1988.

5387

