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Abstract— This paper describes 3D biped walking generation
and control based on Limit Cycle Walking. In our study, we
use the simplest possible 3D biped model with three DOFs,
incorporating roll and pitch motions in the frontal/sagittal
planes, respectively. Our approach dynamically decouples these
two motions, stabilizes pitch motion in the sagittal plane via the
Limit Cycle Walking approach, introduces robustness for this
motion using energy feedback control, and robustness for roll
motion based on reference trajectory feedback tracking control.
The roll reference trajectory is generated via analysis of the
impact dynamics. Performance is verified via simulations.

I. INTRODUCTION

In the near future, humanoid robots are expected to per-

form various tasks in our everyday life environment. Because

of this perspective, research in the field has been advancing

rapidly in recent years. At present, however, humanoid robots

have just limited capabilities, such as biped walking, balance

maintenance excluding external forces, simple communica-

tion and so on. Therefore, nowadays the field of application

of humanoid robots is mainly education or entertainment.

Further research is needed to broaden the capabilities of

humanoid robots in the years ahead [1].

Central focus point in humanoid robot research is walking

pattern generation and control. Most methods used so far

have been based on the Zero-Moment-Point (ZMP) con-

cept [2]. As an example, consider Kajita’s Linear Inverted

Pendulum Mode concept [3] which represents the dynamic

model of a humanoid robot as an inverted pendulum that

maintains the height of the center of mass (CoM). This

method has found broad application because it ensures real–

time performance and robust stability of walking by a simple

mechanism.

ZMP–based methods have almost reached perfection.

There are, however, two basic problems associated with such

methods: energy efficiency and naturalness. We should note

that ZMP–based methods make use of inverse kinematics to

manipulate the ZMP or the CoM’s position and velocity [4].

Therefore, singularities occurring at straight–knee configura-

tions have to be avoided. Hence, it becomes impossible for

the biped to take a stance with straight knees. This problem

is related to energy efficiency because a bended–knee stance

consumes more energy than a straight–knee one [5]. Several

research works have already addressed in various ways the

singularity/straight–knee problem under ZMP-based methods

[6]–[8].

Another prospective method for walking pattern genera-

tion is the so-called Passive Dynamic Walk (PDW) method
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[9]. The underlying model is that of a simple passive biped

walking down a slope, using thereby the gravity force in a

natural way. A stable limit cycle is known to exist for PDW.

The method can be regarded as the ultimate walking pattern

generation method, from the viewpoints of energy efficiency

and naturalness.

Recently, some research works appeared to address the

extension of the PDW method to more realistic biped models,

performing in 3D space. McGeer, for example, tried to model

3D PDW incorporating both roll and yaw rotation [10].

He found out that the walking pattern cannot be stabilized

because of the dynamical roll–to–pitch or yaw–to–pitch

coupling, inhibiting the generation of a stable limit cycle

for pitch motion. Solutions for stabilizing the 3D walking

pattern have been proposed by Kuo [11] and Wisse et al.

[12], based on stabilizing roll motion and on using a pelvic

body as yaw and roll compensator, respectively. As a result

of these studies, one can conclude that decoupling plays an

important role if one wishes to take advantage of the existing

stable limit cycle of pitch motion.

There is a walking pattern generation method, called

“Limit Cycle Walking,” derived from the PDW concept. This

walking method has been defined in [13] as “a nominally

periodic sequence of steps that is stable as a whole, but not

locally stable at any instant time.” Note, however, that Limit

Cycle Walking has some inherent problems, as follows:

• It is difficult to find a stable limit cycle.

• The generated walking motion is not robust, because

there is no feedback component.

• The method is applied mostly to planar robots.

Because of these problems, Limit Cycle Walking based pat-

tern generation is not suitable for direct practical application.

The aim of this work is addressing the problem of 3D

walking pattern generation based on the Limit Cycle Walking

concept. More specifically, we develop a method that decou-

ples the dynamics in an appropriate way to take advantage of

the existing stable limit cycle of pitch motion, in the sagittal

plane only. Roll motion, on the other hand, is stabilized

via ankle joint actuation. In addition, reconstruction of the

gravity environment and energy feedback control for stabi-

lizing pitch motion is applied. This combined control method

ensures that pitch motion can be regarded as a planar robust

dynamic walking based on the Limit Cycle Walking concept.

The control method for roll motion is tracking control with

specified reference trajectory. The reference trajectory is

generated from analysis of the equation of collision.
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II. THE SIMPLEST THREE–DIMENSIONAL BIPED

MODEL

This paper deals with the simplest 3D biped model as

shown in Fig. 1. The model is composed of three links and

three joints. The three links are the stance leg, the pelvis

and the swing leg. The three joints are the ankle roll joint

(Joint 1), the ankle pitch joint (Joint 2) and the hip pitch

joint (Joint 3). Note that there is also a massless foot link.

We assume the support leg to be always fixed to the ground.

In this case, joint torques in the ankle joints can be applied

relative to the massless foot link. The centroids of the three

links are set at the midpoints. We assume that link inertia

and joint friction can be ignored.

The generalized coordinates of the model are the joint

angles: q = [ q1 q2 q3 ]T , while the generalized force

vector is represented in terms of joint torque as τ =
[ τ1 τ2 τ3 ]T . The total mass of the robot is defined as

mt = m1 + m2 + m3.

Our biped is modeled as a hybrid dynamical system with

two phases: the support phase, modeled with the equation

of motion of a serial link chain, and the leg switch phase,

modeled with the impact dynamics equation. It is assumed

that leg switching occurs instantaneously.

A. Equation of motion

The equation of motion of the simplest 3D biped model

during the support phase is given as:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (1)

where M(q) ∈ ℜ3×3 denotes the inertia matrix C(q, q̇) ∈
ℜ3×3 denotes the matrix for Coriolis and the centrifugal

forces g(q) ∈ ℜ3 is the gravity term and τ ∈ ℜ3 is the

control torque.

B. Equation of collision

The equation of collision models a collision between the

swing leg’s toe and the ground. We assume the collision is a

completely inelastic one. Therefore the equation of collision

Fig. 1. The simplest 3D biped model: (a) rendered view, (b) kinematic
structure with coordinate frames.

TABLE I

PHYSICAL PARAMETERS OF THE SIMPLEST 3D BIPED MODEL.

Link name Length [m] Mass [kg]

Stance leg l1 = 1.0 m1 = 5.0
Pelvis l2 = 0.3 m2 = 10.0

Swing leg l3 = 1.0 m3 = 5.0

is modeled after the principle of conservation of angular

momentum:

Q+(q+)q̇+ = Q−(q−)q̇−, (2)

where superscripts (◦)− and (◦)+ denote pre– and post–

collision values, respectively, Q−(q−)q̇− denoting the angu-

lar momentum at pre–collision and Q+(q+)q̇+ that at post–

collision, and the matrices Q−(q−) ∈ ℜ3×3 and Q+(q+) ∈
ℜ3×3 have the meaning of inertia matrices.

III. WALKING GENERATION AND CONTROL

Figure 2 shows the phase portrait of 3D PDW with slope

angle φ = 0.02 rad. As discussed in Section I, PDW in 3D

is impossible because the roll motion cannot be energized by

the gravity potential. Consequently there is no limit cycle.

To cope with the problem, we consider the design of

a tracking control law for the ankle roll joint. However,

roll motion with a reference trajectory has the following

problems:

• Roll motion is coupled with pitch motion, therefore the

limit cycle for pitch motion disappears.

• Roll motion must be synchronized with pitch motion

within the existing limit cycle.

• The initial and the final values are unknown.

As a possible approach, we adopt decoupling control in

combination with reconstruction of gravity environment plus

energy feedback control for stabilizing pitch motion. This

combined control method ensures that pitch motion can be

regarded as planar robust dynamic walking based on the

PDW concept. Thereby, we can deal with pitch motion as

an independent planar motion.
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Fig. 2. Phase portrait of 3D Passive Dynamic Walking.
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Fig. 3. Block chart of biped controller based on the decoupling control and the energy feedback control.

A. Control method for the pitch motion

1) Decoupling control: The decoupling control torque is

calculated with the matrices M(q) and C(q, q̇) which are

included in the equation of motion:

M(q) =





M11 M12 M13

M21 M22 M23

M31 M32 M33



 , (3)

C(q, q̇) =





C11 C12 C13

C21 C22 C23

C31 C32 C33



 . (4)

The second and the third rows of the equation of motion

describe the moments on the two pitch joints (Joints 2 and

3). The first column of these two rows describes the coupling

moment due to the roll joint (Joint 1). Consequently the

coupling components of roll–to–pitch coupling are M21 M31

C21 and C31. Therefore the matrices for decoupling control

become:

M∗(q) =





0 0 0
M21 0 0
M31 0 0



 , (5)

C∗(q, q̇) =





0 0 0
C21 0 0
C31 0 0



 . (6)

With the help of these matrices the decoupling control torque

becomes:

τ dcp = M∗(q)q̈ + C∗(q, q̇)q̇. (7)

This decoupling control torque is used as a feedforward

control component.

2) Reconstruction of the gravity environment: We recon-

struct the gravity environment for the pitch motion because

the gravity environment is changed by the roll motion. The

control torque which cancels the coupling between the roll

motion and the pitch motion is calculated with the gravity

term of the equation of motion g(q). This matrix in detail

is expressed as:

g(q) =





g1

g2

g3



 =





αC1 −
{

βC2 − γS23

}

S1

(γS23 − βS2)C1

γC1S23



 g, (8)

where S1 = sin q1 C1 = cos q1 S2 = sin q2 C2 = cos q2

S23 = sin(q2 + q3) α = (m2 + 2m3)l3/2 β =
{

m1 +
(2m2 +m3)

}

l1/2 γ = m3l2/2. The components of roll–to–

pitch coupling are the terms which include C1 or S1 in the

second and the third rows. Consequently, the control torque

for reconstruction of the gravity environment for the pitch

motion becomes:

τ g =





g∗1
g∗2
g∗3



 =





0
(γS23 − βS2)(C1 − 1)

γ(C1 − 1)S23



 g. (9)

3) Energy feedback control: Energy feedback control was

proposed by Asano et al. [14]. This control method stabilizes

planar compass biped walking based on the PDW concept.

It is known from the features of planar PDW that the rate

of increase of the mechanical energy E w.r.t. the horizontal

CoM position rCx is constant:

∂E

∂rCx

= mtg tanφ. (10)

The time differential of this equation is:

Ė = mtgṙCx tanφ, (11)

where ṙCx is the horizontal component of the CoM velocity

vector. This equation expresses that the acceleration of the

robot in the walking direction is concentrated at the CoM.

Then, the desired energy trajectory Ed can be chosen as:

Ed(rCx) = mtgrCx tan φ + E0, (12)

where E0 is the desired energy value when rCx = 0 for

steady motion. The following asymptotic stabilizing control

has been proposed [14]:

d

dt
(E − Ed(rCx)) = −ζ(E − Ed(rCx)), (13)
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where ζ is a constant positive feedback gain. Using Eqs. (10)

and (12), the time derivative of the energy error is:

d

dt
(E − Ed(rCx)) = q̇T τ p − mtgṙCx tanφ, (14)

where τ p =
[

τ2 τ3

]T
means the control torque for pitch

motion. Therefore, based on Eqs. (13) and (14), we can solve

the following indeterminate equation:

q̇T τ p = mtgṙCx tanφ − ζ(E − Ed(rCx)). (15)

As a solution, we choose the constant torque ratio condition:

τ2 = µτ3, (16)

where µ is a constant. The solution of Eq. (15) with constant

torque ratio is:

τ ef =

[

µ
1

]

mtgṙCx tanφ − ζ(E − Ed(rCx))

µq̇2 + q̇3

. (17)

This control input is time–independent and maintains the

property of autonomy. The energy feedback control torque

for the simplest 3D biped model becomes:

τ ef3 =

[

0
τ ef

]

. (18)

4) Synchronization between the pitch and the roll motion:

The hip joint of the robot is locked at a specified timing

for synchronization between the pitch and the roll motion.

Specifically, we lock the joint when the velocity of the hip

joint becomes zero: q̇3 = 0. The hip locking torque is derived

from the Lagrange multiplier with constraint q̈3 = 0:

τ lock = JT λ, (19)

where

J =
[

0 0 1
]

, (20)

λ = −{J{M(q)}−1JT }−1

{

J{M(q)}−1(τ − C(q, q̇)q̇ − g(q))
}

. (21)

Because of the chosen lock timing, it is easy to synchronize

the roll and the pitch motions.

B. Control method for roll motion

1) Control based on the analysis of the equation of

collision: The first method is PD control of the ankle roll

joint with a given reference trajectory which is generated

by a spline function. The main point of this method is to

determine the initial and the final values. As a method of

determination we consider the equation of collision (Eq. (2))

and the known initial state of the robot qini q̇ini. Here qini

q̇ini coincide with q+ q̇+. We determine the initial state of

the robot as:

qini = q+ =





q+

1

q+

2

q+

3



 =





0.0
−0.19

0.38



 rad, (22)

q̇ini = q̇+ =





q̇+

1

q̇+

2

q̇+

3



 =





−0.51
−0.86

0.4



 rad/s. (23)

The initial angle of the ankle roll joint is zero because we

consider it acceptable that the robot posture is erect at the

leg switching phase. In addition the initial velocity of the

ankle roll joint is −0.51 rad/s which is an arbitrary value.

Here, we adopt the same value as in the case of passive

dynamic walking (see Fig. 2). The second and the third rows

are the ankle and the hip pitch joints. The initial values

are determined from planar dynamic walking with energy

feedback control. The final joint angle of the robot qfin can

be calculated via q+:

qfin = q− =





q+

1

q+

2 + q+

3

−q+

3



 =





0.0
0.19

−0.38



 rad. (24)

By substituting qini q̇ini and qfin into the equation of

collision (Eq. (2)) we can obtain the final state of the robot:

q̇fin = q̇− = {Q−(q−)}−1Q+(q+)q̇+

=





−0.63
1.08
0.12



 rad/s. (25)

In this way we can obtain the initial and the final states of

the ankle roll joint angle which is the first component of q±

and the joint velocity which is the first component of q̇±.

The meaning of these components can be explained with the

phase portrait shown in Fig. 4. The circular arc from I to

II is the solution curve for the support phase of the right

leg. The circular arc from III to IV is the solution curve

for the support phase of the left leg. The jumps from II

to III and from IV to I denote the leg switch phase. Here,

q−1 = −0.63 rad/s and q+

1 = −0.51 rad/s stand for the state

at the jump from IV to I. Consequently, a limit cycle can

be generated when the same jump in the state occurs. The

second and the third components in q̇− are identical with

the final values of the ankle and the hip pitch joint velocity.

Note, that the pitch motion is controlled by energy feedback

control, thus stability is preserved. Therefore, we do not have

to consider these values. Consequently, we can obtain the

reference trajectory of the ankle roll joint which is calculated
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Fig. 4. Phase portrait of the ankle roll joint.
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by the spline function. The reference trajectory for the ankle

roll joint q1d is:

q1d(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5, (26)

where ai, i = 0, 1, ..., 5 are the constant coefficients of the

spline function, and t is the time. As constraint conditions,

we choose: q1d−0 = 0.0 rad as the initial value of the ankle

roll joint angle, q̇1d−0 = −0.51 rad/s is the initial value of

the ankle roll joint velocity, q̈1d−0 = 0.0 rad/s2 as the initial

value of the ankle roll joint acceleration, q1d−f = 0.0 rad

as the final value of the ankle roll joint angle, q̇1d−f = 0.63
rad/s as the final value of the ankle roll joint velocity,

q̈1d−f = 0.0 rad/s2 as the final value of the ankle roll

joint acceleration, and tf = 0.725 s as the final time.

Consequently, the first control method for the ankle roll joint

becomes:

τ spl =





kp(t)(q1d − q1) + kd(t)(q̇1d − q̇1)
0
0



 , (27)

where kp(t) = 1000t Nm/rad and kd(t) = 1000t Nms/rad

are variable positive feedback gains used to avoid excessive

joint torque during the leg switch phase. In addition time t
is reset in the leg switch phase.

2) Empirical method: The second control method for the

ankle roll joint is tracking control with an empirical reference

trajectory based on the relation between the CoM position

and the mechanical energy. The reason why we choose this

relation is to imitate energy feedback control because the

reference trajectory of energy feedback control is in fact

a relation between the CoM position and the mechanical

energy which includes the frontal plane velocity only. The

reference trajectory is empirical therefore it is difficult to

explain why we can obtain a trajectory for the relation

between the CoM position rCx and the mechanical energy of

the frontal plane Ef = 1

2
mtr

2
Cy which includes the frontal

plane velocity rCy only. In a simple term we repeat the

simulation with random constant torque of the ankle roll

joint. The CoM in the frontal plane trajectory is:

Ed−f (rCx) = −11926r6
Cx − 2087.1r5

Cx + 657.95r4
Cx

+151.42r3
Cx + 46.79r2

Cx

−0.5337rCx − 0.0024. (28)

Consequently the second control method for the ankle roll

joint is:

τ emp =





k{Ed−f (rCx) − Ef}
0
0



 , (29)

where k is a constant positive feedback gain.

IV. NUMERICAL SIMULATION

The control torque for the conservation of the pitch motion

limit cycle is:

τ lc = τ dcp + τ g + τ ef3 + τ lock. (30)

Besides, we consider two kinds of control for the roll motion.

Consequently we deal with two kinds of simulations with

control torques τ = τ lc + τ spl and τ = τ lc + τ emp

respectively where the constant spline coefficients are a0 = 0
a1 = 0.51 a2 = 0 a3 = −0.99 a4 = −0.96 a5 = 1.36
and k = 3000 Nm/rad. Figure 6 shows the simulation

result of Limit Cycle Walking with the control torque τ =
τ lc + τ spl. Figure 6(a) shows the phase portrait. The robot

walks periodically. However we are not satisfied with the

trajectory of q1 vs q̇1 in this phase portrait because the shape

of the trajectory is awkward. Therefore we conclude that roll

motion is quite unnatural motion. Figure 6(b) shows the joint

torque. Figure 7 shows the simulation result of Limit Cycle

Walking with the control torque τ = τ lc+τ emp. Figure 7(a)

shows the phase portrait. The robot walks periodically. We

compare the trajectory of q1 vs q̇1 in this phase portrait with

the respective trajectory in Fig. 6(a).

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we designed a biped controller based on

Limit Cycle Walking. Concretely we adopted energy feed-

back control for pitch motion. Hence, pitch motion became

robust and the limit cycle was ensured. Consequently we

regarded the coupling from the roll motion at the collision

as an external disturbance and resolved the problem. Roll

motion was controlled via tracking control with a reference

trajectory which has non–zero velocity at the initial and the

final states. We choose two types of reference trajectories

(Eqs. (26) and (28)). The trajectory in Fig. 7(a) has a neat

shape. This suggests that the roll motion is optimized by

our repeated empirical method. Consequently the roll motion

control with the empirical reference trajectory is superior to

that of the analysis of the equation of collision. We can

conclude that the method of analysis of the equation of

collision was successful. However the method of generation

of the trajectory that satisfies the analysis, was unsuitable.
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Fig. 6. Simulation results of the simplest 3D Limit Cycle Walking with
control torque fi = fi lc + fi spl.

Consequently we should not use a spline function for gen-

eration of the trajectory. Hence, we have to deal with a new

problem: how to generate a reference trajectory for the ankle

roll joint?

B. Future works

Our purpose is to apply the control based on Limit Cycle

Walking to humanoid robots. We summarize the problems

and assignments of 3D Limit Cycle Walking as follows. It

is needed:

• to optimize the reference trajectory of the ankle roll

joint.

• to consider pitch motion stabilization because we don’t

think that energy feedback control is the best solution.
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