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Abstract — A novel efficient trilateration algorithm is 

presented to estimate the position of a target object, such as a 

mobile robot, in a 2D or 3D space. The proposed algorithm is 

derived from a nonlinear least-squares formulation, and 

provides an optimal position estimate from a number (greater 

than or equal to the dimension of the environment) of reference 

points and corresponding distance measurements. Using 

standard linear algebra techniques, the proposed algorithm has 

low computational complexity and high operational robustness. 

Error analysis has been conducted through simulations on 

representative examples. The results show that the proposed 

algorithm has lower systematic error and uncertainty in 

position estimation when dealing with erroneous inputs, 

compared with representative closed-form methods. 

I. INTRODUCTION 

his paper presents a novel efficient trilateration 

algorithm which facilitates the self-localization of 

autonomous mobile robots in 2D and 3D environments.  

A. Trilateration Principle 

Trilateration refers to positioning an object based on the 

measured distances between the object and multiple 

reference points at known positions [1,2]. (People tend to 

call it ―multilateration‖ when more than three reference 

points are used to position the object. However, 

―multilateration‖ has been used to name another process of 

position estimation based on the measured differences in the 

distances between the object and three or more reference 

points [3].)  

In principle, trilateration locates an object by solve a 

system of equations in the form of  
2
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where p0 denotes the unknown position of the object, pi the 

known position of the ith reference point, and ri the known 

distance between p0 and pi. Equation (1) represents a circle 

in 
2
 or a sphere in 

3
, centered at pi with a radius of ri. 

Solving a system of (1) is equivalent to finding the 

intersection point/points of a set of circles in 
2
 or spheres in 


3
.  

In reality, trilateration error arises due to the inaccuracy in 

measuring distances and mapping reference points, and is 

largely affected by the geometrical arrangement of the 
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reference points and the object [4]. As a result, the involved 

circles or spheres may not intersect at the actual position of 

the object, or even may not intersect at all. Thus, it is 

necessary to determine a ―best approximation‖. 

B. Review of Existing Algorithms 

Though straightforward in concept, the trilateration 

problem is far from trivial to solve, due to the nonlinearity of 

(1) and the errors in pi and ri. A number of algorithms have 

been proposed to solve the trilateration problem, including 

both closed-form and numerical solutions.  

To determine the 3D position of an object based on the 

distance measurements from three reference points, Fang 

provided a closed-form solution by referencing to the base 

plane defined by the three reference points [5]. A similar 

formulation was presented by Ziegert and Mize [6]. 

Independent of the choice of any particular frame of 

reference, Manolakis derived a more general closed-form 

solution [4]. His work shows that the positioning error is 

affected by the ranging errors, the geometrical arrangement 

of the object and reference points, and the nonlinearity of the 

algorithm. A few typos in [4] were fixed by Rao [7]. 

Recently Thomas and Ros proposed an alternative closed-

form solution using Cayley-Menger determinants which are 

related to the geometry of the tetrahedra formed by the 

object and three reference points [2]. In a more general 

context, Coope presented a closed-form solution for 

determining the intersection points of n spheres in 
n
 based 

on Gaussian elimination [8].  

In general, closed-form solutions have low computational 

complexity when the solution of (1) exists. They also 

facilitate the theoretical analysis of the algorithm 

performance [2,4]. However, in general closed-form 

solutions do not accommodate the situation that the involved 

spheres (circles) do not intersect at one point, i.e. no solution 

exists for (1). Moreover, existing closed-form solutions only 

solve for the intersection points of n spheres in 
n
. They do 

not apply to determining the intersection point of N>n 

spheres in 
n
, where small errors in distance measuring and 

reference point mapping can easily cause the involved 

spheres to fail to intersect at one point. In order to determine 

the physically existing location of the target object, even if 

no intersection point exists, it is always necessary to 

determine a ―best approximation‖ which minimizes the 

residuals of (1) in some appropriate form. Numerical 

methods are in general necessary in order to provide such an 

estimate, as indicated in [2,8].   
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Foy presented a numerical algorithm called Taylor-series 

estimation which solves the simultaneous set of algebraic 

position equations by iteratively improving an initial guess 

with local linear least-sum-squared-error corrections [9]. 

Incorporating the distance measurement errors, Nadivi et al. 

compared three statistical methods, a linear least-squares 

estimator, an iteratively reweighted least-squares estimator 

and a nonlinear least-squares technique, and showed that in 

general, the nonlinear least-squares method performs the best 

[10]. Hu and Tang gave a geometric explanation of the 

optimal result in least-squares-based trilateration, which is 

the point of tangency between the hyperellipsoid, determined 

by the standard deviation of the positioning error, and the 

intersection of the hypersurfaces, determined by the 

constraints among the measurements [11]. Coope also 

suggested a nonlinear least-squares method to obtain the 

approximate solution, which minimizes the sum of the 

difference between the measured and estimated distances [8]. 

In another work, Pent et al. defined a probabilistic model of 

the distance measurement error and used the extended 

Kalman filtering to solve the trilateration problem [12]. 

In general, numerical methods are available to provide an 

optimal estimation of the position of a target object, in 

particular when no solution exists for (1). Moreover, 

numerical methods are in general not limited to dealing with 

n spheres in 
n
. In fact, more accurate position estimate is 

expected as the number of involved reference points 

increases. However, compared with closed-form solutions, 

numerical methods in general have higher computational 

complexity, and closed-form performance analysis is in 

general not available. Many numerical methods linearize the 

trilateration problem [9,10,12], which introduces extra errors 

into position estimation. Many numerical methods involve a 

searching process, such as Newton’s method and the steepest 

descent method, which iteratively improves an initial guess 

towards a converged position estimate [8-10]. However, 

most of these search algorithms are sensitive to the choice of 

the initial guess, and a global convergence towards the 

desirable position estimate is not guaranteed. 

C. Overview of the Proposed Algorithm 

Addressing the above-listed issues of existing tirlateration 

algorithms with an emphasis on mobile robotics, we propose 

an alternative algorithm which estimates the position of a 

target object, such as a mobile robot, based on the 

simultaneous distance measurements from multiple reference 

points, by solving a nonlinear least-squares formulation of 

trilateration using standard linear algebra techniques. The 

proposed algorithm provides an optimal position estimate of 

the intersection point of Nn spheres in 
n
 (where n=2 or 3), 

which is not limited to solving for the intersection points of 

exact n spheres in 
n
. The proposed algorithm does not 

depend on the techniques which tend to be affected by 

algebraic singularities, such as matrix inversion, and hence 

has high operational robustness. Though not in closed form, 

the proposed algorithm has a low computational complexity.  

The layout of this paper is as follows. In Section II, we 

will derive and explain the proposed algorithm in detail. In 

Section III, we will analyze the performance of the proposed 

algorithm through simulations with representative examples. 

Section IV will summarize this work. 

II. PROPOSED TRILATERATION ALGORITHM 

A. Nonlinear Least-Squares Formulation 

The goal of the proposed trilateration algorithm is to 

estimate the position of a mobile robot based on the 

simultaneous distance measurements from multiple reference 

points at known positions. In order to obtain an optimal 

position estimate of the robot from imperfect distance 

measurement and reference mapping, we target our 

algorithm to solve the general nonlinear least-squares 

trilateration formulation. That is, we define an optimal 

approximation of the position of the involved mobile robot 

in 
n
 (

n
 can be either 

2
 or 

3
 corresponding to a 2D or 3D 

environment, with the global frame of reference attached to 

the environment.) as 

)(minarg 00

0

pp
p

Sopt 
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where 



N

i

ii

T

i rS
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22

000 ])()[()( ppppp , p0 denotes an 

estimate of the robot position, pi the pre-mapped position of 

the ith reference point, ri the measured distance between p0 

and pi, and N the number of reference points used to 

determine p0. Here, we are not constrained to the case of 

N=n. Instead, we are going to give a solution to the general 

case of Nn (and N
+
). 

Equation (2) presents a nonlinear optimization problem. 

Search-based optimization algorithms are commonly used to 

solve this category of problems, including both local 

optimization algorithms, e.g. the steepest descent method 

and the Newton-Raphson method, and global optimization 

algorithms, e.g. the simulated annealing and the genetic 

algorithm [13]. The steepest descent method and the 

Newton-Raphson method in general converge to a local 

minimum in the vicinity of the initial guess, and the global 

optimization depends on the choice of the initial guess. 

Meanwhile, for the method of simulated annealing and the 

genetic algorithm, in order to reach the global minimum, the 

various algorithm parameters and decision criteria of these 

methods need to be tuned to fit with the specific problem. 

The lack of general, systematic methods for a mobile robot 

to automatically generate the initial guess and choose 

algorithm-specific parameters and criteria onboard to 

guarantee the global convergence in position estimation 

causes inconvenience in using these search-based algorithms. 

In addition, the relatively high time complexity of the 

simulated annealing method and the genetic algorithm makes 

them not suitable for real-time applications.  

We here derive an algorithm to solve the least-squares 

formulation of trilateration in (2) using standard linear 

algebra techniques, which guarantees globally optimal 

position estimates and has low computational complexity.  
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B. Derivation 

We notice that, given pi and ri, solving (2) is equivalent to 

solving 

0pppcIppppBpa
p

p
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i

i
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To simplify (3), we introduce a linear transform 

cqp 0
, (4) 

and obtain an equation containing no quadratic term of q 

0qqqqIccccBqcccBca  TTTT }])(2[{)2( . (5) 

Define cccBcaf
T2  and IccccBD )(2 TT  , we 

rewrite (5) as 

0qIqqDf  ])([ T . (6) 

Moreover, we notice that in fact 

T
N

i

T

ii

T

N
ccppIqqD 2

2
)(

1

 


, (7) 

which is an nn symmetric matrix and does not contain q. 

Defining IqqDH )( T , we obtain from (6) 

0Hqf  . (8) 

Equation (8) is a linear system of n equations of the 

unknown n-dimensional vector q. If H is full-rank 

(invertible), q can be calculated easily as fHq
1  or using 

numerical methods such as Gaussian elimination [14]. 

However, it may happen that H is not full-rank. In fact, 

without making more general proof, we have verified by 

symbolic computation that the H constructed from an 

arbitrary set of N=n independent reference points pi in 
2 

(where n=2) or 
3
 (where n=3) has a rank of n-1, though the 

H constructed from N>n pi in general has a rank of n. 

Moreover, when all pi are at the same ―height‖, i.e. with the 

same value of x, y or z, H has a zero row and a zero column 

and hence a rank of n-1. In these cases, (8) does not 

represent a system of n independent linear equations, and 

hence we cannot uniquely determine q from only (8). 

Instead, additional constraints need to be found to construct 

a new system of n independent equations so that the specific 

solution can be obtained.  

Here we propose a unified solution procedure for 

rank(H)=n and n-1. First, denoting the kth component of f as 

fk and the kth row of H as hk
T
, we construct a n-1 

dimensional vector f'=[f1- fn, …, fn-1- fn]
T
 and a (n-1)n 

matrix H'=[ h1-hn, …, hn-1-hn]
T
, and obtain from (8) 

0qHf  '' . (9) 

Next, using orthogonal decomposition [14], we obtain  

QUH ' ,  (10) 

where Q is a (n-1)(n-1) orthogonal matrix and U a (n-1)n 

upper diagonal matrix. Then, pre-multiplying the both sides 

of (9) by Q
T
, we obtain  

0UqfQ 'T .  (11) 

Rewriting (11) in its scalar form, we have for the 3D case 









0

0

3232222

3132121111

ququv
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where vk denotes the kth component of Q
T
f', ukj the (k,j) 

entry of U, and qk the kth component of q. From (12), we 

obtain 


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Now we have 3 unknowns but 2 equations, and therefore 

need one more independent equation to solve for q. In fact, 

one valid constraint is  

qq
Tqqq  2

3

2

2

2

1
, (14) 

where q
T
q can be obtained from HqqD  T  as 
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Substituting (13) into (14), we obtain 
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which is a quadratic equation of q3 and can be solved in 

closed form. Substituting the resulting q3 into (13), we can 

obtain q1 and q2. Similarly, for the 2D case, we obtain from 

(11) 

2

11

12

11

1
1 q

u

u

u

v
q  . (17) 

In the 2D case, the constraint (14) becomes  

qq
Tqq  2

2
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1
. (18) 

Substituting (17) into (18), we obtain 

qq
Tqq

u

u

u

v
 2

2

2

2

11

12
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1 ][ , (19) 

which is a quadratic equation of q2 and can be solved in 

closed form. Substituting the resulting q2 into (17), we can 

obtain q1.  

Next, substituting the resulting q into (4), we obtain p0.  

The above process generally results in two candidates of 

p0, due to the duality of (16) and (19). However, only one of 

the two candidates is the true p0. To pick the correct one, the 

judging criterion is usually very simple, such as that p0 is 

known on one specific side of the base plane (or base line) 

defined by the reference points, or that current estimate of p0 

should be close enough to last p0. 

C. Summary 

Following the above derivation, the proposed trilateration 

algorithm is summarized as Algorithm 1.  

As indicated in the derivation, the proposed trilateration 

algorithm provides an optimal estimation of the location of a 

mobile robot based on its distances from N reference points, 

where N can be any integer greater than or equal to 2 in a 2D 

environment or 3 in a 3D environment. Using standard linear 

algebra techniques, the proposed algorithm is highly 

tractable and has low computational complexity. Without 

depending on the techniques which tend to be affected by 
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algebraic singularities, such as matrix inversion, the 

proposed algorithm also has high operational robustness.  

III. ERROR ANALYSIS 

The input to the algorithm includes the mapped positions 

of the reference points, pi, and the measured distances 

between the robot and reference points, ri. In practice, errors 

arise in pi due to inaccurate mapping of the reference points, 

which happens in both manual and robotic mapping 

processes; and errors arise in ri due to imperfect distance 

measurement of the range sensors. These input errors will 

cause output errors in the estimation of the robot position p0. 

A. Performance Indices 

We define  TT

i  pp  ,  Tir r  and 

 TTT
rpx  . Denoting the actual value and random error of 

the measurement x as x and x respectively, assuming that 

the input errors are zero-mean random errors, i.e. E(x)=0, 

and following a similar derivation as [4], we can obtain the 

mean vector E(p0) and variance matrix var(p0) of the 

output error p0 as 
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)(

2

1
)]([

2

0

2

0 x
x

xp
xp  vecE

T


 , (20) 

x

xp
x

x

xp
xp










T

T

)(
)var(

)(
)](var[ 00

0  , (21) 

where vec(M) denotes the vector created from a matrix M by 

stacking its columns. Equations (20) and (22) show that the 

mean and variance of the output error are directly related to 

the variance of the input error. In particular, to evaluate the 

impact of the error of p, p, on p0, we assume that the 

components of p are zero-mean random variables and 

uncorrelated from one another with the same standard 

deviation p for each coordinate, and, similar to [2,4], define 

two performance indices, the normalized total bias Bp which 

represents the systematic estimation error, and the 

normalized total standard deviation error Sp which represents 

the uncertainty of position estimation 
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where |v| denotes the norm of a vector v, and Tr(M) denotes 

the trace of a matrix M. We notice that Bp and Sp are 

independent of p. Similarly, to evaluate the impact of the 

error of r, r, on p0, we assume that the components of r 

are zero-mean random variables and uncorrelated from one 

another with the same standard deviation r, and define two 

performance indices correspondingly as 
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We notice that Br and Sr are independent of r. We have 

tested Bp, Sp, Br and Sr through simulations. 

The proposed trilateration algorithm provides an optimal 

approximation of the intersection point of N2 circles in 
2
 

and N3 spheres in 
3
. Without loss of generality, our error 

analysis focuses on 
3
. A similar trend can be found for 

2
. 

Through representative examples, we test the proposed 

algorithm with 3 reference points at first and then with 4 

reference points. The proposed trilateration algorithm has 

been programmed in Matlab. Tested on a Dell Latitude D620 

laptop computer with a 1.66 GHz Intel Core 2 CPU, the 

average running time for the algorithm is <0.0006 second. 

This means that the proposed algorithm is highly suitable for 

real-time trilateration tasks. 

B. Trilateration in 
3
 with 3 Reference Points

 

Following the representative examples in [2,4], we 

examine a 3-reference case in 
3
 in which the XY 

coordinates of the 3 reference points form an equilateral 

triangle inscribed in a circle centered at the origin of the 

frame of reference with a radius of 1000. The reference 

points are located at T]05003500[1 p , 

T]010000[2 p  and T]05003500[3 p . We also 

assume that a mobile robot moves across a square data 

acquisition region defined as {[x,y,z]
T
| z=8000, -

4000x,y4000}.  

To evaluate the impact of p on p0, we set p with 

different values (p{10,20,30,40,50,60,70,80,90,100}), run 

the simulation with 10000 samples for each p, and calculate 

Bp and Sp across the above data acquisition region. The 

resulting variations of Bp and Sp are consistent across the 

range of p, as indicated by (22) and (23). Figures 1 and 2 

show the variation of Bp and Sp for a representative p=70. 

We observe that both Bp and Sp increases as the robot moves 

away from the center of the base triangle defined by the 

reference points. In particular, at the center of the data 

acquisition region where p0=[0,0,8000]
T
, we obtain 

Algorithm 1: Trilateration in n
 (n{2,3}) 

Input: A set of N reference points {pi| i
+
, niN}, 

and the corresponding set of distances between 

pi and the unknown position p0 — {ri| i
+
, 

niN}. 

Output: p0. 

 

1) Calculate a, B, c, f, f', H, H', Q and U. 

2) Calculate q
T
q from (15). 

3) For 3D trilateration, calculate q3 from (16); for 2D 

trilateration, calculate q2 from (19). 

4) For 3D trilateration, calculate q1 and q2 from (13); 

for 2D trilateration, calculate q1 from (17). 

5) Calculate p0 from (4). 

6) Choose one of the two candidates of p0. 

7) Return p0. 
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Bp=0.0057 and Sp=9.36; while at the edge of the data 

acquisition region where p0=[-4000,4000,8000]
T
, we obtain 

Bp=0.0107 and Sp=12.87. Compared with the results 

reported in [2,4] which were generated from the exactly 

same simulation setting, our algorithm has lower Sp values 

([2] reports that Sp
2
170 (Sp=13.04) when p0=[0,0,8000]

T
, 

and Sp
2
192 (Sp=13.86) when p0=[-4000,4000,8000]

T
.), 

which means that the proposed trilateration algorithm has a 

reduced uncertainty in position estimation when using 

imperfectly mapped reference points.  

To evaluate the impact of r on p0, we set r with 

different values (r{10,20,30,40,50,60,70,80,90,100}), run 

the simulation with 10000 samples for each r, and calculate 

Br and Sr across the above data acquisition region. The 

resulting variations of Br and Sr are consistent across the 

range of r, as indicated by (24) and (25). Moreover, the 

simulation results show that Br and Sr have similar trends of 

variation to those of Bp and Sp respectively, and their values 

are very close to Bp and Sp respectively. In particular, for 

r=70, at p0=[0,0,8000]
T
, we obtain Br=0.0054 and Sr=9.31; 

while at p0=[-4000,4000,8000]
T
, we obtain Br=0.0111 and 

Sr=12.78. They are very close to the values of Bp and Sp at 

the same points. For this reason, we do not present the 

figures for Br and Sr specifically. Compared with the results 

reported in [2,4] which were generated from the exactly 

same simulation setting, our algorithm has significant lower 

Br values ([2] reports that the maximum Br on the edge of the 

same data acquisition region is about 0.03 while our result is 

0.0111.), which means that the proposed trilateration 

algorithm has a reduced systematic error in position 

estimation when using erroneous distance measurements. 

C. Trilateration in 3
 with 4 Reference Points

 

To test the performance of the proposed trilateration 

algorithm with N>n reference points, we examine a 4-

reference case in 
3
 in which the XY coordinates of the 4 

reference points form a square inscribed in the same circle as 

in the 3-reference example (centered at the origin of the 

frame of reference with a radius of 1000). The reference 

points are located at T]025002500[1 p , 

T]025002500[2 p , T]025002500[3 p  

and T]025002500[4 p . Same as the 3-reference 

example, we also assume that the mobile robot moves across 

a square data acquisition region defined as {[x,y,z]
T
| z=8000, 

-4000x,y4000}.  

Figures 3 and 4 show the variations of Bp and Sp (taken at 

p=70). Similar to the 3-referecne case, both Bp and Sp 

increases as the robot moves away from the center of base 

square defined by the reference points. In particular, at the 

center of the data acquisition region where p0=[0,0,8000]
T
, 

we obtain Bp=0.0077 and Sp=8.07; while at the edge of the 

data acquisition region where p0=[-4000,4000,8000]
T
, we 

obtain Bp=0.0090 and Sp=11.04. Compared with the 3-

reference case, we notice that there is an increase in the 

minimum Bp due to the addition of another imperfectly 

mapped reference point. However, the maximum Bp 

decreases. Moreover, Sp becomes lower, which means that 

the uncertainty in position estimation, when using 

imperfectly mapped reference points, will decrease by 

referring to more reference points.  

The variation of Sr is very close to that of Sp. In particular, 

for r=70, at p0=[0,0,8000]
T
, we obtain Sr=8.13; while at 

p0=[-4000,4000,8000]
T
, we obtain Sr=11.10. For this reason, 

we do not present the figures for Sr specifically. However, 

the variation of Br (Fig.5) is significantly different from that 

of Bp. In particular, for r=70, at p0=[0,0,8000]
T
, we obtain 

Br=0.0040; at p0=[-4000,4000,8000]
T
, we obtain Br=0.0077. 

Compared with those of the 3-reference case, both Br and 

Sr are significantly lower, which means that both the 

systematic error and the uncertainty in position estimation, 

when using erroneous distance measurements, will decrease 

by combining more distance measurements. 
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Fig.1. Normalized total bias Bp obtained from the 3-reference example 
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Fig.2. Normalized total standard deviation Sp obtained from the 3-

reference example 
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IV. CONCLUSION 

This paper presents an efficient trilateration algorithm 

which estimates the position of a target object, e.g. a mobile 

robot, based on the simultaneous distance measurements 

from multiple reference points. Solving the nonlinear least-

squares formulation of trilateration, the proposed algorithm 

provides an optimal position estimate of the intersection 

point of Nn spheres in 
n
 (n=2 for 2D environments and 

n=3 for 3D environments), not limited to solving for the 

intersection points of exact n spheres in 
n
. Using standard 

linear algebra techniques, the proposed algorithm, though 

not in the closed form, has low computational complexity 

and is highly applicable to real-time applications. Without 

depending on the techniques which tend to be affected by 

algebraic singularities, such as matrix inversion, the 

proposed algorithm has high operational robustness. The 

simulation results show that the algorithm is highly effective, 

with lower systematic bias and estimation uncertainty than 

representative closed-form methods, when dealing with 

erroneous inputs of distance measurements and reference 

points. The simulations also show that introducing more 

reference points and corresponding distance measurements 

into the trilateration process will in general reduce the 

estimation uncertainty. Though targeting the applications in 

mobile robotics, it is our belief that the proposed trilateration 

algorithm is applicable to any ranging-based object 

localization tasks in various environments and scenarios.  
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Fig.3. Normalized total bias Bp obtained from the 4-reference example 

8
.5

8.5

8.
5

8.58.5

9

9
9

9

9

9

9

9.5

9.5

9
.5

9.5

9.5

9.5

9
.5

9.
5

9.5

10

10

10

10
10.5

10.5 10.5

10.5

Normalized Standard Deviation S
p

x

y

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

 
Fig.4. Normalized total standard deviation Sp obtained from the 4-

reference example 
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Fig.5. Normalized total bias Br obtained from the 4-reference example 
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