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Abstract— A robust dynamic feedback controller is designed
and implemented, based on the dynamic model of the six-wheel
skid-steering RobuROC6 robot, performing high speed turns.
The control inputs are respectively the linear velocity and the
yaw angle. The main object of this paper is to elaborate a sliding
mode controller, proved to be robust enough to ignore the
knowledge of the forces within the wheel-soil interaction, in the
presence of sliding phenomena and ground level fluctuations.
Finally, a 3D simulation is performed with an accurate physical
engine to evaluate the efficiency of this designed control law.

I. INTRODUCTION

The aim of this paper is to control precisely a six wheel

drive skid-steering vehicle. Nevertheless, vehicle systems are

not usually easy to control because of unknowns about their

behaviour and the difficulty to evaluate the forces in the

wheel-soil interaction. Many interaction models developped

by Bakker [3] or by Pacejka [14] try to represent the

complexity of the physical phenomena by using empirical

functions. However, wheel-soil interaction is still one of the

great unknowns in mobile robotic systems. The dynamic of

skid-steering mobile robots has been studied by Caracciolo

in [4], with the use of a dynamic feedback linearization

paradigm for a model-based controller that minimizes lateral

skidding by imposing the longitudinal position of the instan-

taneous center of rotation. In [11], Kozlowski designed a

new algorithm proved to have a high robustness to dynamic

parameters uncertainty. Now, another strategy that uses a

sliding mode controller can be investigated in order to deal

with the skid phenomenon that is inherent to this kind of

vehicle. This controller, developped by Utkin [18], autho-

rizes a decoupling design procedure, a disturbance rejection,

insensitivity to dynamic parameters variations, and a simple

implementation. That is why this control law has been treated

in many ways in the literature. In [10] and in [2] dynamic

control laws are studied, but without taking into account the

complex dynamical model of the vehicle. In [19] and then

in [5] the dynamical model of a unicycle is studied for the

design of a controller by using a nonholonomic constraint,

considering a null lateral velocity. In [8], it is taken into

account that in realistic case, the nonholonomic constraints

are not satisfied. But the problem is addressed for a partially

linearized dynamical model of a unicycle robot.
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Fig. 1. RobuROC6

Here, we suggest an original dynamical model based upon

sliding mode control method for fast autonomous mobile

robots, that controls the torques applied in the wheels. The

main objective is to follow a given path with a relatively

high speed by servoing the longitudinal velocity and the yaw

angle. The terrains considered here are horizontal in theory

and relatively smooth compared to the size of the wheels. If

most of the mobile robots motion controllers found in the

literature use the hypothesis of rolling without slipping, it is

no longer suitable at high speed where wheel slip can not

be neglected. Because of the dynamics of the vehicle and

the saturation of admissible forces by the soil, the slippage

reduces the robot motion stability. So a controller robust

enough is needed

A 3D simulation is performed in a dynamic environment

with robuBOX, a software developed by the ROBOSOFT

company [1] and based on Microsoft Robotics Studio. An

interaction wheel-soil model of forces designed by Szostak

et al in [17], described in the fifth section, is used to permit

a realistic modelling of the system behavior. We will analyze

the motion control of a RobuROC6 represented Fig. 1.

It is an electric mobile robot developed by Robosoft,

for exemple studied in [12], which consists of three pods

steered and driven by two actuated conventional wheels on

which a lateral slippage may occur. The rear and the front

pods are symmetrically arranged about the central pod. They

are attached to this later one by two orthogonal passive

revolute joints providing a roll/pitch relative motion so as

to keep the wheels on the ground to maintain traction of

the pod when driving across irregular surfaces. Note that the

pitch mobility can be actuated by hydraulic cylinders. Two

ultrasonic sensors with a range of 3,4 meters and two bumper

sensors are located in the front and in the rear of the robot.
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A. Control of the yaw angle θ

1) Design of the control law: Introducing the input τθ ,

equations (4) and (5) give us:

ṙ = λτθ +Λθ ω̇ +Dθ Fy (6)

with:

λ = 3
2

wr+wl
JR

;

Λθ = −Jω
JR

[

−wl wr −wl wr −wl wr

]

;

ω̇ =
[

ω̇ f l ω̇ f r ω̇ml ω̇mr ω̇rl ω̇rr

]T
;

Dθ =
[

l f l f −lr −lr
]

;

Fy =
[

Fy f l Fy f r Fyrl Fyrr

]T
.

As proposed in [7], to drive the vehicle to the path, the

desired yaw angle θd has to be modified as:

θ̃d = θd + arctan

(

d

d0

)

with d0 a positive gain and d the distance to the path.

Considering cdθ the control law and n
(

θ ,r, ṙ,d, ḋ, d̈
)

the

function of uncertainties depending on θ , r, ṙ, d, ḋ and d̈ in

the dynamic equations, we have the following relationship:

ṙ = cdθ −n
(

θ ,r, ṙ,d, ḋ, d̈
)

(7)

We define the yaw angle control law as:

cdθ = ˙̃rd +Kθ
p εθ +Kθ

d ε̇θ +σθ (8)

with:

• ˙̃rd the second derivative of θ̃d , being an anticipative

term;

• εθ = θ̃d −θ the yaw angle error;

• Kθ
p and Kθ

d two positive constants that permit to define

the settling time and the overshoot of the closed-loop

system;

• σθ the sliding mode control law.

2) Error state equation establishment: If we calculate the

second derivative of εθ :

ε̈θ = ˙̃rd − ṙ

= ˙̃rd − cdθ +n

= ˙̃rd −
(

˙̃rd +Kθ
p εθ +Kθ

d ε̇θ +σθ

)

+n

= −Kθ
p εθ −Kθ

d ε̇θ +(n−σθ )

(9)

We define the error state vector x =

(

εθ

ε̇θ

)

. So, we have

the state equation:

ẋ = Ax+B(n−σθ ) (10)

with: A =

(

0 1

−Kθ
p −Kθ

d

)

; B =

(

0

1

)

.

If σθ = 0, the system is linear and we choose the value

of Kθ
p and Kθ

d as Kθ
p = ω2

n and Kθ
d = 2ξ ωn in order to

define a second order system. ωn is the pulsation and ξ the

damping factor. To define numerical values, the 5% settling

time Tr is introduced: Tr = 4,2
ξ ωn

.

3) Stability analysis: To guarantee the stability of this

closed-loop system, the problem of tracking the desired yaw

angle θ̃d can be solved by using the Lyapunov candidate

function V = xT Px, with P a positive definite symetric

matrix. Based on the Lyapunov theorem ([16]), the state x =
0 is stable only if:

V (0) = 0 ; ∀x 6= 0 V (x) > 0 and V̇ (x) < 0 (11)

The first two equations are verified. We have to establish the

third one. Using the equation 10, we calculate the derivative:

V̇ (x) = ẋT Px+xT Pẋ

=
(

xT AT +nBT −σθ BT
)

Px

+xT P(Ax+Bn−Bσθ )
= xT

(

AT P+PA
)

x+2xT PB(n−σθ )

(12)

Then, we calculate P in order to obtain the Lyapunov

equation:

AT P+PA = −Q (13)

with Q a defined positive symetric matrix. Equation (12)

becomes:

V̇ = −xT Qx+2xT PB(n−σθ )

To maintain the stability, V̇ has to be negative. The first

term is negative and the second one is null if x belongs to

the kernel of BT P. We define the sliding variable s = BT Px.

s = 0 is the sliding surface. If s = 0, the error state vector x

becomes null.

The sliding mode controller σθ is defined as σθ (s = 0) = 0

and for s 6= 0, σθ = µ s
‖s‖ , with µ a positive scalar large

enough to allow the stability of the controller. That allows

to have:

sT (n−σθ ) = sn−µ
s2

‖s‖
= sn−µ ‖s‖ ≤ ‖s‖(‖n‖−µ)

If we assume the model error is bounded: ‖n‖ ≤ nMax < ∞,

the selection of µ > nMax allows to verify the Lyapunov

theorem hypothesis.

4) Solution of the Lyapunov equation: To solve the equa-

tion (13), the matrix Q is choosen as:

Q =

(

a 0

0 b

)

with a > 0 and b > 0.

Knowing the value of the parameters of the matrix A, the

matrix P is:

P =





1,05·b
ξ 2·Tr

+ 5·a·ξ 2·Tr

21
+ a·Tr

16,8
a·ξ 2·Tr

2

35,28

a·ξ 2·Tr
2

35,28
b·Tr
16,8 + a·ξ 2·T 3

r
296,352



 (14)

B. Control of the longitudinal velocity u

Introducing the input τu, equations (2) and (5) give us:

u̇ = γτu +Λu∑ ω̇ + rv (15)

with: γ = 6/RM ;

∑ ω̇ = ω̇ f l + ω̇ f r + ω̇ml + ω̇mr + ω̇rl + ω̇rr ;

Λu = −Jω/RM.
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Fig. 12. RobuROC6 on a sinusoidal ground
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Fig. 13. Position errors

same efficiency as previously with a position error increasing

when the robot is turning. Finally, we can conclude that the

sliding mode controller is a robust one for the RobuROC6

system, that has its capability, even with disturbances due to

fluctuations of the level of the ground.

VI. CONCLUSIONS AND FUTURE WORKS

A sliding mode controller was designed and implemented

on the simulated RobuROC6 robot. Using RobuBOX and

MSRS, it became easy and fast to develop his own con-

trol algorithms and include them in an existing re-usable

architecture. The simulations performed with an accurate

physical engine have shown the robustness of the control

law even without any knowledge about the forces in the

wheel-soil interaction and with some fluctuations of the

ground level. Next, we will experiment this controller in real

conditions. To limit the chattering in the control signals, a

second order sliding mode controller may be investigated, as

it was already done in [9]. Furthermore, it could be tested

in an unstructured environment to evaluate the limits of the

controller robustness. In this paper, we have not studied the

possibility of varying the sliding mode control law gains. So,

we will investigate this possibilty, based on stability criteria

like the lateral law transfer (LLT).
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