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Abstract— These days researchers are looking for design and
development of autonomous robots. It is desirable that robots
be capable to acquire the information they need to perform
actions and make decisions. Any mobile or humanoid robot
will need to construct a spatial representation or model of the
surrounding environment that allows it to move and execute
tasks with success. The reconstruction of an environment is
an important and useful capability for these kind of robots.
In order to construct a model, the robot needs to obtain
information through a series of acquisitions from its sensors
by solving occlusions. Therefore, an important issue is how
to plan these robot placements (views) optimally, according to
certain criteria for the purpose of reconstructing a complete
model automatically. In this work we present a view planning
algorithm to solve the problem of 3D modelling for indoor
environments; the algorithm uses a volumetric representation
as a reasoning domain. In this paper we propose the use of
probability distribution functions as a model for the desirable
behavior of the system, considering perception range data. The
method uses a maximum a posteriori estimator to find the
perception system parameters that defines the next best view
position. We present results in simulation for a five degrees
of freedom robot with a 3D range camera mounted on it to
validate our approach.

I. INTRODUCTION

Autonomous 3D environment modelling has an important
place in service robotics (mobile or walking systems). It
is desirable that a service robot could interact with the
environment and displace itself in safety. The robot needs to
acquire information in order to navigate and perform actions,
so a 3D model has to be constructed. Vision offers a huge
source of information for this task; however, it is impossible
to obtain a good environment representation considering only
one image. Several images are needed to reconstruct the
environment and as a consequence an important problem
to solve is how to plan the views where the robot should
place its camera(s) to capture these images. View planning
for three-dimensional environment reconstruction has to deal
with the limited camera’s field of view and with occlusions.
The task is an iterative and incremental process, and at every
iteration data are acquired through perceptive 3D sensors
placed in the neighborhood of good positions. The data
are registered with previous data images and finally fused
with the current model. A view planning method for this
modelling task must be executed in between every sensor
acquisition; then, the problem to solve is to find the best
sensor position depending on the already acquired data. This
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best next view is computed in general by the maximization
of an utility function. Several criteria must be considered
in this function: sensor geometry, equipment to move the
sensor (mobile robot, user operator, PTZ platform,...) and the
constraints linked to the task. This planning function must
detect the end of the exploration and reconstruction task.
The view planning problem is a difficult subject to deal with
due to the need of knowledge of perception, computational
geometry, robotics, mathematics and planning techniques.
The existant methods differ according to the perception task
(modelling or reconstruction, recognition, navigation,...) and
the knowledge available for the system to perform the plan-
ning (partially known model or complete model of objects or
environments). A view planner could be part of the process
in the environment exploration, localization, mapping and
object modelling tasks contributing to the robustness of the
system.

II. RELATED WORKS

In literature we find works where the view planning is a
central part of the problem, among these we present some
main works. that attack the problem of modelling objects or
environments because they face almost the same difficulties
and use similar techniques. In [1] the complexity is reduced
constraining the sensor motion around a cylinder surface
centered on the object, the sensor is oriented to the object.
The algorithm described in [2] consists of two stages: the first
stage applies a voting scheme considering occlusions edges;
in the second one a hole filling procedure is executed. In [3],
a simpler function is considered but for the first time they a
quality notion is proposed. Visibility surfaces and accesible
sensor volumes are used in [4] to place the sensor, the object
is constructed using solid geometry functions.

Works [5][6] deal with the construction of a 2D model
using laser sensors with only horizontal scanning. In [7]
a geometric approach is presented, the algorithm computes
visibility volumes from where occluded areas can be seen by
the sensor. An algorithm based on the detection of occluded
areas is described in [8]. The work in [9] uses the same
approach proposed, but the occlusions are mapped into a
graphics card. In [10] a voxel occupancy grid is used to
place the sensor in free space, where certain thresholds are
set as parameters to keep the sensor to a specific distance
from the floor, ceiling and walls. Our research is based on
the general framework described in the work of [11] and
[12], where an optimization strategy is used to find a best
view at every iteration, by obtaining data information from
a scene volumetric representation (voxel map) during the
process. The modelling task is assumed to be performed
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autonomously by a 3D sensor mounted in a pan-tilt mo-
bile platform. The approach presented in this paper differs
from the others works because we propose and develop a
probabilistic formulation of the problem.

In the next section, an overview of the space representa-
tion is presented. Section IV describes our formulation and
section V presents the view planning algorithm. Then, in
section VI we show some experimental results of the planner
using synthetic data acquired from a CAD model of a built
environment. Finally, the papers ends with the conclusions
and future works in section VII.

III. SPACE REASONING

A volumetric representation (voxel map) of the environ-
ment is used by our algorithm. A voxel map is a three-
dimensional voxel matrix; a voxel is a small cube of the
space. The size of voxels define the resolution of the voxel
map. The sensor resolution must be compatible with the
voxel map resolution to model the environment properly.
For each voxel, we know its location in the voxel map but
this data is insufficient. In order to use this voxel map as a
reasoning domain, we associate information: a label that has
a color associated with it for display purposes, the number
of acquired points, the short distance to the sensor and the
average surface normal (just for some labels). This surface
normal is computed with the average of all the occupied
voxels that conforms the surface.

A. Voxel labels

The labels that we use are as follows:
∗ Unknown: a voxel in an unexplored area. At the

begining all the voxels are labeled in this manner.
∗ Occupied: a voxel where points are found or acquired.

This voxel belongs to the environment surface.
∗ Empty: a voxel in a perceived area but that there are

no points acquired in this position. The optique sensor
rays have crossed this voxel without touching any
surface.

∗ Occluded: a voxel in a see area but unaccessible
because it is behind a voxel labeled as occupied.

∗ Occplane: a voxel that was labeled as occluded but
adjacent to any of the six faces of an empty voxel.

∗ Border: a voxel that was labeled as occupied but
adjacent to any of the six faces of an unknown voxel.

B. Optimal View Function

Once we have defined the space reasoning through the
voxel map, the exploration for modelling an indoors environ-
ment is intended to be performed by mobile robot moving on
the floor (xr, yr), a sensor is mounted in a positioning system
with three degrees of freedom, an elevation zs and orientation
(θs, φs) of the sensor to acquire an optimal view. So, a
viewpoint is defined by five parameters. For the moment the
other sensor parameters are constants. In order to find the
best view, we define a function that models the interest of
a possible robot/sensor placement. This view function must
satisfies some criteria:

Fig. 1. Desirable behavior for the view function

∗ The view field must have a certain rate of overlapping
with the previous view fields to make the registration
process easier.

∗ Solve occlusions areas: the sensor placement selected
must allow to see occluded surfaces behind occupied
voxels.

∗ Perceive new unknown areas.
∗ Improve if possible occupied voxels quality.

For a given sensor placement, the value of view function
is based on the voxels percentages (x) present in the view
except for empty voxels and the acquisition quality. To
compute these percentages, the view planner simulates the
capture of the range image considering the sensor place to
evaluate, the sensor parameters and the current state of the
voxel map. The sensor simulates the acquisition of a range
image by means of a ray tracing algorithm. The range of
the rays are limited by the boundaries of the voxel map,
resulting in a finite number of voxels of each type. Then,
the percentage of a voxel type is computed as the amount
of voxels of this type (label) divided by the total number of
voxels in the image. For a given voxel type, the view function
fv(x) must be optimal fv(x) = 1 for a desire percentage
(optimal) x = α (input parameters) and minimal f(x) = 0
when x = 0 (none voxel of this type is seen) or x = 1 (only
this kind of voxels are seen). Fig. 1 shows the desirable
behavior of the view function.

1) Quality factor: Quality is defined by the angle δ of
incidence between the sensor optical axis and the normal
surface. We can consider the quality as constraint factor K in
the sensor orientation. Then, in order to improve the quality
of the model, it is preferable to place the sensor orthogonal
to the environment surface.

K =
∑np

i=1 cos(δi)
np

(1)

where np is the number of voxels of some kind seen from
the current sensor placement. We can estimate the quality
that a unknown voxel could have considering the quality of
the neighboring seen surfaces (occupied voxels).
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2) Global View function: The global view function is the
sum of view functions fvi

for each type of voxel times the
quality factors for some kind of voxels. For the planner we
have define the following global view function:

FvG
(x) = fvoccupied

+ fvoccplane
∗Koccplane (2)

+ fvunknown
∗Koccupied + fvborder

IV. PROBABILITY FORMULATION
Bayesian estimation gives us the possibility of employing

a distribution function instead of a polynomial function
of utility [12], in order to estimate the parameter x of
a conditional distribution P (Γ, x) of x for each voxel
percentage configuration of the space, where x = α
(optimal) and Γ as the five parameters viewpont group
measurements. Thus, the sum of the four voxels parameters
distributions, as stated on our space reasoning configuration
for voxel labeling, can be computed. In this manner, the
best viewpoint position γi can be obtained.
The prior information we have already established about
each x distribution through the best percentages view of the
voxels in the configuration space, leads us to the problem
of estimating the x’s values in terms of the environment
acquisition position Γ. In other terms, it is possible to
predict the configuration input parameters x’s.

A. Observation Model
The probability conditional density function p(x|Γ) mea-

sures the likelihood, by means of the Bayes theorem, of the
input parameter x captured with respect to the voxels per-
centages acquisition configuration, based on a given position
Γ = (γ1, . . . , γn).

B. Bayes Theorem
The probability conditional density function p(x|Γ) (x

predicted) is defined as:

p(x|Γ) =
p(Γ|x), p(x)

p(Γ)
(3)

where p(Γ) =
∫ 1

0
p(Γ|x) p(x) dx serves as a normalization

factor; p(x|Γ), p(Γ|x) and p(x) are the posterior, likelihood,
and prior distributions, respectively.

C. Probability Density Function
In this section we show how the probability distribution

function beta can be used as a model for the optimal behavior
of our system to find the next best view.

In order to best describe each of the voxels expected
function values, it is required to consider a probability
density function which presents a maximum value for a
range of possible values within the interval 0 < x < 1. The
function that satisfies this requirement is the beta density
function.
The beta density function, taking it as the prior density
when estimating the success probability of a binomial
distribution, yields as the posterior one, another beta density
function [13].

D. Beta Density

If we consider the probability of finding, from n-trials, k-
times the x’s best percentage on viewpoint γi, we have the
binomial law:

p(Γ|x) = xk(1− x)n−k (4)

and replacing it into (3),

p(x|Γ) =
xk(1− x)n−k p(x)∫ 1

0
xk(1− x)n−kp(x) dx

(5)

In this manner, it is possible to predict the probability of
finding the expected voxel percentage x within 0 < x < 1,
by choosing a smooth density function like the beta one.
As p(x) is smooth, the product p(x) by (4) is concentrated
near at the value k/n, which it is the same that we consider
p(x) = 1, [13].
Then, we take the identity∫ 1

0

xk(1− x)n−k dx =
k!(n− k)!
(n+ 1)!

(6)

we find the beta density function, by substituting (6) in (5)

p(x|Γ) =
(n+ 1)!
k!(n− k)!

xk(1− x)n−k 0 < x < 1 (7)

We can produce different shapes of the function depending
on optimal voxel percentages, see Fig. 2. This cannot be
done with another kind of function ( e.g. gaussian function).
It is assumed that n > 1, k ≥ 1, and n > k as minimal and
natural constraints of the probability formulation. In Fig. 2,
appears three beta functions that represent the behavior of the
optimal percentages of voxels we used in our experiments.
For occupied voxels we use α = 0.2 (20% of image voxel)
and we set the beta parameters k=1 and n=5, for unknown
and occplane voxels, α = 0.375 with k=1 and n=2.67; finally,
for border voxel we are interested to obtain an α = 0.05, so
k=1 and n=20.

E. Maximum estimator a posteriori

This method gives the estimate of the value of the un-
known parameter that maximizes the conditional probability
function, which in our case is:

x̂ = argmax
x

p(x|Γ) (8)

Last expression is derived from (3), where p(Γ) is indepen-
dent of x. In general, we don’t have previous knowledge of
x’s percentage viewpoint; hence, p(Γ) is considered uniform
and lets us finally with the expression

p(x|Γ) = p(Γ|x) p(x) (9)

which is implemented to obtain (8).
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(a) α=0.2 (b) α=0.375 (c) α=0.05

Fig. 2. Probability Density Function for voxel percentages: occupied (left), unknown and occplane (center), and border (right). The x-axis of diagrams
are voxel percentages x and y-axis is the function value.

V. VIEW PLANNING ALGORITHM

The algorithm starts by taking a first range image of the
environment from a known free-space sensor position in
the voxel map. The points acquired from the range image
are converted to the coordinate system of the voxel map
generating a partial model of the environment by labelling
the voxels. Then, the estimator uses a simplex method [14]
for (x, y, z) parameters and a tessellated sphere for (θ, φ) ori-
entation parameters to construct the conditional probability
domain given the current voxel map to generate candidate
views. Every view must satisfy the free-space constraint,
the view position space must have enough empty voxels
to place the sensor, for this a bounding box enclosures the
whole robot, if the free-space is equal of bigger than this
bounding box the candidate view is valid. The beta function
gives the conditional probability for each kind of voxel given
the current sensor position. The estimation step outputs the
next best view. Next step consists to move the range camera
(robot) to this position and we proceed to capture a range
image to update voxel map and obtain a more complete
model. The process is repeated until at least one of the
ending criteria are achieved: there are no occplane voxels
in the voxel map, the estimator does not find a next view,
meaning the tested views does not provide new information
or the model is complete (Ψ). We summarize our iterative
method in algorithm 1.

Algorithm 1: View Planner Algorithm for 3D Indoor
Environment Modelling

Data: Initial Robot Position(x0, y0, z0, θ0, φ0), αi

Result: 3D model
Image Capture Im;
Update Voxel Map (VM)← Im;
while not StopCondition (Criteria Ψ) do

Next Best View← Maximum Estimator(αi);
Positioning Robot-Sensor;
Image Capture;
Update Voxel Map (VM)← Im;

end

Fig. 3. Top view of the environment model

VI. RESULTS

Our algorithm was tested in simulation, the range camera
was simulated and the objects were taken from virtual
models. The voxel map dimensions are 52 x 40 x 138 voxels
and the voxel size is 15 cm. The simulated range camera
returns a range image similar to a real range camera. The
system was implemented in C, the machine used for the tests
was a MacBook 2.4Gz and 2 GB RAM memory. In Fig. 3
we show the synthetic model of the environment. In Fig. 4
we present six iterations of the view planner, as we saw in
Algorithm 1, initially the sensor capture a first image in the
central corridor facing the wall, then the planner computes
views where only the orientation parameters change due to
the limited free space (empty voxels) in the environment,
where the walls, ceiling and floor can be reconstructed.
In iteration 7 the sensor can move to the left side of the
environment, and in the acquisition 9, the cupola and his
surroundings can be modeled.

The Fig. 5 shows the comparison diagrams of the two
different view planners. Two view functions are compared,
the global utility function based on probability density func-
tions and a second often used utility function based on a
third-degree polynomial functions [12]. Fig. 5(a) represents
the area filled by the occupied voxels, we can see that the
probabilistic approach grows quicker than the polynomial
function, allowing to perceive more occupied area after 20
views. In Fig. 5(b) shows the iterations the simplex algorithm
make to compute the next view. We can see that when
the robot is moving for both approaches, the number of
iterations to compute the next view generally is bigger in the
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(a) First image (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

(e) Iteration 5 (f) Iteration 7 (g) Iteration 9

Fig. 4. Series of view acquisition planned by the probabilistic view planner, in the first views we show different types of voxels and the last images only
the occupied voxels

(a) Occupied voxels area (b) Iterations per view (c) Voxel quality

Fig. 5. Comparison of probabilistic versus polynomial approaches, results after 20 views

polynomial approach, increasing significantly in some views
the computation time for the polynomial case. The Fig. 5(c)
shows the mean quality on the occupied voxels, again we can
see that the probabilistic planner has a better performance
and on every sensor position, it finds a view that improves
the quality value. Hence, we can say it satisfies better the
criteria imposed for the optimal view. The table I shows
the computing time for some views of the process, for both
functions this time is similar when only orientation motions
are performed, in the probabilistic approach the robot starts
to move before the polynomial method does, making that
the searching method takes more iterations to find the next
view. We are not considering the sensor acquisition time for
an image neither the time for updating the voxel map. When
the planner finds a view where the robot has to travel the
computing time increases for both cases (rows 3 and 4 in
table), but this increment is bigger for the polynomial. The

total time for the probabilistic planner is smaller.
We have executed both view planners and in Fig. 6,

we present the environment model after 20 planned views;
we can observe that the image is consistent with previous
results. The model constructed using the probability function
and estimator has more occupied area, resulting in a more
complete environment.

TABLE I
RECONSTRUCTION TIME (VIEWS)

View No. Time(s) Polynomial F. Time(s) Probability F.
1 0.000012 0.000009
2 0.000025 0.000018

19 0.034686 0.007475
20 0.034898 0.008089

Total 0.075761 0.060319
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(a) Probability Function (b) Polynomial Function

Fig. 6. Environment model after 20 iterations of the view planner

(a) Probability Function (b) Polynomial Function

Fig. 7. Path followed by the sensor

Fig. 7 presents the sensor placements from which the
views were acquired. We can see that the polynomial func-
tion expends more views to model the corridor and goes to
the left side of the environment after around 10 iterations.
The probability function in view 10, has a bigger part
reconstructed. Finally, in Fig. 8 shows the complete model
of the environment, validating our approach.

VII. CONCLUSIONS AND FUTURE WORKS

We have presented a view planning algorithm that de-
termines the next best view to reconstruct any arbitrary
3D environment. Based on a voxel map representation, to
position a three degrees of freedom range sensor mounted in

Fig. 8. Complete model of the environment by the probabilistic planner
after 42 views

a mobile robot. The planner has been evaluated in simulation
reconstructing a complex synthetic model environment. The
results show a good quality in the reconstructed model, with
savings in computation time. The main contribution is that
we approach the view problem from a probabilistic point of
view, transforming the often used polynomial utility function
for a probability beta density function and computing the
next best view using a maximum a posteriori estimator.
Given the promising results obtained in simulation, our future
work is to test it in an experimental mobile robot with a
stereo vision system. We will add a motion factor to the
global utility function to select views that do the robot travel
the shortest possible distance, besides it, by using a motion
planner, we can not only be able to find free view robot
placements, but paths between two consecutive views.
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