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Abstract— The paper develops a method for analyzing and
improving by control obstacle clearance capacities of articulated
multi-wheeled rovers. On uneven ground surface, load and
traction force distributions through the wheel/ground contact
system are highly coupled. They are both conditioned by the
global equilibrium of the mechanical system and the contact
stability constraints. The optimal traction force distribution
problem is formulated here as a convex optimization problem
using Linear Matrix Inequalities (LMIs). Velocity and force
transmissions in articulated multi-wheeled mobile robots are
introduced under a generic form decomposed in task, joint and
contact levels. A tyre-model is used for the evaluation of the
robustness of the solution with respect to slippage phenomena.
Simulation results show that the traction distribution forces
which is so determined lead to a significant increase in obstacle
clearance capacities compared to an usual velocity control
technique.

Index Terms— Rovers, obstacle clearance, mobility, kinemat-
ics

I. INTRODUCTION

Mobile robotic systems use dedicated elements for propul-
sion, such are wheels, tracks or legs, which are integrated
into a mechanical system. Generally they present internal
mobilities allowing an active or passive adaptation to ge-
ometrical complexity of the ground and more generally to
their operational environment. Locomotion systems can be
seen as multi-body articulated systems interacting with the
environment by a set of unilateral contacts with adhesion
or slippage, the number and the nature of those contacts
evolving in time and space. From a topological point of view,
locomotion systems can be compared to articulated hands
and the analysis of the mechanical properties of locomotion
systems can be inspired by grasp analysis. Force and velocity
transmissions in these systems can be analyzed by the use
of similar mathematical tools, as for the optimization of
contact force distribution [1] or for evaluating quantitatively
the obstacle clearance capabilities [2].

The work developed in this paper tries to bring an answer
to the evaluation of traction capabilities and the optimal
traction distribution for obstacle clearance of wheeled-based
mobile robots evolving on uneven surfaces. Off-road mobile
robots have generally complex structure (several joints for

suspension or for auxiliary locomotion modes). Compara-
tively to cars, suspension mechanism mobilities of mobile
robots satisfy to different functionality operational needs:
they have to ensure a permanent contact with a highly
irregular ground surface, to contribute to robot stabilization
and sometimes to its propulsion like in walking locomotion
systems for instance [3].

Most of articulated wheeled robots have 6 wheels, which
are either multi-platforms or mono-platform. The formers are
generally composed by 3 articulated axles called modules [4],
and the seconds one have a main body and more complex
mechanisms such as rocker-bogie structure [5] [6], or with
multi-parallelogram systems [7]. Generally, the motion of
these systems are controlled by using their differential kine-
matic model. The method for deriving the input/output veloc-
ity relationship consists in introducing geometrical transfor-
mations between the moving bodies and their time-derivative
in order to obtain velocity equations by assuming ideal rolling
conditions between the wheels and the ground, as closed-loop
constraints [8]. Systematic formulations have been developed
for various combinations of driving and steering wheels [9]
[10]. Sliding models in the wheel/ground interaction have
been also introduced for developing more realistic models
[11] [12] [3].

The problem of obstacle clearance of off-road robots
has been addressed slightly, in particular either from
experimental point of view or by using dynamic simulation
[13] [6]. However, there is no theoretical study based on
analytical formulation of the problem of force and velocity
transmissions between joint, contact and task spaces.

The paper proposes a general framework for analysis
and optimization of the obstacle clearance process. The
framework can be applied to any articulated wheeled system
with active or passive mobilities. The method is based on
a kineto-static model which takes into account the slippage
and friction condition in wheel-ground contacts. In the next
section, we first present the kinematics of the considered
robot and then we develop its kineto-static model used for
the analysis and the optimization. After, we discuss the
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mechanical model of the wheel-ground contact and show
the similarities between the Coulomb friction model and the
tyre model. Section (4) draws up the problem of contact
force distribution in multi-wheeled articulated robots and
proposes a formulation based on a convex optimization that
involves linear matrix inequalities LMIs. The method defines
the stability contact by using the maximal friction condition.
Simulation results developed in the last section show the
efficiency of the method and its robustness in relation to a
realistic tyre model that considers wheel slippage. Results are
also compared to a simple control method based on an equi-
distribution of wheel’s rate and demonstrate the relevance of
the optimization of force distribution.

Fig. 1. RobuRoc6 negotiating an obstacle.

II. KINETO-STATIC MODEL OF ROBUROC6

The vehicle considered in this paper is called RobuROC6
(figure 1). It can be considered as a series of 3 monocycles
modules linked together by two orthogonal revolute joints
allowing roll and pitch motions of each module. Each
monocycle module is steered and driven by two actuated
conventional wheels on which a lateral slippage may occur.
The rear and the front modules are symmetrically arranged
about the central one. The two revolute joints along the
pitch axis are coupled by means of 4 hydraulic actuators
with interconnected cylinders. This interconnection ensures
that the front and rear pitch joints rotate symmetrically
with respect to the middle axle. This kinematics permits to
transform RobuRoc6 into a 4-wheel configuration as shown
in figure (2) mainly to increase its manoeuvrability when
needed. However the robot could operate without actuating
the hydraulic pump and then the pitch suspension works as
a differential mechanical system.

In this paper, we restrain the analysis to the sagittal plane
and we will not consider the parallel mechanisms composed
by the hydraulic cylinders controlling the pitch rotoide joints.
We consider also that the pitch suspension is not actuated, and
that the robot has all its wheels in contact with the ground.

We establish in this section for the considered rover
(fig.3) the relationships between the time-derivative of joint

roll joint roll joint

pitch joints

hydraulic cylinders

for pitch motion

Fig. 2. Kinematics scheme of RobuROC6 : 2 configurations illustrating
the central module manipulation.

parameters θ̇ and the middle axle absolute velocity ẋ. We
study here the 2D sagittal motion of the vehicle, then only
one suspension mobility around the pitch axis will be taken
into account. The two mobilities of front and rear axle
around the roll axis will not be considered in this analysis.
Likewise, the closed kinematic loops of hydraulic cylinders
actuating the pitch motion (fig.2) are not considered in this
model. We denote by ψ the pitch motion parameter of the
front axle and then by −ψ for that of the rear one, by
θ1, θ2, θ3 the joint parameters of respectively the front, the
central and the rear wheel. We denote also by x = (x, z, o)
planar position and orientation of the central axle expressed
in the wheel center P . Then joint and task parameters are
respectively θ = (ψ, θ1, θ2, θ3)t, x = (x, z, o)t.

For each wheel-ground contact Ci, thanks to motion com-
position principle we can write

~V (Ci, SP /S0) = −~V (Ci, SWi
/SP ) + ~V (C, SWi

/S0) (1)

where SP , S0, SWi denote frames attached to the plat-
form (central module), the ground and the ith wheel.
~V (Ci, SP /S0) represents, in point Ci, the platform twist with
respect to the ground, then it can be expressed by an adjoint
matrix in se(2), ~V (Ci, SWi

/SP ) characterizes the velocity of
point Ci with respect to the platform, then it can be given by
a jacobian matrix, and ~V (C, SWi/S0) is a slippage velocity
in the wheel-ground contact.

Applying again the motion composition law along the
kinematic path joining SWi

to SP , we obtain respectively
for the front, center and rear contacts

u~i+ v~k + ȯ~j × ~a1 = −ψ̇~j ×~b1 − ω1
~j ×−r~n1 + ~vs,1

u~i+ v~k + ȯ~j ×−r~n2 = −ω2
~j ×−r~n2 + ~vs,2

u~i+ v~k + ȯ~j × ~a3 = +ψ̇~j ×~b3 − ω3
~j ×−r~n3 + ~vs,3
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Fig. 3. Planar scheme of the suspension kinematics and geometrical
parameters definition.

where (u, v)t = Ro(ẋ, ż)t are velocity components of the
center of the middle wheel expressed in the local platform
frame (P,~i,~k), ωi = θ̇i is the rate of the ith wheel, r is wheel
radius, ~b1,~b3 are vectors from point P to, respectively, the
front and rear contact points C1 and C3, ~vs,i is the wheel-
ground slippage velocity in the ith contact. By projecting
these equations along the tangential and normal vectors ~ti ~ni
of contact frames (figure (3)), we obtain

Gt

 ẋ
ż
ȯ

 = J


ψ̇
ω1

ω2

ω3

+ vs (2)

with

Gt =


Cα1 −Sα1 −r + aψCα1 + bψSα1

Sα1 Cα1 aψSα1 − bψCα1

Cα2 −Sα2 −r
Sα2 Cα2 0
Cα3 −Sα3 −r + aψCα3 − bψSα3

Sα3 Cα3 aψSα3 + bψCα3

Ro, (3)

J =


r − bψSα1 − cψCα1 r 0 0
bψCα1 − cψSα1 0 0 0

0 0 r 0
0 0 0 0

−r − bψSα3 + cψCα3 0 0 r
bψCα3 + cψSα3 0 0 0

 , (4)

 aψ = dCψ − d− lSψ
bψ = lCψ + dSψ
cψ = dCψ − lSψ

, (5)

Ro =

 Co −So 0
So Co 0
0 0 1

 (6)

where Cx = cosx, Sx = sinx, l and d are constant kinematic
parameters defined on figure (3).

The principle of virtual work leads to the dual static model,{
Gf = gx

Jtf = −τ + gθ
(7)

which represents the equilibrium equations of the system
subject to generalized gravitational forces g, joint actuator
torques τ and contact forces f . As kinematic contact con-
ditions (2) are given in the local contact frame (~ti, ~ni), the
contact force vector is composed with tangential and normal
components f = (f1,T , f1,N , f2,T , f2,N , f3,T , f3,N )t.

g is the generalized force due to gravity. It can be
computed by gx = ∂U

∂x = w, gθ = ∂U
∂θ with U the total

potential energy. We obtain:

gx =

0@ 0
(m1 + m2 + m3)g

−m1g(aψSo + bψCo) + m3g(−aψSo + bψCo)

1A
gθ =

0B@ −m1g(cψSo + bψCo) + m3g(cψSo − bψCo)
0
0
0

1CA
These generalized forces assume that the center of gravity of
each module is located on its axle. mi depicts the mass of
the ith module and g the gravitational acceleration.

III. WHEEL-GROUND CONTACT MODEL

Robot-ground interaction is of high importance in land
locomotion. Moreover, wheeled-based locomotion systems
have continuous contacts with the ground. An efficient ve-
hicle navigation needs a realistic model that characterizes
force and velocity transmission through this contact. In first
approximation, the contact can be modeled by an ideal
rolling contact without slippage and a Coulomb friction law.
This is a first order model which is commonly used for
grasping and for locomotion analysis. However, this model
could be not sufficient when the friction and the stiffness of
the contact are slight. For off-road as well as for on-road
vehicles, the contact model expresses the force and moment
components as function of the contact geometry, the relative
displacement parameters and their time-derivative. Most of
tyre models uses for characterizing the longitudinal slippage,
the following ratio:

si =
vs,i

sup(rωi, vi)

=
vi − rωi

sup(rωi, vi)
(8)

where vi is the longitudinal linear velocity of the wheel
center. The sup function allows to avoid division by zero
in case of pure spinning (vi = 0) or total wheel locking
(ωi = 0).

Equation (2) can be split into two parts, according the
normal (N) and tangential (T) projections{

Gt
N ẋ− JN,ψψ̇ = 0

Gt
T ẋ− JT,ψψ̇ − JT,ωω = vs

(9)
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Fig. 4. Tyre traction model and Coulomb friction model.

JT,ψ and JT,ω are jacobians associated to the suspension
joint parameter and to wheel’s rates. Then the slippage
velocity is:

vs =
[
Gt
T | − JT,ψ

]( ẋ
ψ̇

)
− JT,ωω (10)

Let BN = null([Gt
N | − JNψ]), then(
ẋ
ψ̇

)
= BNζ (11)

Assuming that ωi 6= 0, the slippage ratio vector can be
written:

si =
ζ

rωi

([
Gt
T | − JT,ψ

]
BN

)
i
− 1 (12)

Brush tyre model [14] explains that the contact surface
contains two areas: (1) an adhesion area where contact forces
are given by the tyre stiffness and the tyre deformation
and (2) a slippage area where the elastic forces exceed the
friction limit and then contact forces are detrmined only
by the friction coefficient and the contact pressure. In this
model, when the slippage is above a critical value sc, all the
tyre-ground contact surface is sliding. Below this value, the
contact surface has an adhesion area which provides a certain
contact stability due to the reversibility of elastic force.

Traction (or braking) force developed by a tire is plotted
in general as function of the slippage ratio si (figure 4).
This curve has a quasi-linear stage whose slope depending
on longitudinal tire stiffness and where the contact can be
considered stable. The critical slippage value sc varies from
0.05 to 0.2 depending on tire stiffness, friction coefficient,
and contact length. A first-order approximation of a tyre
model can be given by the following monotone function:

fi,T =
2
π
µfi,N arctan(4si/sc) (13)

where µ is the friction coefficient and sc is a critical slippage
which depending on tyre stiffness, contact length...

The next section, considers the optimization problem of
traction force distribution and characterizes the friction con-
straint as expressed by a Coulomb model. The model of
tyre is mainly used for simulation of quasi-static motion,
for computing stationary slippage ratio and for evaluating
the robustness of the optimization in relation to slippage
phenomena.

IV. OPTIMAL TRACTION DISTRIBUTION

Traction and load distributions are of great importance
when contact geometrical characteristics are uneven i.e.
contact normals are not parallel and contact points are not
coplanar. In this case, traction and load distribution problems
can not be decoupled. We can then use the well known
frameworks developed for the analysis of grasping systems.
Wheeled mobile systems can be considered as a system
where multiple interconnected wheels ”grasp” the ground.

If we consider quasi-static equations associated to the
generalized parameters (x, z, o) defining the platform and ψ
defining the joint suspension parameter, we obtain:[

G
−Jt

ψ

]
f =

[
gx
gψ

]
(14)

and can take the compact form

Ḡf = ḡ (15)

Solving this model consists in computing (f) for a given
configuration q = (x,θ) and a given external gravitational
generalized force g. Most of models of articulated rovers
have a high number of static indeterminacy. This force
indeterminacy has two sources : (1) internal, because of the
use of a redundant actuation (all the wheels are actuated) and
(2) external, because of the multiple frictional wheel/ground
contacts. For the considered system, the indeterminacy is
equal to 2 when the pitch joint is passive, and is equal to
3 when this joint is actuated.

The main issue of the contact stability problem is to
determine a contact force distribution which satisfies :

• unilateral contact condition : fi,N > 0,
• no (or small) slippage condition : (fi,T )2 < (µfi,N )2.

These conditions can be transformed, as proven by [15]
and extended by [16], into positive definiteness of certain
symmetric matrices which is for a punctual contact with
friction (PCWF), restricted here to a planar problem,

P(f) =
3∑

i=1

fi,TSi,T + fi,NSi,N > 0 (16)
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with Si,T ,Si,N are constant block diagonal symmetric ma-
trix. For i = 1

S1,T = blockdiag(E2
12 + E2

21,02×2,02×2)

S1,N = blockdiag(µ(E2
11 + E2

22),02×2,02×2)

and et cetera for i = 2, 3. In these relations, Eabc is a square
matrix of dimension a with element (b, c) to be 1 and all
others to be zero.

The problem can be formulated as a set of convex op-
timization problems involving Linear Matrix Inequalities
(LMIs) which can be handled by general-purpose LMI
solvers in computationally viable conditions.

We define a measure of optimality for traction forces by

Ψ(f) = w2f tT fT + log det P−1(f)

where fT = (f1,T , f2,T , f3,T )t depicts the vector of traction
forces, w is a weighting factor. The first term of the measure
will grow with the contact tangential forces, and the second
term grows to infinity as any contact force approaches the
boundary of its friction cone.

The traction force optimization problem can therefore be
stated as follows

minimize Ψ(f) = f tWtWf + log det P−1(f)
subject to Ḡf = ḡ (17)

with W corresponds to a weighting matrix of dimensions
(6,6) where elements are 0, except W11 = W33 = W55 = w.

Finally, wheel torques can be computed by using Jt and
equation (7), which can be written more simply by

τi = rFi,T (18)

V. SIMULATION RESULTS

This section gives simulation results of a quasi-static
step-like obstacle crossing, using the vehicle and ground
parameters given in table (I). The robot crosses a step of
height equal to the wheel radius. Geometry of the robot
and wheel-ground contacts are computed by integration of
velocity parameters and by using the differential kinematic
model developed in section (3).

TABLE I
ROBOT AND OBSTACLE PARAMETERS.

module mass m1,2,3 50Kg
arm length l 0.60m
pitch joint position d 0.10m
wheel radius r 0.25m
Friction coefficient µ 0.8
Step height 0.25m
critical slippage sc 0.2

Simulations are carried out by Matlab software TMand cvx
toolbox [17] dealing with convex programming. We compare
these results with a simple control model which assumes an
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Fig. 5. Traction coefficient ft/fn and slippage ratio si obtained by traction
optimization (weight factor w = 0.01).

0 1 2 3 4 5 6 7 8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time (sec)

Tr
ac

tio
n 

co
ef

fic
ie

nt

traction

high slippage ratio (wheel spinning)

braking

Fig. 6. Traction coefficients with constant velocity distribution.

4132



equal velocity distribution ωi = ω. This is a basic control
which is usually used as it can be carried out by a simple
feedback of the wheel’s rate. In this case, we solve the
non-linear system equation composed by the 4 equilibrium
equations (15) and 4 unknown variables which are the three
normal forces Fi,N , i = 1, 2, 3 and the slippage parameter
ζ
rω . Tyre model (13) is used to express tangential forces as
function of the last unknown parameters. Curves of figure
(6) shows traction coefficients during the step-like obstacle
crossing with an equal velocity distribution. The robot can
not cross the step as, at each frontal contact two wheels are
highly spinning while the other is braking; this latter has a
rate smaller than the theoretical ideal rolling rate. We can
notice also that high internal forces are created by applying
simultaneously tractive and braking torques.
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Fig. 7. Maximal obstacle clearance height (divided by the wheel radius)
as function of friction coefficient µ, for the two control methods.

More generally, we can show, as seen on the figure (7), that
an optimal torque distribution allows high clearance capacity
in comparison with a simple velocity control. This plot gives
the ratio Hmax/r for different friction coefficient values µ
varying from 0.1 to 0.8, Hmax is the maximal clearance
height of a step-like obstacle.

VI. CONCLUSION

Taking inspiration from researches in optimal grasping of
multifingered tasks, a new method is proposed for comput-
ing an optimal traction force distribution in multi-wheeled
articulated robot. The method is based on a Linear Matrix
Inequalities formulation which leads directly to a simple
convex optimization problem that can be solved efficiently
in polynomial time. The magnitude of traction forces is
used as a measure of optimality of the clearance task. The
approach considers cone friction constraint and turns out
to be robust to slippage phenomena. This approach has to
be extended to 3D motion in order to study for example
the effect, of the robot configuration angle along the yaw

direction, on the clearance capacity. Experimental validation
of such optimal torque distribution requires the estimation
of contact parameters (position and normal). However for
structured obstacles (stair, step, etc...), this problem can be
solved easily by using a ground elevation map and an on-line
obstacle sensing.
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