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Abstract— Learning to recognize objects from a small num-
ber of example views is a difficult problem of robot vision,
of particular importance to assistance robots who are taught
by human users. Here we present an approach that combines
bottom-up recognition of matching patterns and top-down
estimation of pose parameters in a recurrent loop that improves
on previous efforts to reconcile invariance of recognition under
view changes with discrimination among different objects. We
demonstrate and evaluate the approach both in a service
robotics implementation as well as on the COIL database. The
robotic implementation highlights features of our approach that

enable real-time pose tracking as well as recognition from views
where figure ground segmentation is difficult.

I. INTRODUCTION

Typical scenarios in which human users interact with

autonomous robots include service robotics, production as-

sistance, robots in care or clinical contexts as well as

entertainment robotics. In such settings, robots operate in

natural environments which are not specifically designed

for the robots’ operation, are not metrically calibrated, and

may change over time. Critical to meaningful interaction

between human users and robots is the capacity of robots to

autonomously generate scene representations. This requires

segmenting relevant objects, recognizing these objects and

estimating their associated pose parameters.

Object recognition in the context of scene representa-

tion differs from the general object recognition problem

in computer vision. That general problem is still largely

unsolved, especially when objects are embedded in natural

environments [1]. Object recognition in the context of scene

representation is in some ways simpler than the general

object recognition problem, while it entails particular chal-

lenges in other respects.

To make things concrete, we consider a scenario with our

stationary assistant robot CoRA [2], which is equipped with

a seven degree of freedom arm and a pan-tilt stereo vision

head. A first simplification of the object recognition problem

comes from the fact that the number of relevant objects that

fit into a shared workspace of the robot and the users is

limited. Furthermore, the viewing conditions are typically

simplified by the constraint that the robot’s action will only

be directed to objects that are within reach of the robot’s arm.

Because the size of that workspace is restricted by the length

of the robot’s arm, variations of object appearance through
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scale and perspective transformations are limited. In addition,

contextual information about the layout of the scene is often

available, for instance, in the form of calibrated camera ge-

ometries describing the relation between a camera-centered

and a workspace-centered frame of reference. Finally, scene

representations can be continuously updated as actions move

objects around or introduce new objects. User feedback is

available throughout operation.

On the other hand, specific difficulties arise from such

interactive scenarios. Assistance robots are confronted with

dynamic scenes. During interaction objects may be moved

around and may become occluded for short time intervals

by a moving arm of the user or of the robot. The robot

may move its head in order to attend to varying parts of

the scene. Most dramatically, the number of training views

that can be provided to learn a new object is necessarily

limited. When users add an object to the scene and provide

the system with an associated label identifying the object,

they may be willing to give a corrective signal from time

to time, but only as long as the number of such teaching

signals remains quite small, a few per object. An effective

object learning system should be able to generalize from a

small number of labelled object views. While this problem

of learning object representations from a limited number of

training examples is felt most acutely in assistance robotics

[3], minimizing the amount of training material required to

learn objects is relevant in other settings as well [4].

The difficulty of learning to recognize objects based on a

small number of views derives from a fundamental problem

of computer vision, the fact that any given object may

cast a continous and thus infinite number of different two-

dimensional images onto the visual sensor. Identifying an

object from a small sample of such views is inherently an ill-

posed problem, more so even if the object’s pose is to be esti-

mated at the same time. Past efforts to address this problem

have often taken inspiration from how the human nervous

system seems to effortlessly solve the problem. Multiple

feature histogramming approaches [5], [6], [7] generated a

degree of shift invariance through spatial pooling of feature

representations and by learning the feature contributions that

are most invariant for an object with respect to the possible

remaining transformations. In order to uncover the invariant

features, these approaches require a larger number of training

examples, however. Feedforward view-based approaches also

achieve shift invariance through a hierarchy of pooling stages

[8], [9]. Invariance to rotation is only achieved by increasing

the number of training views.

An approach to limit the number of different views is to
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actively estimate the transformation an object has undergone

relative to the learned view and to thus place the current view

into an object centered reference frame [10], [11]. The diffi-

culty of such correspondence-based approaches is, of course,

to uncover the transformation the object has undergone,

which is far from trivial. We took inspiration from a recurrent

architecture proposed by Arathorn, which solves the corre-

spondence problem efficiently through pattern superposition

and the cascading of multiple transformations [12]. We

transferred this idea to the context of fast object learning by

proposing a neuro-dynamic architecture in which bottom-up

information converges on a competitive dynamics that selects

the recognized object while top-down information converges

on a dynamic neural field that estimates pose parameter val-

ues. The bottom-up path is based on feature channels, similar

to multiple feature histogramming approaches [5], [6], [7].

We compute the features through pooling, both by summing

over receptive fields to sample histograms [7] and by max-

pooling operations [13] to generate shape templates. While a

degree of shift invariance is used to increase robustness, it is

limited by restraining the size of the receptive fields and by

attaching them to fixed positions on the input image. Multiple

feature channels are fused. The top-down path computes in

parallel estimates of the transformations between the current

and learned representations of an object. Translational and

rotational transformations are cascaded.

To enable continuous, online object recognition in dynam-

ically changing scenes we base the estimation and pattern

matching processes on the methods of Dynamic Field Theory

[14]. Dynamic Field Theory is a theoretical approach to (em-

bodied) cognition that emphasizes that cognitive systems are

embedded in the structured and time-varying environments,

to which they are adapted. Dynamic Field Theory has been

successfully applied in the robotics domain for lower level

perceptual tasks such as obstacle or target representation

[15], [16]. More recently, we began to apply this approach

to the problem of object recognition [17]. Memory traces in

Dynamic Neural Fields defined over low-dimensional feature

maps were used to represent objects. This approach allowed

for fast learning of relatively invariant features, and achieved

good recognition performance for a set of 30 objects with

about three learning trials on average.

Here we use Dynamical Neural Fields for the competitive

estimation of the transformations of object centered reference

frames. This enables the object recognition system to update

its pose estimations online, so that the system can be coupled

to the video-stream of images captured by the robot to track

recognized objects. We use discrete dynamical neurons for

the competitive selection of the winning memory pattern

during matching. The new architecture makes it possible

to employ more highly discriminative feature dimensions,

which have a lower level of intrinsic invariance. This in-

creases recognition rates at an even smaller number of

learning views than our previous effort. Moreover, the new

approach also works when the segmentation of objects is

made difficult by close contact between different objects.

II. METHOD

We compute feature histograms over large receptive fields

of the visual input. The input for computing the receptive

field histogram comes from associated feature maps based

on the responses of locally applied non-linear filters. We

extract four different feature maps: a hue color map and

three orientation maps based on edge images of opponent

color channels: black/white, red/green and blue/yellow (see

the center images in Figures 1 and 4 for examples of these

feature maps). For each of these modalities separate receptive

field histograms are computed. Additionally we generate

shape templates through a max-pooling operation on the edge

image of the black/white color channel.

A. Localized receptive field histograms

In contrast to standard receptive field histogram ap-

proaches [5], [6], [7] we do not take the whole visual input as

a single receptive field for computing the histogram. Instead

we use receptive fields with spatial Gaussian profiles, which

provide more activation at their center and less near their

boundaries. Specifically, we compute the localized receptive

field histogram h from the two dimensional feature map F

of size X̂ × Ŷ , X̂ = Ŷ = 64. Each discrete point in this

map Fxy has a feature value f ∈ [−1, 0, 1 . . . fmax) along

the feature dimension that corresponds to the response of

the non-linear filter and encodes, for example, the hue value

or the orientation of an edge at this position. The resolution

along the feature dimension of the histogram is smaller than

the corresponding resolution of the feature map. The feature

space is subsampled. The range J = [jr, jr +1, .., (j +1)r)
depends on the position j in the feature histogram and on

the ratio of the histogram’s and the feature map’s resolution

r = fmax

jmax .

The Gaussian profile of the receptive field is computed as

a discretized Gaussian Gx,y(x
c, yc, σ) that has as parameters

the receptive field’s center coordinates xc, yc and its spatial

extent σ. The formula to extract a localized receptive field

histogram is then as follows:

hj(xc, yc) =

X̂
∑

x=1

Ŷ
∑

y=1

{

Gxy(xc, yc, σ) if Fxy ∈ J

0 if Fxy /∈ J
(1)

Figure 1 illustrates the activity of a localized receptive field

histogram of hue centered on an object.

B. Localized receptive field histograms of hue

To exemplify how pattern matching is combined with the

estimation of the shift of an object centered reference frame

in a recurrent process, we first focus in this section on

the feature dimension ”hue”. The same basic mechanisms

is used for the other feature dimensions discussed below,

whose fusion occurs through the dynamics of recognition

and estimation (section II-D).

We compute the hue feature map from an hsv-image by

assigning the hue value to those pixels that are above a

threshold of saturation, while assigning -1 to pixels with

saturation below the threshold. The localized receptive field
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Fig. 1. Localized receptive field histogram of hue computation for an
example object. On the left is the input image and in the middle the hue
feature map with a visualization of the receptive field’s Gaussian profile: the
strength of which is displayed through intensity and its center and width are
visualized with the little grey cross and with the grey circle. On the right is
shown the receptive field histogram, computed from the hue feature map.
Each receptive field bin is colored with the hue value it represents.

histogram of hue is invariant to in-plane rotations of objects

and partly also invariant to depth rotations. Because we

introduce shift variance through the localized receptive field,

the shift is the only variance generating variable that has

to be estimated in order to achieve an invariant feature

representation.

During learning, the Gaussian weight matrix G is centered

on the object and the localized receptive fields are computed

by sampling the feature map (see also Figure 1).

TABLE I

AN OVERVIEW OF THE NOTATION WE USE.

receptive field histograms vectors h

backward pathway vector/matrix b, B

forward pathway vector/matrix f , F

weight vector/matrix w, W

similarity/correlation vectors/matrices c, C

second transformation for a cascade b′, f ′

feature dimension superscript bhue,by, bu,bv,Bshape

transformation superscripts shift/rotation ws,wr

transformation variables
shift x, y; number of shifts X, Y

The extracted localized receptive field histogram,

h
hue(xc, yc), is then stored in a memory vector, m

hue
l ,

associated with object, l, which is an element of the

complete memory buffer, M
hue (see Table I for the notation

we use). For an illustration see also the top right of the

schema in Figure 3.

During recognition, the input image is subsampled by a

grid of localized receptive fields equally distributed over the

image at X×Y locations (X = Y = 16). For each receptive

field we obtain a feature histogram h
hue(x, y) that is used for

matching (see Figure 2 and the lower left of the schema on

Figure 3).

We exploit the ordering property of pattern superposition

[12] and design the processes of estimating the shift of

the reference frame (and analogously the process of pattern

matching) as a recurrent computation. This means that all

shifted vectors of input are superposed (and similarly all

pattern memories are superposed). The contribution of each

shifted input vector is weighted with a dynamical activa-

tion variable that reflects how strongly the associated shift

value matches the current estimate of shift (and similarly,

Fig. 2. Grid of localized receptive fields distributed over a feature map that
contains two objects. Pictured is a single line of receptive fields and their
associated histograms. The receptive fields equally cover the whole image,
but in order to avoid an overly cluttered picture only one line is shown.

each memory vector is weighted with an activation variable

that reflects how strongly the associated memory currently

matches the input). These weights evolve in time so that the

superpositions converge (see schema in Figure 3).

Initially all weights for building the sum of the memory

patterns wp are set to be equal. Instead of matching with

each object at each location we match a weighted sum of

memory patterns at each location. Of course this does not

tell us where a specific object is but it gives us a spatial

similarity with the weighted memory pattern. We use this

spatial similarity matrix C
s,hue to estimate where the object

centered reference frame might have shifted. This pathway

is the backward pathway (right part on Figure 3) and the

weighted sum of the memory patterns is the vector b
hue:

b
hue =

L
∑

l

wp
l m

hue
l (2)

The shift of the object centered reference frame is initially

also unknown as all patterns extracted at all locations have

equal a priori probability to best match one of the memory

items. Therefore, all elements of the weight vector W
s are

initially set to equal values.

f
hue =

X,Y
∑

x,y

W s
x,yh

hue(x, y) (3)

Equation 3 constitutes the forward pathway (left part of

Figure 3). The forward vector, f
hue, formed this way is then

compared with each memory item. This gives us a similarity

vector c
p,hue which we use to estimate which object is present

in the input image:

cp,hue

l = −‖f hue − ml‖ (4)

At the level of the pattern match we get a pattern similarity

measure by comparing each memory item with the weighted

sum of transformed inputs and at the level of the shift of the

object centered reference frame we get a spatial similarity
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Fig. 3. Recognition with localized receptive fields of hue. The schema
shows the recurrent process of shift estimation and pattern recognition. On
the left side the forward pathway is sketched, the localized receptive fields
are shifted over the image to build the forward vector f hue to be matched
with each memory pattern. On the right side the backward path is depicted
where the vector b

hue is constituted through the weighted sum of memory
patterns.

measure by comparing the extracted input with the weighted

sum of all memory patterns:

Cs,hue
xy = b

hue · hhue(x, y) (5)

Just using the result of these correlations, Cs,hue and c
p,hue,

as weights, W
s = C

s,hue, and w
p = c

p,hue, for building

the next weighted sum in each pathway may already lead

to convergence. To ensure that the system converges to

single solutions, a competitive process is needed. Arathorn

uses a competitive function that preserves the magnitude

of the largest competitor and diminishes all others [12].

This function works well when the input is not changing

while the recurrent recognition/estimation process runs. In

contrast, working on a video stream of images, in which input

may change and fluctuate during the recurrent computation

requires stability against fluctuating input, not provided by

Arathorn’s competitive function. Instead of Arathorn’s func-

tion we therefore use Dynamic Neural Fields for the robust

estimation of the possible transformation of object centered

reference frames. Similarly, we use assemblies of dynamic

neurons for the competitive process at the level of the pattern

match. At both levels, self excitation provides stability.

angle
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Fig. 4. The top of the Figure shows the orientation map and the
associated localized receptive field histogram. The bottom part shows the
shape description obtained through maximum pooling.

C. Other feature channels

In addition to the hue feature map, we compute three

other feature maps from the responses of steering filters

[18] applied to the three color channels of a YCrCb color

space. These feature maps contain orientation information

and, just like for the hue feature map, we extract localized

receptive field histograms from these maps. In addition to

these four types of localized receptive field histograms,

we also compute a shape description through a maximum

pooling of the energy from the steering filter responses. See

Figure 4 for examples of these additional feature channels.

D. Cascading of transformations

Both the localized receptive fields of oriented edges and

the shape description vary with object rotation and support

the estimate of rotation. For the localized receptive field

histograms of oriented edges, object rotation induces a phase

shift. Computing rotated responses thus corresponds to shift-

ing the histograms. For the shape description we compute

rotated versions by applying a rotation matrix to the shape

image.

The estimation of shift and of rotation of an object can be

cascaded [12]. First the shift transformation is estimated. The

weighted sum of the forward pathway f
y,u,v and F

shape is used

as input to the rotation transformation. Here, analogously to

the shift transformation, weighted sums of rotated patterns

f
′,y,u,v and F

′,shape are formed that are then used for the pat-

tern match. In the backward pathway, the estimated rotation

is conversely applied to back-transform the weighted sum of

memory patterns b
′,y,u,v and B

′,y,u,v. These back-transformed

versions are then used as weighted sums of memory patterns

for the shift estimation.

E. System fusion, transformation estimation modules and

pattern matching

The role of the transformation estimation modules and the

pattern matching module is to accelerate this process through

selection, to force them to converge to single solutions and

to stabilize the selected estimates and winning patterns. We
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use Dynamic Neural Fields for the estimation of the spatial

shift and of the rotation. For the pattern matching module,

we use assemblies of Amari type dynamic neurons. These

all have a two layer architecture in common. The first layer

receives the input and has relatively weak lateral interactions

so that its output resembles the input with weak suppression

of outliers. The output of the first layer feeds into the second

layer which is more strongly interaction driven and has

stronger competition. This makes that only a a single peak of

activation survives (for the estimation field) and only a single

neuron remains active (for the pattern matching system, see

also Figure 5).

A simple peak detection mechanism at the level of the

second layer gates the read-out of either the first or second

layer to the output of the estimation or pattern match layer.

As long as no peak has yet emerged in the second layer,

the first layer is read out. Once a peak has formed, the

second layer is used for read-out. The rationale behind this

architecture is that at the beginning of the pattern match and

transformation estimation, it is useful that the weighted sums

are still relatively unselective, so that many transformations

and many memories have a vote. This avoids that the system

is driven by an accidental dominance of individual features

early in the process. Once the recurrent converges, it is

nevertheless desirable to switch into a decision making mode,

in which a single solution is selected.

The system is based on five different feature dimensions

which need to be fused. Fusion is done in the two kinds

of modules at several levels. Fusion takes place at the input

level of the different transformation estimation modules. The

contributions of different feature dimensions are weighted

and summed up to form the combined input to the transfor-

mation estimation. Fusion also takes place at the output level

of these estimation modules, because each output is applied

as a weight factors to all feature dimensions. Similarly the

different feature dimensions are fused in the pattern matching

module. The feature dimensions are weighted and summed

at the input level to the pattern matching module.

1) Spatial shift and rotation estimation: The spatial sift

and the rotation estimation module only differ in their

dimensionality, their parameter settings and the inputs they

receive. Because they operate identically otherwise, we only

explain the shift estimation module in more detail. The first

layer Dynamic Neural Field for the shift estimation receives

as input the correlations computed for each feature dimension

(hue, black/white edges, blue/yellow edges, red/green edges,

shape). To fuse these different dimensions, the correlations

are first made mean-free (subtracting the average correlation

across all possible shifts), multiplied with a constant weight

factor and summed:

S
s = γs,hue

C
s,hue,norm + γs,y

C
s,y,norm (6)

+ γs,u
C

s,u,norm + γs,v
C

s,v,norm

+ γs,shape
C

s,shape,norm

The weights γs,hue = 20, γs,y = 100, γs,u = 0, γs,v =
0, γs,shape = 10 were empirically determined to reflect the

frequency with with correlations occur in the different chan-

nels. For example, for most objects there are more pixels

with a color value than with an edge value so that the color

input is usually stronger than the edge input. The color edges

where not used because for the purpose of shift estimation

they are redundant with black and white edges.

Conceptually, the Dynamic Neural Field is a continuous

representation of the parameter to be estimated, although the

numerical implementation discretely samples the parameter.

In this sense, the input Ss is a continuous function over space

and time, ss(x, y, t). For the spatial shift, the activity at a

certain location at a moment in time, u(x, y, t), represents

the estimate of the shift of an object with respect to the object

centered reference frame. The field equation of the first layer

field is:

τ1u̇s,1(x, y, t) = −us,1(x, y, t) + h1 + ss(x, y, t)

+

∫ ∫

Ws,1(x − x′, y − y′)

σ(us,1(x
′, y′, t))dx′dy′ (7)

The second field receives the output from the first layer

field as input. It has different interaction parameters but

is governed by an equation of the same form. It is more

strongly interaction dominated: its kernel, Ws,2, has stronger

excitatory and inhibitory weights than the kernel of the first

layer field, Ws,1 (see also Figure 5 for an illustration). We

smooth the output from the first layer with a Gaussian kernel

before we use it as input to the second layer. Because

the second layer receives the output of the first layer, no

peaks form in the second layer before there is suprathreshold

activation in the first layer. The timescale τ2 of the second

layer is slower than the timescale of the first layer τ1, so

that it takes more time for a peak to build up there. Until a

peak has formed in the second layer, the output of the first

layer is taken as output of the shift estimation module. The

output, Σs,i, is written in discrete notation to index its role as

discrete weights, W
S, for the summed feature vectors, f ,F,

and corresponds to the sigmoided activation, σ(us,i(x, y, t)),
for each layer with index i.

Σ
s,i = σ(us,i(x, y, t)) (8)

When a peak in the second layer is detected with a peak

detector, σ(up,s,2) > 0, the sigmoided activation of the

second layer is used as output of the module, otherwise the

output of the first layer is used.

τu̇p,s,2 = −up,s,2 + h +

∫

σ(us,2) (9)

W
s,pre = (1 − σ(up,s,2))Σ

s,1 + σ(up,s,2)Σ
s,2 (10)

W
s =

W
s,pre

‖Ws,pre‖1

(11)

2) Pattern matching module: The pattern matching mod-

ule is realized through two layers of discrete dynamic neu-

rons. Within each layer, the number of neurons corresponds

to the number of objects the system can recognize. An indi-

vidual neuron’s activity indexes the presence of an associated
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Fig. 5. The two layer shift estimation module. The bottom of the Figure
shows the broader activation us,1 of the first layer, that projects its output
to the second layer. The second layer’s activation us,2 is figured on top of
the first layer.

object. Like in the two layered architecture of the estimation

fields, the first layer is input dominated allowing for multiple

neurons being suprathreshold, whereas the second layer is

interaction dominated so that only a single neuron can have

suprathreshold activity. Both layers are initially set to a

resting level, h1, so that even in the presence of input

their neural activity is off. Only when a peak is detected

on the level of the second layer of the rotation estimation,

σ(upeak,r,2) > 0, are these neurons released to a higher

resting level, h1,boost, where activity can pass threshold.

We remove the mean and fuse the inputs from the different

dimensions by summing them up with different weights:

s
p,1 = γp,hue

c
p,hue,norm + γp,y

c
p,y,norm (12)

+ γp,u
c

p,u,norm + γp,v
c

p,v,norm + γp,shape
c

p,shape,norm

In contrast to the shift estimate, here the color edge dis-

tributions also contribute to recognition,. The weights are

chosen as follows: γp,hue = 27, γp,y = 32, γp,u = 28, γp,v =
28, γp,shape = 10

The first layer receives this weighted sum, s
p,1, as input

and feeds its activity to the second layer where it serves as

input. Again, time is conceptually continuous. Because the

equation for the second layer only differs in parameter values

and in the source of input, we show only the equation for

the first layer.

τ1u̇
p,1
l (t) = −up,1

l (t) + h1 − γinh

L
∑

l′=1,l′ 6=l

σ(up,1
l′ (t))

+ γexcσ(up,1
l (t)) + sp,1

l (13)

+ σ(upeak,r,2)h1,boost (14)

When reading out the weights for the calculation of the

weighted memory vectors, we check whether the second

layer is suprathreshold. If this is the case, the second layer’s

output is used. Otherwise, the first layer’s output is used.

w
p,pre = (1 − σ(max(up,2)))σ(up,1) (15)

+ σ(max(up,2))σ(up,2) (16)

w
p =

w
p,pre

‖wp,pre‖1

(17)

F. Backprojection and segmentation

Reliable segmentation in a purely feed forward way is very

difficult to implement. Segmentation becomes much easier

when object knowledge is available. In the current frame-

work, object knowledge is integrated through the backward

pathway. If the estimated rotation and shift are inversely

applied to the shape description, the result, B
back, can be

used to filter out those parts of the input image that do not

belong to the object. Once the system has converged to a

decision for an object, the associated shape is back-projected,

which improves pose estimation as it effectively cuts away

input information incompatible with the recognized object.

III. RESULTS

A. Assessment of the baseline performance

To first assess the baseline performance of our new system

we use the setting of our previous system [17]. Each object

is trained in a single view, centered and in a canonical orien-

tation with the longer of its major axes aligned vertically For

testing, we vary the object pose to three different locations

and three different orientations each. Thus, each object is

tested in nine different poses. In total, the test of thirty objects

at nine poses results in 270 tests. With a single training view,

the system reaches an overall recognition performance of 90

percent in this test scenario.

B. Assessment of the baseline performance on the COIL-

Database

Although we are more interested in realistic robotic sce-

narios, we tested our system on the COIL database [19].

We considered only the first 30 objects and achieved a

recognition rate of 85 per cent with two training views and of

94 per cent with four training views. Each additional view

was treated as an independent object. If any of the these

matched closest, it was counted as a successful recognition.

This performance may be compared to the results of [8] who

achieved 80.1 per cent recognition rate for two views and

89.9 per cent for four training views on the first 30 objects

of the COIL database.
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Fig. 6. Two objects that touch in the image. The images show examples
of test scenes.

C. Assessment of performance with two items that touch in

the image

In order to assess the performance of the system for more

complex scenes we tested it in situations in which two objects

touch in the scene (see Figure 6). In such cases, a simple

segmentation based, for instance, on knowledge about the

background, will not be sufficient to segment the scene into

two objects. We did not test all possible combination of two

objects from the set of 30 objects, but chose an arbitrary

drawing of object pairs from the object sets such that each

object was contained in at least one test. Currently, in the

absence of an active process of scene representation, which

of the two touching objects is recognized is a reproducible

function of the quality of the match. The recognition rate

for that first recognized object was 76 percent over all trials.

The associated pose estimate was correct for 72 percent of

trials. This number includes those trials on which recognition

was incorrect. Pose estimation is correct on 96 percent of all

trials on which recognition was correctly achieved.

D. Tracking and distractor robustness

Once the system has recognized an object, this decision

is stabilized by the winner-takes-all connectivity of the

pattern matching module. The decision for a specific object

structures the input the system receives through the backward

pathway, and renders those parts of the image which have a

match with the specific object more salient than others. This

supports robustness against distractors. The stability property

of the localized peaks in the estimation fields representing

the pose of the object also supports robustness against dis-

tractors. On the other hand the shift and rotation estimation

fields are adjusted so that they can still track changing input.

These two properties — distractor robustness and tracking

— are illustrated in Figure 7: the operator’s hand acts as a

distractor the system must be stabilized against, but his hand

also moves the object and the system has to track the object.

This example also gives an idea how scene representation

and the ability to track objects can support the recognition

process. Tracking objects over time can for example render

the problem of occluding objects easier, if those occlusions

happen over time.

IV. DISCUSSION

The present system achieves high recognition rates of ev-

eryday objects that are presented at varying poses. This was

tested by varying position, rotation and the viewing angle

systematically. Importantly this performance was achieved

Fig. 7. Tracking and distractor robustness. Top row shows the input image,
in the middle the field activity of the spatial decision field is depicted, and
in the bottom row the pose estimation results is overlaid on the input image.

on the basis of only a single training view. Even when

segmentation is made more difficult by two objects touching

recognition rates remain reasonable. On the COIL database

our system achieves high performance rates based on learn-

ing only two or four views per object.

A. Comparison to view-based feedforward models of object

recognition

View based feedforward models [8], [9] usually need a

larger number of training views in order to achieve invariant

representations. Most feed-forward object recognition sys-

tems focus on the recognition portion of the problem of

object perception, determining object identity. Position and

pose information about the object is usually lost along the

feedforward stream in order to achieve position invariant

recognition. If two or more objects enter the feedforward

stream, recognition of one of these objects may be successful

and a binding problem may be avoided [20]. Feedforward

models do not account, however, for how object pose infor-

mation may be linked to object identity. If pose parameters

must be associated with the object’s identity, the problem

of binding these two object properties together arises in

feedforward models. In human vision, pose information

is readily associated with object identity [21]. Moreover,

using object recognition in robotic scenarios makes pose

information critical as it enables robots to plan grasping or

manipulatory movements.

B. Comparison to map-seeking circuits

The principles of our architecture are similar to those

underlying Arathorn’s proposal of a map seeking circuit

[12]. Differences arise at three levels. The first difference

is our choice of features. Instead of relying on edge image

templates we sample local distributions like the hue color

or the orientation of edges and generate shape templates.

Through this choice of features we achieve a higher degree

of invariance with respect to those transformations that we

are not simultaneously estimating. At the tilt angle with

which we are looking at the scene, an in-plane rotation of the

objects with respect to the table plane deviates significantly

from a rotation in the image plane. While Arathorn solves

this problem with a complete three dimensional model of
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a target object that requires estimating also the in-depth

rotation, it remains unclear how an object recognition system

could acquire such a three dimensional model on its own.

A second difference lies in our treatment of feature fusion.

Arathorn developed his approach for a single feature modail-

ity, edge images. We use multiple feature channels which

we fuse by weighting the different dimensions and linearly

combining them within the computational loop between pose

estimation and pattern matching.

The third major difference lies in our use of Dynamic

Neural Fields for the estimation of the image transforma-

tions and, similarly, of competitive neuronal dynamics for

the pattern matching process. This difference is associated

with a more fundamental difference in outlook. While the

competitive mechanism of Arathorn’s map-seeking algorithm

is designed for open-loop computation in which image input

is not updated during the computational cycle, we have

shown how Dynamic Neural Fields make it possible for

the estimation and recognition processes to be continuously

updated by new sensory information in closed loop.

C. Computational time

Although the structure of the numerical algorithm would

enable implementation on parallel hardware, we have real-

ized our software architecture for standard multi core i386

processors. On a Core-Duo 2.1 Ghz with Intel’s MKL and

IPP-libraries, the computations of the features and of the

correlations that are used as inputs to the dynamic neural

fields take about 300 ms. The dynamic fields are iterated in

a parallel thread. Their execution takes 80 ms. It may take up

to 8 seconds to establish a stable and time invariant decision

about object pose and identity. At this time, all estimates

are in an attractor state. The transient solutions typically

indicate the correct decision already after a small number

of iterations of the dynamic fields (e.g., 20 cycles or less

than 2 seconds), at which time the neuron with the strongest

activation matches the neuron that will ultimately win the

competition. Thus, there is no need to await full relaxation

before reading out the results. A related feature is the fact

that even during recognition the system is continuously

updating its input and can thus track time-varying input

during recognition.

V. CONCLUSION

We have presented a pervasively neuro-dynamic architec-

ture for object recognition that supports scene representation

for an autonomous robot. We reach competitive performance

on a standard benchmark of object recognition. More impor-

tantly, we show that our approach also works in more difficult

conditions, where segmentation of objects is not trivial.

Furthermore our system has important stability properties,

enabling the tracking of objects and their pose parameters.

This is especially relevant in robotic scenarios where the

robots own movement as well as object movements induced

by human users require continuous online updating of the

scene.

REFERENCES

[1] N. Pinto, D. D. Cox, and J. J. Dicarlo, “Why is real-world
visual object recognition hard?” PLoS Computational Biology,
vol. 4, no. 1, pp. e27+, January 2008. [Online]. Available:
http://dx.doi.org/10.1371/journal.pcbi.0040027

[2] I. Iossifidis, C. Theis, C. Grote, C. Faubel, and G. Schöner, “Anthro-
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