
Traffic Control for a Swarm of Robots: Avoiding Group Conflicts

Leandro Soriano Marcolino and Luiz Chaimowicz

Abstract— A very common problem in the navigation of
robotic swarms is when groups of robots move into opposite
directions, causing congestion situations that may compromise
performance. In this paper, we propose a distributed coor-
dination algorithm to alleviate this type of congestion. By
working collaboratively, and warning their teammates about
a congestion risk, robots are able to coordinate themselves
to avoid these situations. We executed simulations and real
experiments to study the performance and effectiveness of the
proposed algorithm. Results show that the algorithm allows the
swarm to navigate in a smoother and more efficient fashion,
and is suitable for large groups of robots.

I. INTRODUCTION

Large groups of robots have been receiving much attention

in recent years. Generally called swarms, these systems

employ a large number of simple agents to perform a great

range of tasks. Generally, a swarm of robots must work in a

distributed fashion and use limited communication resources.

Due to these characteristics, new algorithms to control and

coordinate these large groups of robots have been developed.

One of the difficulties encountered in the navigation of

a swarm is congestion: a large number of robots moves

towards the same region of the environment at the same

time, causing conflicts that waste time and resources. This

problem can appear when the congestion region is a target

for many robots, for example during waypoint navigation, or

when groups of robots move in opposite directions and face

each other while navigating. This second case, in particular,

appears very often. For example, one group might be moving

from a base to a target, while other group is returning

from the target to the base. Particularly, we observed these

problems in [1], where congestion situations often happened

during the navigation of a swarm of robots.

Although there are many works dealing with traffic control

or collision avoidance, they generally are not appropriate for

the context presented here. Traffic control algorithms usually

are developed for structured environments where robots

navigate in delimited lanes and meet at specific intersections,

where it is necessary to choose which one will pass first.

Collision avoidance algorithms generally are developed for

and tested only in a small group of robots. When large groups

of robots are considered, it is very hard to negotiate free paths

for all of them in a distributed fashion using regular collision

avoidance algorithms. In this case, the congestion problems

persist.

This work is partially supported by Fapemig and CNPq. The authors
would like to thank Renato Garcia for his help with the localization system
and the development of the epuck driver.

The authors are with the Vision and Robotics Laboratory (VeRLab),
Computer Science Department, Federal University of Minas Gerais, Brazil.
emails: {soriano,chaimo}@dcc.ufmg.br

Therefore, we can see that developing new solutions for

traffic control of a large number of agents are of great impor-

tance to improve the navigation of a swarm, decreasing the

waste of time and resources caused by congestion situations.

The objective of this paper is to investigate and develop

methodologies to control the traffic of a swarm of robots,

in the case where groups of robots move in opposite direc-

tions in unstructured environments. We propose a distributed

algorithm that allows the robots to warn their teammates

and dynamically change their trajectories in order to avoid

congestion. We perform a series of simulations and real

experiments in different scenarios to show the effectiveness

and efficiency of the proposed approach. In a companion

paper [2], we also developed a solution for the congestion

situation where many robots have a common target.

II. RELATED WORK

When navigating a large number of robots, the combined

configuration space can be very complex. Therefore, a com-

mon approach is to control the robots in a decentralized

way, mixing gradient descent techniques with local repulsion

forces [3], [4]. However, this can lead to congestion situa-

tions, decreasing the efficiency of the system. Specifically,

in a recent work [1], we noticed that many robots got “stuck

on traffic” when groups moved in opposite directions. These

conflicts delayed the navigation and compromised perfor-

mance. It is important, therefore, to coordinate the robots

in order to enable the swarm to have a better navigation.

The traffic control problem is an important research topic.

In [5], it is characterized as a resource conflict problem and

the importance of its study is emphasized. Works dealing

with traffic control started to appear in the late 1980s. In

[6], for example, many policies are presented to avoid the

congestion of robots in a factory. In [7] traffic rules are

shown to navigate a group of robots. In general, works on this

area assume that the robots navigate in delimited lanes (like

streets or roads). These lanes meet in intersections, where

congestion may happen. The traffic control, in general, is

executed only at these intersections.

More recent works can be found both in the cooperative

robotics field and in the multi-agent systems field. Some

works use a manager agent to administrate the traffic at

intersections where congestion may happen, as in [8]. A

similar approach, in the robotics field, can be seen in [9],

where a sensor network is used to coordinate the traffic

of a group of robots. Others are working in manager free

scenarios, as in [10], which presents a completely distributed

algorithm that, based on a spatial temporal pattern, coordi-

nates the movement of robots into intersections or junctions.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1949

However, these methods do not solve the proposed problem,

as they assume a structured environment, in which there are

fixed locations where the robots may encounter. Besides,

they focus in selecting which robot will pass first in the

intersection or junction, which is not what we need to solve.

In [11], a mechanism is proposed to avoid congestion

in crowd simulations. The authors propose an approach

in which agents plan early to avoid congestion, enabling

smoother trajectories than when using local repulsion forces.

The method, however, is too centralized to be used with a

swarm of robots.

Instead of dealing with traffic control, there are works that

tries to find more efficient approaches to collision avoidance

than using local repulsion forces. In [12], an algorithm is

proposed in which robots coordinate their velocities in order

to avoid a collision. The coordination may entail not only

the robots directly involved in the probable collision, but the

robots in the neighborhood as well, which might have to

change their velocities to help the robots involved. Other

works that deal with collision avoidance are [13], [14],

[15], [16]. However, avoiding collisions do not necessarily

mean avoiding congestions. Even with a good collision

avoidance behavior, the system can still become cluttered

and inefficient. Besides, in general these works do not show

cases with a large number of robots.

As can be seen, although there are many works dealing

with traffic control and collision avoidance, to the best of

our knowledge there is no algorithm that deals directly with

the proposed problem, where large groups of robots move

in opposite directions in an unstructured environment and

must coordinate themselves in a distributed, robust and fault-

tolerant fashion. The main contribution of this paper is a

decentralized coordination algorithm that allows a swarm of

robots to prevent congestion in these situations using only

local sensing and communication, without assuming the use

of delimited lanes nor needing an external infra-structure to

control the traffic.

III. METHODOLOGY

We are going to describe our algorithm considering a

conventional potential field approach, since this is the most

common method in swarm navigation: robots are attracted

by the goal and repelled by their neighbors in order to avoid

collisions among the group.

Thus, given a fully actuated robot i, with dynamic model

given by q̇i = vi, v̇i = ui, where qi = [xi, yi]
T is the pose

of the robot i, ui is the control input and vi is the velocity

vector, the following control law is used:

ui = k1

f(tai)

||f(tai)||
− k2

∑

j∈Ni

1

qj − qi

− k3q̇i (1)

The constants k1, k2 and k3 are positive. The first term is

the attraction force of the robot towards the target: function

f calculates the vector that points towards the target of

the robot i, tai. The second term represents the local

repulsion forces. The robots in the neighborhood of robot

i are represented by the set Ni. We define as a neighbor

every robot that is within a certain limit, δ, of distance from

robot i. The third term is a damping force, used to improve

stability, mainly in simulations.

The coordination algorithm works as follows: we assume

that every robot, i, is able to know the direction of its target,

di. Besides, we assume that robots are able to communicate

locally with all the robots that are within a maximum

distance α (α ≥ δ). The general idea of the algorithm is

that the first robots to notice the risk of congestion should

warn their teammates, allowing them to avoid the problem.

We will call as a teammate of robot i every robot within a

maximum distance α that has a target in the same direction

(di). In our algorithm, robots are able to send messages ex-

clusively to their teammates. This can be easily implemented,

for example, by putting di in every message and ignoring the

messages that are supposed to be read by other groups.

We modeled our solution as a simple finite state machine.

A robot starts in the normal mode, following Equation 1.

Upon realization of a congestion risk, it changes its mode to

deviating, and dynamically adapts its trajectory in order to

avoid the congestion. When the risk has been successfully

avoided, the robot returns to the normal mode.

We consider that a robot is able to detect the presence

of another when the distance between them is lower than δ.

Every time that a robot, i, detects the presence of another,

j, it sends a message saying the direction of its target. If

di 6= dj , the robot that received a message, j, is able to

perceive the imminent risk of congestion. In a similar way,

j is also going to send a message to i informing its target

direction, allowing both robots to notice this risk. In order to

decrease the number of messages, each robot can send only

one message informing its direction at every ǫ iterations. This

initial phase of the algorithm can be seen in Figure 1(a).

The robots that noticed the risk of congestion send a mes-

sage to their teammates, as can be seen in Figure 1(b). Each

robot, upon receiving this message, relays it to its teammates,

as shown in Figure 1(c). In this way, the information of a

congestion risk is sent through the swarm and each group

can deviate appropriately, as shown in Figure 1(d).

As soon as a robot notices the risk of congestion, whether

it found a robot of the other group or received a warning from

a teammate, it deviates from the local where the congestion

could happen. To do this, the robot uses the direction of

its target as a basis. It can be specified, for example, that

each robot will deviate in the counterclockwise direction,

therefore the group that goes from west to east will deviate

to the south, while the group that goes from east to west

will deviate to the north. The controller of a deviating robot,

therefore, can be given by:

ui = k1

g(tai)

||g(tai)||
− k2

∑

j∈Ni

1

qj − qi

− k3q̇i, (2)

where g is a vector that will guide the robot in the direction

of the target, while at the same time will force it to deviate

in the appropriate direction. In order to construct a model

1950

1951

(a) (b) (c) (d) (e) (f)

Fig. 3. Execution with two groups using only local repulsion forces.

(a) (b) (c) (d) (e) (f)

Fig. 4. Execution with two groups using coordination algorithm.

5 10 15 20 25
1000

1200

1400

1600

1800

2000

2200

Number of Robots per Group

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

Not Coordinated

Coordinated

Fig. 5. Time used by both algorithms. The bars show the confidence
interval of the results, with 95% level of confidence.

In Figure 6 we can see the number of messages used by

the proposed algorithm for a varying number of robots. The

best linear model found was y = 34.0875x+6.7446, with a

coefficient of determination (R2) of 0.9978; while the best

quadratic model, shown in the figure, was y = −0.2969x2 +
42.9942x − 49.3679, with R2 = 0.9998. Although the best

model was a quadratic function, we can see that the quadratic

term was a small negative number. This result shows that the

algorithm scales well and is suitable for large groups.

We also ran simulations with four groups of 12 robots.

The result can be seen in Figure 7. As can be observed, the

algorithm also worked well in that situation. The robots cir-

culated around the region where a congestion could happen,

and every group was able to reach the specified destination.

B. Real Robots

As mentioned, we also tested the proposed algorithm using

twelve e-puck robots. These experiments are important to

show the feasibility of the algorithm in real scenarios, with

all the uncertainties caused by sensing and actuation errors,

communication failures, etc.

5 10 15 20 25
100

200

300

400

500

600

700

800

900

Number of Robots per Group

N
u

m
b

e
r

o
f

M
e

s
s
a

g
e

s

Data

Quadratic Model

Confidence Interval

Fig. 6. Number of messages sent for a varying number of robots. The bars
show the confidence interval of the results. Both the confidence interval of
the points and of the regression correspond to a level of confidence of 95%.

To simplify the implementation, we used a localization

system specifically designed for swarm localization in indoor

environments [20], although, as mentioned, the algorithm

does not depend on global localization. Also, as the IR sen-

sors of the e-pucks have a very small range, we implemented

a virtual sensor based on the localization system to detect

neighbors.

A sequence of snapshots of an execution with two groups

of robots can be seen in Figure 8, while with four groups

can be seen in Figure 9 (a short video of the experiments

is accompanying the paper). E-pucks with all LEDs on are

in the deviating state. The graphs in the bottom depict the

robots’ position and states: robots following their normal

controller, given by Equation 1 (+); robots following the

deviation controller, given by Equation 2 (◦), and robots

that, after deviating, returned to their normal controller (×).

We used the following values for the main constants: δ =
0.3m, α = 0.3m, ǫ = 25, k1 = 0.2, k2 = 0.02, k3 = 5, k4 =
0.1, k5 = 1. In the two groups case, we used φ = 0.18m,

while in the four groups case we used φ = 0.25m.

1952

(a) (b) (c) (d) (e) (f)

Fig. 7. Execution with four groups using the coordination algorithm.

As can be seen, using the proposed algorithm the robots

were able to complete the task in a smooth manner in both

scenarios. In the two executions the total time was about 2

minutes. We also ran the same scenarios using only local

repulsion forces, which needed about 4.5 minutes in the

two groups case and 6 minutes in the four groups case.

The convergence time gain was of 55% in the former case

and 66% in the latter. Therefore, these proof of concept

experiments indicate that the algorithm can work well to

coordinate a swarm of robots, allowing them to efficiently

navigate into opposite directions.

C. Choice of Parameters

It is important to discuss some aspects concerning the

selection of parameters used in the algorithm. This might

help designers that decide to try the proposed method. When

robots coming from different directions realize the presence

of each other, they must have enough time to deviate before

they encounter. Therefore, the parameters of the system must

be selected in order to facilitate this to happen.

The speed of the robots (given mainly by the constant k1),

must be adjusted considering the communication velocity,

because robots that are fast have a higher inertia. The

sensing and communication ranges (given by constants δ

and α) also need to be selected considering the speed of the

robots. The algorithm can work with groups having different

velocities, but faster robots must have a greater sensing and

communication range, so that slower ones will realize the

congestion risk sooner and will have enough time to deviate.

It is also possible to work with constants k4 and k5 to change

the balance between deviating and reaching the specified

destination. This can lead to a safer system, but with a

performance cost. In the experiments we used k5 an order

of magnitude higher than k4, as this configuration led to a

good balance between the forces applied to the robots.

Another important parameter is the φ constant, that con-

trols the height of the deviation trajectory. If it is low, one

group will not be able to completely avoid the others. If it

is high, the robots will move more than necessary, wasting

time and resources. It is necessary to find a good compromise

point, which can be done by experimental evaluation. In our

simulations we realized that with four groups of robots it

is better to use a φ constant slightly higher than with two

groups, as it is a more difficult situation.

V. CONCLUSIONS

In this work, we proposed an algorithm to control the

traffic of a swarm of robots, avoiding congestion situations

when large groups of robots move in opposite directions. The

proposed algorithm is based on a simple idea: robots that

perceive the possibility of collision warn their teammates

through local communication and the group changes its

behavior to avoid this situation. In spite of being simple,

the algorithm presented very good results in terms of perfor-

mance and scalability for the studied scenarios. This happens

because, as in nature, robots take advantage of being part

of a group, and their collaborative work allows them to

avoid the congestion earlier than they could using only their

local sensing. We performed several simulations and real

experiments which demonstrated that the proposed algorithm

was successful in avoiding congestions and improving navi-

gation efficiency. Moreover, the algorithm showed a tendency

to scale well as the population increases, which is very

important when dealing with swarms.

The situations presented in this paper are still very specific.

There are still lot of work to do in order to generalize this

algorithm for other situations. In this sense, this work is also

important since it forms the basis for new and exciting future

works. We would like to observe its behavior for a large

number of groups or when groups do not have opposite

directions, but encounter with different angles. Situations

where the number of robots in each group is very different or

have different velocities must also be investigated. It would

also be interesting to explore the case where the groups of

robots encounter in different time intervals. By investigating

these situations and other related cases we can achieve a

robust and efficient navigation system for a swarm of robots.

REFERENCES

[1] L. S. Marcolino and L. Chaimowicz, “No robot left behind: Coordina-
tion to overcome local minima in swarm navigation,” in Proceedings of

the 2008 IEEE International Conference on Robotics and Automation,
2008, pp. 1904–1909.

[2] ——, “Traffic control for a swarm of robots: Avoiding target conges-
tion,” in Proceedings of the 2009 IEEE International Conference on

Intelligent Robots and Systems, 2009.

[3] R. Bachmayer and N. E. Leonard, “Vehicle networks for gradient
descent in a sampled environment,” in Proceedings of the 41st IEEE

Conference on Decision and Control (CDC-02), 2002, pp. 112–117.

[4] M. A. Hsieh, L. Chaimowicz, and V. Kumar, “Decentralized con-
trollers for shape generation with robotic swarms,” Robotica, vol. 26,
pp. 691–701, September 2008.

1953

1954

