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Abstract— Optical flow sensing techniques are promising for
obstacle avoidance, distance regulation, and moving target
tracking, particularly for small mobile robots with limited
power and payload constraints. Most optical flow sensing ex-
perimental work has been done on mobile platforms which are
relatively steady in rotation, unlike the pitching motion expected
on flapping wing flyers. In order to assess the feasibility of
using optical flow to control an indoor flapping flyer, an 7 gram
commercially available ornithopter airframe was equipped with
on-board camera and CPU module with mass of 2.5 grams
and 2.6 gram battery. An experiment was conducted capturing
optical flow information during flapping and gliding flight on
the same platform. As expected, flapping introduced substantial
systematic bias to the direction estimates to the point of flipping
the true direction periodically. Nonetheless, since the optical
flow results oscillated at the same frequency as the flapping
wings, it is envisioned that one could disambiguate the jittering
optic flow measurements by correlating these with real-time
feedback from the motor current.

I. INTRODUCTION

Optical flow vision algorithms for use in robotic sensing
have been implemented both in simulation [3] and in robotic
platforms that have generally presented steady motion for the
camera, such as in the case of wheeled robots [4], [12], [13],
[19], fixed wing micro air vehicles [2], [19], [22], airships
[8], [23], and tethered [16] and untethered [19] helicopters.
One of the most unsteady platforms is a robot that mimics
the fly motion [15], but its movement is constrained to stay
within an artificially textured indoor arena. The group whose
work is closest to the one presented in this paper, [21],
proposes using optic flow for estimating the altitude of a
flapping vehicle, but to date is mostly simulated, with the
real video sequences used to test off-board algorithms having
smooth motion.

The use of steady platforms for optical flow experi-
mentation simplifies comparisons of several algorithms on
sequences on which they all perform relatively well [1], [9],
[10], [11], [12]. In addition, well structured environments
also simplify extracting ground truth. There are some plat-
forms that have been shown to work well in the outdoors [2],
[19], but most of the indoor environments used to test real
robots use artificially textured walls and objects to improve
contrast and thus the performance of optic flow algorithms.

In contrast to robotic optic flow, insects such as flies
and bees, who use optical flow for motion detection and
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Fig. 1. The flying platform, a modified version of Interactive Toy’s VAMP
RC ornithopter, includes custom electronics used for data acquisition and
part of the image processing.

navigation [14], [18], [20], perform remarkably well in
both outdoor and indoor environments. Their small size
and power-to-weight ratio enable them to perform quick
maneuvers [20] deemed impossible for larger platforms such
as planes. They are also robust to outside disturbances and
the occasional error that sends them crashing onto transparent
surfaces like windows. However, flapping flight in insects
increases unsteadiness in the visual input, which these insects
generally account for by moving their heads to counteract it
[7]. While a high speed camera or mirror mount could be
used to compensate for body motion in flapping robot flight,
we examine in this paper the significance of flapping artifacts
in optical flow sensing.

II. ROBOTIC ORNITHOPTER PLATFORM

Fig. 1 shows the flying robot, a modified version of
Interactive Toy’s VAMP RC ornithopter including cus-
tom electronics. The image processing board used to ac-
quire and pre-process the data is pictured in more detail
at the top part of Fig. 2. The board weighs 1.1grams,
measures 15x35mm and is mainly comprised of a Mi-
crochip dsPIC33FJ128MC706 16bit microprocessor run-
ning at 40MHz, an OmniVision OV7660FSL VGA camera
module, and an ATMEL AT45DB161D 2 megabyte (MB)
DataFlash memory. The board was fabricated using a 25µm
thick FR4 core printed circuit board (PCB).
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Fig. 2. Custom electronics: (Top) The front and back of the image
processing board. The OmniVision OV7660FSL camera module is visible
at the top, a Microchip dsPIC33FJ128MC706 microprocessor on the right
picture, and an ATMEL AT45DB161D flash memory on the left one. It
weights 1.1g and measures 15x35mm. (Bottom) Block diagram of the image
processing board pictured above alongside the Bluetooth communication
module and the motor driver board.

For wireless communication with a PC, a 1.3g Roving
Networks RN-41 Bluetooth 2.0 module of roughly the same
dimensions as the image processing board was connected
through the dsPIC’s serial communication interface. The
lower portion of Fig. 2 shows the block diagram representing
these two boards as well as the 70mg motor driving board.

Data was acquired from the camera in black-and-white at
160x120 (QQVGA) resolution and a rate of 25 frames per
second (fps) and then saved to the dsPIC’s 16KB random
access memory (RAM). (The 2MB ATMEL memory was not
utilized in this paper.) Thus, the RAM size limited the data
acquisition to 60 frames of heavily subsampled images at a
final resolution of 18x13, which comprised 2.4 sec of visual
motion data. These data-sets were offloaded to a computer
at 230.4 Kbps over the Bluetooth RS-232 link at the end
of the acquisition. Note that the custom electronics as well
as the robot’s flapping motor are running out of a 90mAh
FULLRIVER lithium-polymer battery that weights 2.6g.

The ornithopter uses a DC motor for each of flapping
and steering. In the modified version used in this work,
the Vamp’s RC electronics as well as the foam body are

Fig. 3. Dimensions of the robotic platform. Note the camera module
positioned to the side of the wing transmission mechanism. The optical
axis is aligned with the direction of flight, which in the case of the figure
would be the vertical axis.

Fig. 4. Block diagram representing the image processing performed.

removed and the custom motor driving board used just
actuates the flapping motor. The robot measures around
35x25cm, as can be seen in Fig. 3, and weights 12.6g when
unmodified. Normally, as it flies forward at full throttle,
it interleaves climbing periods with stall recovery periods
at around 1Hz. This, coupled to the fact that it flaps at
around 12-17Hz dependent on battery charge, are the main
sources of unsteadiness of this platform (see the top part of
Fig. 6). The modified robot, though, weights 13.6g and this
results in a dampening out of the slow climb/stall oscillations
because the ornithopter, unable to climb, essentially performs
a smooth landing on its body. Thus, the only significant
source of unsteadiness in these experiments comes from
the flapping. Note that the 13.6g weight includes the 7g
airframe, 2.5g of boards, a 2.6g battery, and 1.5g of wiring
and mounting hardware.

III. OPTICAL FLOW COMPUTATION AND
FILTERING

To reduce storage and transmission requirements, image
data is reduced by sub-sampling and averaging. For appli-
cations such as wall following or terrain avoidance, a low
resolution such as 18x13 is adequate. (For example, Barrows
et al. [2] used a 1x18 array for ground height regulation.)
Averaging also improves the signal-to-noise ratio for the
image data.

The first filtering block shown in Fig. 4 outlines the image
pre-processing happening at the camera board that yields the
18x13 frames. Basically, from the 160x120 image that the
camera is sending to the dsPIC, the processor captures only
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every other line, yielding a 160x60 frame. At this point,
the processor convolves the image with a 3x3 pixel discrete
gaussian filter,

fx,y =

 1 2 1
2 4 2
1 2 1

 ,

which can be shown to be equivalent to applying

fx =
(

1 2 1
)

to the rows and

fy =

 1
2
1


to the columns. Thus, in order to perform the subsampling,
fx is applied three times to each row as they arrive, discard-
ing every other pixel at each step, while fy is applied only
twice to each column as soon as the 60 rows are received
and discarding pixels in the same manner, which results in
the final image size of 18x13. If it weren’t for the fact that
the processor is only capturing every other row of the input
image, this subsampling would be equivalent to applying a 3-
level gaussian pyramid to the image received as suggested by
Fig. 4. Note that in this experiment the camera was mounted
vertically, thus yielding a 13x18 image. Since the camera
field of view is approximately 37◦ and 50◦ in the x and y
axes respectively each reduced pixel subtends an angle of 4◦

and 4.5◦.
Once the 60 subsampled frames are acquired, they are

wirelessly sent to a PC to be further analyzed using Python1.
Even though this part of the processing is done off-board, the
algorithms are still chosen according to the computational
complexity that can be implemented on-board this type of
hardware, since this is the end goal.

The optical flow algorithm chosen for this work is the
standard elementary motion detector (EMD) correlation al-
gorithm [6], [14], which is not only easy to implement on
a fixed-point architecture such as the dsPIC’s, but is also
considered neurobiologically plausible in insects [5] and has
been used in biological models of the fruit fly [15], [18], [20].
Fig. 5 shows the block diagram of an EMD, and is adapted
from [14]. Explicitly, (1) shows the formulas that this block
diagram represents for a local pixel patch transitioning from
frame k to k + 1:

ui,j(k) = Ii,j(k + 1) · Ii+1,j(k)
− Ii+1,j(k + 1) · Ii,j(k),

vi,j(k) = Ii,j(k + 1) · Ii,j+1(k)
− Ii,j+1(k + 1) · Ii,j(k).

(1)

u and v represent the horizontal and vertical optical flow
component matrices while I is the pixel intensity matrix.
Considering a maximum image shift of 1 pixel, and 25 fps,
the maximum sensed velocity would be 72 and 70 degrees
per second in x and y image plane axes.

1Scientific Tools for Python: http://www.scipy.org/

Fig. 5. Block diagram of an EMD (adapted from [14]). Note that, in our
case, the delays are represented by consecutive frames in the video sequence
captured on-board the platform.

The EMD algorithm was applied to each pair of pixels
in the image both in the horizontal as well as the vertical
direction. This yielded a 17x12 motion field for each frame
pair, coming to a total of 59 fields. A further processing
step, (2), integrated the fields spatially, summing the motion
vectors over each motion field and normalizing by the
corresponding Frobenius norm:

U(k) =

∑
i

∑
j ui,j(k)√∑

i

∑
j |ui,j(k)|2

,

V (k) =

∑
i

∑
j vi,j(k)√∑

i

∑
j |vi,j(k)|2

.
(2)

The integrated optical flow, U and V , has some informa-
tion about the overall flow field and thus about the general
motion. It is known, though, that the optical flow field is
a nonlinear representation of the true 3D motion field and
thus doing a linear combination of its vectors will rarely
yield accurate results. Nonetheless, there are neurobiological
observations of the fly’s nervous system, that support this
computation [17].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To assess the effect on the optical flow calculations of
the inherent pitch and roll oscillations related to flapping,
reduced image data sets were captured while flapping or
gliding in an indoor environment. The video sequences
were collected using the same hardware in both cases and
the flapping motor was either powered on (flapping) or
off (gliding). During the flapping experiments, the robot
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Flapping

Gliding

Fig. 6. Behavioral diagrams. (Top) Robot’s behavior while flapping, with a
slow climb/stall frequency and a faster flapping frequency. (Bottom) Robot’s
behavior while gliding, with a fast climb until stalling and a sharp nose-dive
into the ground. Note the black dot where the robot intersects the trajectory
as it traverses it. This is where the camera is positioned during flight with
its axis pointing in the flight direction.

generally flew in a left circular trajectory with roughly a
5m radius (due to a slight weight imbalance) until it landed
smoothly on its body. During the gliding flights, upon being
launched manually forward, the robot usually climbed up
quickly until stalling and then nose-dived into the ground
(see the lower part of Fig. 6).

Fig. 7 shows three consecutive frames of a representative
data-set for each experiment. These frames have the optical
flow field overlaid on top of them as well as the integration
result at the center of each frame. As one can visualize
in the figure, the inferred direction that the optical flow
integration outputs varies smoothly in the gliding experiment
whereas it switches abruptly, frame to frame, in the flapping
experiment. In the case of the gliding frame sequence, the
inferred direction is that of motion of the robot with it’s nose
diving into the ground. For the flapping frame sequence, the
inferred direction is only correct in the outer two frames,
since the robot is circling around that direction. The middle
frame indicates the opposite motion most probably due to the
flapping induced pitch oscillations, which introduce substan-
tial fluctuations to an otherwise smooth circular trajectory
of the robot. Although the gliding and flapping trajectories
were quite different, the lighting conditions were almost the
same since all experiments were done at the same time and
in the same indoor environment.

We claim that the erroneous optical flow integration result
for the flapping experiment is indeed due to the oscillations
induced by flapping. To prove this point, the time-varying
normalized vector signals (U, V )T were first filtered through
a Hanning window of length 59 and then processed under a
discrete Fourier transform, resulting in the plots of Fig. 8.

Flapping

Gliding

Fig. 7. Subsequent frames for both the flapping and gliding experiments,
which include the optical flow field overlaid as well as the integration
result at the center. Note that that this central arrow changes direction much
more smoothly in the gliding experiment, while giving abrupt changes in
direction for the flapping experiment. This behavior is consistent throughout
the captured video sequences for each type of experiment.

As is evident from looking at the flapping results in Fig.
8, the optic flow vectors are oscillating at around 11-12Hz.
There seems to be a small oscillation at around 2Hz, which
could be explained as being related to the damped climb/stall
cycle. It could also be related to the relatively short capture
period of 2.4 sec, since a few coincidental events during
this period can seem like a slow oscillation. This is in fact
what can be seen in the gliding results, since in this case it
is known that the capture took place just as the robot was
reaching the maximum altitude, stalling, and recovering from
the stall. Thus, the bump around 1Hz most probably comes
from that single event during the 2.4 sec of capture.

To estimate the noise present in the camera, image capture,
and optical flow estimation process, a control experiment that
consisted of capturing a still image sequence under the same
lighting conditions was performed, and the results of it are
included at the bottom of Fig. 8. According to this figure, the
level of error present in the system is around 10% with no
camera motion, and thus argues that almost everything other
than the larger peaks in the resulting frequency spectrums
might be noise. The source of the peak at 6 Hz is not known,
but this component is small compared to wing flapping or
slow turning peaks.

In order to verify that during the flapping experiment the
optical flow algorithm result was indeed oscillating at the
frequency that the robot was flying at, the flapping trajectory
was captured on high speed video. Fig. 9 shows a representa-
tive sequence of frames depicting a full flapping cycle of the
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Flapping

Gliding

Control

Fig. 8. Experimental results. In each: (Top) Components of the optical flow
integration vector during the span of the captured data. (Bottom) Single-
sided amplitude spectrum of the above signal. Note: (Flapping) the large
peak at around 11-12Hz and the smaller peaks around 0-2Hz; (Gliding) the
peak around 0-2Hz; (Control) that the error is around 10% of the previous
signals.

Fig. 9. A sequence of frames representing a full flapping cycle of the
robot.

robot during the same flapping experiment analyzed above.
The total number of frames was 24, spanning 80ms if one
takes into account that the video was captured at 300fps.
This would indicate that at that point the robot was flapping
at a low frequency of 12.5Hz, most probably due to low
battery charge during the experiment. If one performs this
same analysis at different positions throughout the trajectory,
the same frequency is found. From the high speed video, the
pitch range induced by flapping is estimated to be ±5◦.

In order to separate the pitch oscillation from the opti-
cal flow direction estimates when flapping, we propose to
concurrently capture the motor current alongside the video
sequence so as to later correlate optical flow integration
errors to specific current profiles due to cyclic wing loading
conditions. For example, the images could be captured in
phase with the wing motion at top-dead-center and bottom-
dead-center of the wing trajectory. This would enable almost
exact nulling of the pitch rate disturbance, for example
by calculating optic flow from pairwise frames Ii,j(k) and
Ii,j(k + 2).

V. CONCLUSIONS AND FUTURE WORKS
An order 10 gram robot ornithopter was constructed using

a commercial platform combined with a lightweight cell
phone camera interface and wireless interface. Subsampled,
low resolution video data was captured during flapping or
gliding flight and processed off board. This experiment,
using a simple biomimetic optical flow algorithm which
extracted net motion direction by averaging the flow field
across the whole sensor, demonstrated the significance of
pitch oscillations due to wing flapping on the optical flow
direction estimates.

The small ornithopter used here demonstrates the coupling
between body motion and optic flow sensing which can
be expected without image stabilization mechanisms. The
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strong optical flow signal corresponding to the wing flapping
frequency appears readily separable by a notch filter or
synchronized sampling. Hence, the active visual stabilization
used by insects such as flies does not appear critical. We plan
to add motor current measurement so as to enable synchro-
nized sampling. In future work, optical flow information will
be used for robot steering in behaviors such as wall following
and obstacle avoidance.
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