
Real-Time Decentralized Neural Block Controller for a Robot

Manipulator

R. Garcia-Hernandez1, E. N. Sanchez2, V. Santibañez3, M. A. Llama3 and E. Bayro-Corrochano2

Abstract— This paper presents a discrete-time decentralized
control scheme for identification and trajectory tracking of a
two degrees of freedom (DOF) robot manipulator. A recurrent
high order neural network (RHONN) structure is used to
identify the plant model and based on this model, a discrete-
time control law is derived, which combines discrete-time block
control and sliding modes techniques. The neural network
learning is performed online by Kalman filtering. A controller
is designed for each joint, using only local angular position
and velocity measurements. These simple local joint controllers
allow trajectory tracking with reduced computations. The
proposed scheme is implemented in real-time to control a two
DOF robot manipulator.

I. INTRODUCTION

Robot manipulators are employed in a wide assortment of

applications in industry. Today most of the applications are in

manufacturing to move materials, parts, and tools of various

types. Future applications will include nonmanufacturing

tasks, such as construction work, exploration of space, and

medical care.

In this context, multiple control schemes have been pro-

posed to guarantee efficient trajectory tracking and stability

[1], [2]. The fast advance in computational technology offers

many ways for implementing control algorithms within the

approach of a centralized control design [3]. However, there

is a great challenge to obtain an efficient control for this class

of systems, due to its highly nonlinear complex dynamics,

with strong interconnections, parameters difficult to measure

and dynamics difficult to model. Considering only the most

important terms, the mathematical model obtained requires

control algorithms with great number of mathematical oper-

ations, which affect real-time implementation feasibility.

On the other hand, within the area of control systems

theory, for more than three decades, an alternative approach

has been developed considering a global system as a set of

interconnected subsystems, for which it is possible to design

independent controllers, considering only inherent local vari-

ables to each subsystem: the decentralized control [4], [5].

Decentralized control has been applied in robotics, mainly in

cooperative multiple mobile robots and robot manipulators,

where it is natural to consider each mobile robot or each

This work was supported by CONACYT, Mexico under Grant 57801.
1 Universidad Autonoma del Carmen, Facultad de Ingenieria, Cd. del

Carmen, Campeche, Mexico. PhD. Student at CINVESTAV Guadalajara.
e-mail:rghernandez@pampano.unacar.mx

2 CINVESTAV Guadalajara, Apartado Postal 31-438,
Plaza La Luna, C.P. 44550, Guadalajara, Jalisco, Mexico. e-
mail:[sanchez,edb]@gdl.cinvestav.mx

3Instituto Tecnologico de la Laguna, Apartado Postal 49, Adm. 1, C.P.
27001, Torreon, Coahuila, Mexico. e-mail:vsantiba@itlalaguna.edu.mx

manipulator as a subsystem of the whole system. For robot

manipulators each joint is considered as a subsystem in order

to develop local controllers, which just consider local angular

position and angular velocity measurements, and compensate

the interconnection effects, usually assumed as disturbances.

The resulting controllers are easily implemented for real-time

applications [6].

In [7], a decentralized control of robot manipulators is

developed, decoupling the dynamic model of the manipu-

lator in a set of linear subsystems with uncertainties and

simulations for a robot of two joints are shown. In [8], an

approach of decentralized neural identification and control

for robot manipulators is presented using models in discrete-

time. In [9], a decentralized control for robot manipulators

is reported; it is based on the estimation of independent

dynamics for each of the joints, using feedforward neural

networks.

In [10], the authors proposed a similar decentralized

control strategy using a recurrent neural identifier and block

control structure for both identification and control. This

approach was tested only using simulations, with a two

degrees of freedom robot manipulator, and with an ANAT

(Articulated Nimble Adaptable Trunk) manipulator, with

seven degrees of freedom.

In this paper, we use an Extended Kalman Filter (EKF)-

based training algorithm for a recurrent high order neural

network (RHONN), in order to identify the robot manipulator

model. Based on this model, a discrete-time control is

derived, which combines discrete-time block control and

sliding modes techniques. The block control approach is used

to design a nonlinear sliding surface such that the resulting

sliding mode dynamics is described by a desired linear

system [11]. We present the real-time implementation of the

proposed scheme to control a two DOF robot manipulator.

II. DISCRETE-TIME DECENTRALIZED SYSTEMS

Let consider a class of discrete-time nonlinear perturbed

and interconnected system which can be presented in the

nonlinear block-controllable (NBC) form [12] consisting of

r blocks

χ1
i (k + 1) = f1

i

(

χ1
i

)

+ B1
i

(

χ1
i

)

χ2
i + Γ1

iℓ

χ2
i (k + 1) = f2

i

(

χ1
i , χ

2
i

)

+ B2
i

(

χ1
i , χ

2
i

)

χ3
i + Γ2

iℓ

...

χr−1
i (k + 1) = fr−1

i

(

χ1
i , χ

2
i , . . . , χ

r−1
i

)

(1)

+Br−1
i

(

χ1
i , χ

2
i , . . . , χ

r−1
i

)

χr
i + Γr−1

iℓ

χr
i (k + 1) = fr

i

(

χi

)

+ Br
i

(

χi

)

ui + Γr
iℓ

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 906

where χi ∈ ℜni , χi =
[

χ1T
i χ2T

i . . . χrT
i

]T
and χj

i ∈

ℜnij×1, χj
i =

[

χj
i1 χj

i2 . . . χj
il

]T
, i = 1, . . . , N ; j =

1, . . . , r; l = 1, . . . , nij ; N is the number of subsystems,

ui ∈ ℜmi is the input vector, the rank of Bj
i = nij ,

∑r

j=1 nij = ni, ∀χj
i ∈ D

χ
j

i

⊂ ℜnij . We assume that f j
i ,

Bj
i and Γj

i are smooth and bounded functions, f j
i (0) = 0

and Bj
i (0) = 0. The integers ni1 ≤ ni2 ≤ · · · ≤ nij ≤ mi

define the different subsystem structures. The unmatched and

matched interconnection terms are given by

Γ1
iℓ =

N
∑

ℓ=1, ℓ 6=i

γ1
iℓ

(

χ1
ℓ

)

Γ2
iℓ =

N
∑

ℓ=1, ℓ6=i

γ2
iℓ

(

χ1
ℓ , χ

2
ℓ

)

... (2)

Γr−1
iℓ =

N
∑

ℓ=1, ℓ6=i

γr−1
iℓ

(

χ1
ℓ , χ

2
ℓ , . . . , χ

r−1
ℓ

)

Γr
iℓ =

N
∑

ℓ=1, ℓ 6=i

γr
iℓ

(

χℓ

)

where χℓ represents the state vector of the ℓ-th subsystem

with 1 ≤ ℓ ≤ N and ℓ 6= i.
The terms (2) reflect the interaction between the i-th and

the others subsystems.

III. NEURAL IDENTIFIER

A. Decentralized Neural Identifier

The following decentralized recurrent high order neural

network (RHONN) model is proposed to identify (1):

x1
i (k + 1) = w1

i (k)S(χ1
i (k)) + w

′1
i χ2

i (k)

x2
i (k + 1) = w2

i (k)S
(

χ1
i (k), χ2

i (k)
)

+ w
′2
i (k)χ3

i (k)

...

xr−1
i (k + 1) = wr−1

i (k)S
(

χ1
i (k), χ2

i (k), . . . , χr−1
i (k)

)

+ w
′(r−1)
i χr

i (k)

xr
i (k + 1) = wr

i (k)S
(

χ1
i (k), . . . , χr

i (k)
)

+ w
′r
i ui(k)

(3)

where xj
i =

[

x1
i x2

i . . . xr
i

]T
is the i-th block neuron state

i = 1, . . . , N and j = 1 . . . , r, wj
i (k) are the adjustable

weights, w
′j
i are the fixed weights with rank(w

′j
i) = nij ,

S(·) is the activation function, and ui(k) represents the input

vector.

It is worth to note that (3), constitutes a series-parallel

identifier and fulfills the conditions of the nonlinear block-

controllable form [13].

B. EKF Training Algorithm

It is known that Kalman filtering (KF) estimates the state

of a linear system with additive state and output white noises

[14], [15]. For KF-based neural network (NN) training, the

network weights become the states to be estimated. In this

case, the error between the NN output and the measured plant

output can be considered as additive white noise. Due to the

fact that NN mapping is nonlinear, an EKF-type is required.

The training goal is to find the optimal weight values

wj
i (k) which minimize the prediction error. We use an EKF-

based training algorithm described by:

Kj
i (k) = P j

i (k)Hj
i (k)M j

i (k)

wj
i (k + 1) = wj

i (k) + ηj
i K

j
i (k)ej

i (k)

P j
i (k + 1) = P j

i (k) − Kj
i (k)HjT

i (k)P j
i (k) + Qj

i (k)

(4)

with

M j
i (k) = [Rj

i (k) + HjT
i (k)P j

i (k)Hj
i (k)]−1

ej
i (k) = [χj

i (k) − xj
i (k)]

(5)

where ej
i (k) is the identification error, P j

i (k) is the prediction

error covariance matrix, wj
i (k) is the j-th weight (state) of

the i-th subsystem, ηj
i is the rate learning parameter such

that 0 ≤ ηj
i ≤ 1, χj

i (k) is the j-th plant state, xj
i (k) is the

j-th neural network state, n is the number of states, Kj
i (k)

is the Kalman gain matrix, Qj
i (k) is the measurement noise

covariance matrix, Rj
i (k) is the state noise covariance matrix,

and Hj
i (k) is a matrix, in which each entry of (Hj

i) is the

derivative of j-th neural network state (xj
i (k)), with respect

to all adjustable weights (wj
i), as follows

Hj
i (k) =

[

∂xj
i (k)

∂wj
i (k)

]T

w
j

i
(k)=w

j

i
(k+1)

, (6)

where i = 1, . . . , N and j = 1, . . . , n. Usually P j
i and

Qj
i are initialized as diagonal matrices, with entries P j

i (0)
and Qj

i (0), respectively [15]. It is important to remark that

Hj
i (k), Kj

i (k), and P j
i (k) for the EKF are bounded [16].

IV. CONTROLLER DESIGN

A. Neural Block Controller

The proposed block control is given in the following

equations, we begin defining the tracking error as

z1
i (k) = x1

i (k) − x1
id(k) (7)

where x1
id(k) is the desired trajectory signal.

Once defined the first new variable (7), one step ahead is

taken

z1
i (k +1) = w1

i (k)S(χ1
i (k)) +w

′1
i χ2

i (k)−x1
id(k +1). (8)

Equation (8) is viewed as a block with state z1
i (k) and the

state χ2
i (k) is considered as a pseudo-control input, where

desired dynamics can be imposed. This can be solved with

the anticipation of the desired dynamics for this block as

follows:

z1
i (k + 1) = w1

i (k)S(χ1
i (k)) + w

′1
i χ2

i (k) − x1
id(k + 1)

= k1
i z1

i (k)
(9)

907

where
∣

∣k1
i

∣

∣ < 1, in order to assure stability of (9). χ2
i (k) is

computed as

x2
id(k) =

1

w
′1
i

[−w1
i (k)S(χ1

i (k)) + χ1
id(k + 1)

+ k1
i z1

i (k)].

(10)

Note that the calculated value of state x2
id(k) in (10) is not

the real value of such state, instead, represents the desired

behavior for χ2
i (k). So, to avoid confusions this desired value

of χ2
i (k) is referred as x2

id(k) in (10).

Proceeding in the same way as for the first block, a second

variable in the new coordinates is defined as

z2
i (k) = x2

i (k) − x2
id(k).

Taking one step ahead in z2
i (k) yields

z2
i (k + 1) = x2

i (k + 1) − x2
id(k + 1).

The desired dynamics for this block are imposed as

z2
i (k + 1) = w2

i (k)S(χ1
i (k), χ2

i (k)) + w
′2
i x3

i (k)

− x2
id(k + 1)

= k2
i z2

i (k)

(11)

where
∣

∣k2
i

∣

∣ < 1.

These steps are taken iteratively. At the last step, the

known desired variable is xr
id(k), and the last new variable

is defined as

zr
i (k) = xr

i (k) − xr
id(k).

As usually, taking one step ahead yields

zr
i (k + 1) = wr

i (k)S(χ1
i (k), . . . , χr

i (k))

+ w
′r
i ui(k) − xr

id(k + 1).
(12)

The system (3) can be represented in the new variables zi =
[

z1T
i z2T

i · · · zrT
i

]

of the form

z1
i (k + 1) = k1

i z1
i (k) + w

′1
i z2

i (k)

z2
i (k + 1) = k2

i z2
i (k) + w

′2
i z3

i (k)

...

zr−1
i (k + 1) = kr−1

i zr−1
i (k) + w

′(r−1)
i zr

i (k)

zr
i (k + 1) = wr

i (k)S(χ1
i (k), . . . , χr

i (k)) + w
′r
i ui(k)

− xr
id(k + 1).

(13)

For a sliding mode control implementation [17], when the

control resources are bounded by u0i as

|ui(k)| ≤ u0i (14)

a sliding manifold and a control law that will drive the

states toward such manifold must be designed. The sliding

manifold is chosen as SDi
(k) = zr

i (k) = 0. The system (12)

is rewritten as follows:

SDi
(k + 1) = wr

i (k)S(χ1
i (k), . . . , χr

i (k)) + w
′r
i ui(k)

− xr
id(k + 1).

(15)

Once defined the sliding manifold, the next step is to find

a control law that takes into consideration the bound (14),

therefore, the control ui(k) is selected of the following form

[18]:

ui(k) =







ueqi
(k) for ‖ueqi

(k)‖ ≤ u0i

ui0
ueqi

(k)

‖ueqi
(k)‖

for ‖ueqi
(k)‖ > u0i

(16)

where the equivalent control ueqi
(k) is calculated from

SDi
(k + 1) = 0 as

ueqi
(k) =

1

w
′r
i

[−wr
i (k)S(χ1

i (k), . . . , χr
i (k))

+ xr
id(k + 1)].

(17)

The whole proposed identification and control scheme for

the system is displayed in Fig. 1.

EKF

()
i

u k ()
i

kc

()
i

x k

()
i

e k

()
i

w k

References

d ()
i

x k

Robot Manipulator

Neural Identifier

Neural Block

Controller

Link N

Link 1

Link 2

Neural Network N

Neural Network 1

Neural Network 2

Controller N

Controller 1

Controller 2

Fig. 1. Neural block control scheme

V. TWO DOF ROBOT MANIPULATOR APPLICATION

A. Robot Description

In order to evaluate via real-time implementation the

performance of the proposed control algorithm, we use a

two DOF robot manipulator moving in the vertical plane

as shown in Fig. 2. The robot manipulator consists of two

rigid links; high-torque brushless direct-drive servos are used

to drive the joints without gear reduction. This kind of

joints present reduced backlash and significantly lower joint

friction as compared to the actuators with gear drives. The

motors used in the experimental arm are DM1200-A and

DM1015-B from Parker Compumotor, for the shoulder and

elbow joints, respectively. Angular information is obtained

from incremental encoders located on the motors, which

have a resolution of 1,024,000 pulses/rev for the first motor

and 655,300 for the second one (accuracy 0.0069◦ for both

motors), and the angular velocity information is computed

via numerical differentiation of the angular position signal.

B. Control Objective

To identify the robot model, from (1) and (3) we propose

the following decentralized series-parallel neural network

x1
i (k + 1) = w1

i1(k)S(χ1
i (k)) + w

′1
i χ2

i (k)

x2
i (k + 1) = w2

i1(k)S(χ1
i (k)) + w2

i2(k)S(χ2
i (k))

+ w
′2
i ui(k)

(18)

908

Fig. 2. Robot manipulator

where x1
i (k) and x2

i (k) identify χ1
i (k) and χ2

i (k); i = 1, 2,

respectively; wj
ip are the adjustable weights, p is the number

of adjustable weights with p = 1; j = 1 for the first NN

state and p = 1, 2; j = 1, 2 for the second one; w
′1
i and w

′2
i

are fixed parameters.

Due to the time varying of RHONN weights, we need

to guarantee the controllability of the system by assuring

the weights w
′1
i and w

′2
i are not zero, which are so-called

controllability weights [19].

To update the weights wj
ip, an EKF-based training algo-

rithm (4) is implemented.

The goal is to track a desired reference signal, which is

achieved by designing a control law based on the sliding

mode technique. The tracking error is defined as

z1
i (k) = x1

i (k) − x1
id(k) (19)

where x1
id is the desired trajectory signal. Using (18) and

introducing the desired dynamics for z1
i (k) we have

z1
i (k + 1) = w1

i1(k)S(χ1
i (k)) + w

′1
i χ2

i (k)

− x1
id(k + 1)

= k1
i z1

i (k).

(20)

The desired value x2
id(k) for χ2

i (k) is calculated from (20)

as

x2
id(k) =

1

w
′1
i

[−w1
i1(k)S(χ1

i (k))

+ x1
id(k + 1) + k1

i z1
i (k)].

(21)

At the next step, let define a new variable as

z2
i (k) = x2

i (k) − x2
id(k). (22)

Taking one step ahead, we have

z2
i (k + 1) = w2

i1(k)S(χ1
i (k)) + w2

i2(k)S(χ2
i (k))

+ w
′2
i ui(k) − x2

id(k + 1)

= k2
i z2

i (k).

(23)

The manifold for the sliding mode is chosen as SDi
(k) =

z2
i (k) = 0. The control law is given by

ui(k) =

{

ueqi
(k) for ‖ueqi

(k)‖ ≤ τmax
i

τmax
i

ueqi
(k)

‖ueqi
(k)‖ for ‖ueqi

(k)‖ > τmax
i

(24)

where ueqi
(k) is obtained from SDi

(k + 1) = 0 as

ueqi
(k) =

1

w
′2
i

[−(w2
i1(k)S(χ1

i (k))

+ w2
i2(k)S(χ2

i (k))) + x2
id(k + 1)]

(25)

and the control resources are bounded by τ max
i .

C. Real-Time Results

For the experiments we choose the following discrete-time

trajectories as

x1
1d(k) = b1(1 − ed1kT 3

) + c1(1 − ed1kT 3

)sin(ω1kT)[rad]

x1
2d(k) = b2(1 − ed2kT 3

) + c2(1 − ed2kT 3

)sin(ω2kT)[rad]

where b1 = π/4, c1 = π/18, d1 = −2.0, and ω1 = 5
[rad/s] are parameters of the desired position trajectory for

the first joint, whereas b2 = π/3, c2 = 25π/36, d2 = −1.8,

and ω2 = 1.0 [rad/s] are parameters of the desired position

trajectory for the second joint with a sampling period T =
2.5 milliseconds.

These trajectories present the following characteristics: a)

Incorporate a sinusoidal term to evaluate the performance be-

fore relatively fast periodic signals, where the non-linearities

of the robot dynamics are really important and b) Present

a term that smoothly grows for maintaining the robot in an

operation state without saturating actuators whose limit are

in 150 [Nm] and 15 [Nm], respectively. The figures 3 and 4

display the identification and trajectory tracking results for

each joint. In the real system the initial conditions are the

same that those of the neural identifier both are restricted to

be equal to zero, therefore does not exist transient errors.

According to the figures 3 and 4, the identification error for

joint 1 and 2 presents a good behavior and remain bounded

as shown in Fig. 5. The tracking errors for each joint are

presented in Fig. 6. The applied torques to each joint are

shown in Fig. 7. The control signals present oscillations at

some time instants due to the gains and fixed parameters

chosen for each controller. It is easy to see that both control

signals are always inside of the prescribed limits given by

the actuators manufacturer, that is, their absolute values are

smaller than the bounds τmax
1 and τmax

2 , respectively.

909

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

J
o
in

t
p
o
s
it
io

n
 (

ra
d
)

 − x
1

1d

 − −χ
1

1

 −. −. x
1

1

Fig. 3. Identification and tracking for joint 1 x1

1d
(k) (solid line), χ1

1
(k)

(dashed line), and x1

1
(k) (dashdot line)

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

J
o
in

t
p
o
s
it
io

n
 (

ra
d
)

 − x
1

2d

 − − χ
1

2

 −. −. x
1

2

Fig. 4. Identification and tracking for joint 2 x1

2d
(k) (solid line), χ1

2
(k)

(dashed line), and x1

2
(k) (dashdot line)

VI. CONCLUSIONS

A decentralized neural identification and control scheme

is proposed which is able to identify each subsystem dy-

namics. The training of each neural network is performed

online using an extended Kalman filter in a series-parallel

configuration. The obtained real-time results present good

performance for trajectory tracking when applied to a two

DOF robot manipulator. Currently we are carrying out exper-

iments using a real five DOF ANAT robot [20]. The results

will be published in near future.

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

Time (s)

E
rr

o
r

(r
a
d
) e

1

1Id

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

Time (s)

E
rr

o
r

(r
a
d
)

e
2

1Id

Fig. 5. Identification errors for joints 1 and 2

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

Time (s)

E
rr

o
r

(r
a
d
) e

1

1Track

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

Time (s)

E
rr

o
r

(r
a
d
)

e
2

1Track

Fig. 6. Tracking errors for joints 1 and 2

ACKNOWLEDGMENT

The first author thanks to Universidad Autonoma del

Carmen (UNACAR) and the PROMEP for supporting this

research.

REFERENCES

[1] E. N. Sanchez and L. J. Ricalde, “Trajectory tracking via adaptive
recurrent neural control with input saturation,” in Proceedings of

International Joint Conference on Neural Networks, Portland, Oregon,
USA, 2003, pp. 359–364.

[2] V. Santibañez, R. Kelly, and M. A. Llama, “A novel global asymptotic
stable set-point fuzzy controller with bounded torques for robot
manipulators,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 3,
pp. 362–372, Jun. 2005.

910

0 2 4 6 8 10 12 14 16 18 20
−100

−50

0

50

100

Time (s)

T
o
rq

u
e
 (

N
m

)
τ

1

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

Time (s)

T
o
rq

u
e
 (

N
m

)

τ
2

Fig. 7. Applied torques to joint 1 and 2

[3] R. Gourdeau, “Object-oriented programming for robotic manipulator
simulation,” IEEE Robotics and Automation, vol. 4, no. 3, pp. 21–29,
1997.

[4] Z. P. Jiang, “New results in decentralized adaptive nonlinear control
with output feedback,” in Proceedings of the 38th IEEE Conference on

Decision and Control, Phoenix, Arizona, USA, 1999, pp. 4772–4777.

[5] S. Huang, K. K. Tan, and T. H. Lee, “Decentralized control design
for large-scale systems with strong interconnections using neural
networks,” IEEE Transactions on Automatic Control, vol. 48, no. 5,
pp. 805–810, 2003.

[6] M. Liu, “Decentralized control of robot manipulators: nonlinear
and adaptive approaches,” IEEE Transactions on Automatic Control,
vol. 44, no. 2, pp. 357–363, 1999.

[7] M. L. Ni and M. J. Er, “Decentralized control of robot manipulators
with coupling and uncertainties,” in Proceedings of the American

Control Conference, Chicago, Illinois, USA, 2000, pp. 3326–3330.

[8] A. Karakasoglu, S. I. Sudharsanan, and M. K. Sundareshan, “Iden-
tification and decentralized adaptive control using dynamical neural
networks with application to robotic manipulators,” IEEE Transactions

on Neural Networks, vol. 4, no. 6, pp. 919–930, 1993.

[9] R. Safaric and J. Rodic, “Decentralized neural-network sliding-mode
robot controller,” in Proceedings of 26th Annual Conference on the

IEEE Industrial Electronics Society, Nagoya, Aichi, Japan, 2000, pp.
906–911.

[10] E. N. Sanchez, A. Gaytan, and M. Saad, “Decentralized neural
identification and control for robotics manipulators,” in Proceedings

of the IEEE International Symposium on Intelligent Control, Munich,
Germany, Oct 2006, pp. 1614–1619.

[11] A. Y. Alanis, E. N. Sanchez, A. G. Loukianov, and G. Chen, “Discrete-
time output trajectory tracking by recurrent high-order neural network
control,” in Proceedings of the 45th IEEE Conference on Decision and

Control, San Diego, CA, USA, 2006, pp. 6367–6372.

[12] V. Utkin, “Block control principle for mechanical systems,” Journal

of Dynamic Systems, Measurement, and Control, vol. 122, no. 1, pp.
1–10, 2000.

[13] V. H. Benitez, E. N. Sanchez, and A. G. Loukianov, “Decentralized
adaptive recurrent neural control structure,” Engineering Applications

of Artificial Intelligence, vol. 20, no. 8, pp. 1125–1132, 2007.

[14] R. Grover and P. Y. C. Hwang, Introduction to Random Signals and

Applied Kalman Filtering. New York, USA: John Wiley & Sons,
Inc, 1992.

[15] S. Haykin, Kalman Filtering and Neural Networks. New York, USA:
John Wiley & Sons, Inc, 2001.

[16] Y. Song and J. W. Grizzle, “The extended Kalman filter as local
asymptotic observer for discrete-time nonlinear systems,” Journal of

Mathematical Systems, Estimation and Control, vol. 5, no. 1, pp. 59–
78, 1995.

[17] V. Utkin, “Sliding mode control design principles and applications to
electric drives,” IEEE Transactions on Industrial Electronics, vol. 40,
no. 1, pp. 23–36, Feb. 1993.

[18] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electrome-

chanical Systems. Philadelphia, USA: Francis & Taylor, 1999.
[19] C. E. Castañeda, E. N. Sanchez, A. G. Loukianov, and B. Castillo-

Toledo, “Discrete-time recurrent neural DC motor control using
Kalman learning,” in Proceedings of International Joint Conference

on Neural Networks, Hong Kong, China, Jun 2008, pp. 1930–1937.
[20] R. Garcia-Hernandez, E. N. Sanchez, M. Saad, and E. Bayro-

Corrochano, “Discrete-time decentralized neural block controller for
a five dof robot manipulator,” in Proceedings of International Joint

Conference on Neural Networks, Atlanta, Georgia, USA, Jun 2009,
pp. 925–931.

911

