
Prioritized Optimization for Task-Space Control

Martin de Lasa and Aaron Hertzmann

Abstract— We introduce an optimization framework called
prioritized optimization control, in which a nested sequence of
objectives are optimized so as not to conflict with higher-priority
objectives. We focus on the case of quadratic objectives and
derive an efficient recursive solver for this case. We show how
task-space control can be formulated in this framework, and
demonstrate the technique on three sample control problems.
The proposed formulation supports acceleration, torque, and
bilateral force constraints, while simplifying reasoning about
task-space control. This scheme unifies prioritized task-space
and optimization-based control. Our method computes control
torques for all presented examples in real-time.

I. INTRODUCTION

As robots become more complex, there is increased in-
terest in defining control in terms of high-level tasks. For
example, in the context of humanoid robot control, one might
wish to strictly maintain balance while attempting to reach
a target. Strong evidence is also emerging to suggest that
low-dimensional control strategies are exploited by animals
to manage complexity during control. Humans have been
shown to only correct deviations in motion directly inter-
fering with tasks [1], while high-level similarities has been
reported across a wide variety of animals during locomotion
[2]. Task-level control decomposition can also make the
application of automated policy learning methods tractable
[3]. This motivates the need to understand how control can
be formulated in terms of high-level objectives.

Task-space control has a long history in robotics, e.g.,
[4], [5], [6], [7]; for a survey, see [8]. Task-space strategies
aim to achieve tasks as closely as possible, without lower-
priority tasks interfering with higher-priority tasks, while
also resolving ambiguities due to underdetermined tasks.
Task-space strategies in the literature can be categorized
by whether control is specified in terms of velocity [4],
acceleration [5], or force [6]. These methods are based on
null-space projection operators. Velocity-based techniques
gained early adoption because of their ease of implementa-
tion and modest computational requirements. These methods
work well when high-gain tracking is desired, but are ill-
suited for low-stiffness control [8]. Acceleration and force
level approaches are better suited for impedance control,
but are more challenging to implement since they require
a dynamic model of the system. Force-based methods can
also require a potentially complex set of derivatives to be
calculated, making their implementation difficult [9]. An
alternative approach is to specify all tasks in a constrained
optimization framework [10], [11], [12], [13]. This avoids

Martin de Lasa and Aaron Hertzmann are with Dept. of Computer
Science, University of Toronto, 10 King’s College Road, Toronto, ON,
CANADA mdelasa|hertzman@dgp.toronto.edu

the need for projection operators, but cannot guarantee strict
prioritization. In practice, adjusting weighting terms for such
methods can be very difficult.

This paper presents a general framework that unifies
optimization-based and prioritized task-space control ap-
proaches. Our approach is based on the concept of prioritized
optimality, in which all constraints are achieved as closely as
possible without interfering with higher-priority constraints.
The generality of our formulation allows acceleration, torque,
and bilateral force constraints to be easily incorporated,
making it straightforward to implement and perform task-
space control. Due to the recursive nature of our formulation,
we derive a compact iterative algorithm able to handle an
arbitrary number of user-specified tasks. Since tasks are
formulated as constraints, failure to meet a constraint is
also easily detectable. Lastly, because we can enforce a
prioritization order, our method eliminates the need to tune
objective function weights. To demonstrate our approach,
several simulations of increasing complexity are presented.

II. PRIORITIZED OPTIMIZATION

We now introduce the concept of prioritized optimization.
In the next section, we show how it can be applied to task-
space control.

A. Problem Statement

In a prioritized optimization problem, we are given a list
of objective functions Ei(x) over some variable x ∈ <D.
For example, suppose we are given three objective functions
E1(x), E2(x), and E3(x). There are three steps to define the
solution to this problem. Our first goal is to find the minimum
of E1(x). Since tasks are generally underconstrained, E1(x)
will typically have multiple minimizers. Our next goal is
to find which among these valid minimizers have minimal
E2(x). Finally, among this new set of minimizers, we want
to return the one which minimizes E3(x). More formally,
we can write the problem as the following sequence of
optimizations:

h1 = min
x
E1(x) (1)

h2 = min
x
E2(x)

subject to E1(x) = h1 (2)
h3 = min

x
E3(x)

subject to E1(x) = h1, E2(x) = h2 (3)

We then return the value x∗ that solves this final optimiza-
tion. Figure 1 illustrates a case with two tasks.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5755

E1(x)

x*

x(w)

E2(x)

Fig. 1. A pictorial representation of a prioritized optimization problem with
2 objectives. E1 (in red) constrains the minimizer to lie in the family of
solutions x(w) shown as a dark red line. Selecting among valid solutions,
the solver identifies the minimizer in the family of solutions x(w) producing
lowest E2 (shown in blue).

In the general case of N objectives Ei(x), the problem
can be defined recursively as:

hi = min
x
Ei(x)

subject to Ek(x) = hk ∀k < i (4)

Then, the prioritized optimization problem is to find some
xN that solves for hN . In principle, prioritized optimization
could be solved by N applications of a general constrained
optimization algorithm.

In this paper, we focus on the case where all objectives
are positive semidefinite quadratics, and thus can be written
as:

Ei = ||gi(x)||2 (5)

where we define

gi(x) = Aix− bi (6)

for some matrix Ai and vector bi. Given N objectives, our
goal is to solve for unknowns x ∈ <D such that we minimize
||gi(x)||2, subject to each of the previous objectives.

In this formulation, each energy term can be thought of
as a constraint of the form

gi(x) = 0 (7)

Solving the prioritized optimization problem ensures that
this constraint will be satisfied when possible, since, in
general, Ei is minimized at zero. When a constraint cannot
be satisfied (typically because it conflicts with a higher-level
constraint), minimizing Ei will minimize the failure of the
constraint. Hence, each Ei/gi can be viewed as either a
constraint or as an objective.

B. Solution for Three Objectives

To see how to solve this type of optimization problem, we
consider the case of three quadratic objectives E1(x), E2(x),
and E3(x). Solving for x in a naı̈ve manner would involve
solving a sequence of quadratically-constrained quadratic

programs. However, the space of optimal solutions to a
positive semidefinite quadratic objective must be a linear
subspace. Specifically, the space of optimal solutions to
E1 = ||A1x − b1||2 can be parameterized by a vector w1

as:
x(w1) = C1w1 + d1 (8)

where C1 = null(A1) is a nullspace basis for A1, and
d1 = A†1b1 is a minimizer of E1. Any choice of w1 pro-
duces a minimizer of E1(x). The quantities C1 and d1 can
be computed using a single Singular Value Decomposition
(SVD). Note that their dimensionalities depend on the rank
of A1.

Now we can express the second objective in terms of this
parameterization:

g2(w1) = A2x(w1)− b2 (9)
= A2C1w1 − (b2 −A2d1) (10)
= Ā2w1 − b̄2 (11)

where

Ā2 = A2C1 (12)
b̄2 = b2 −A2d1. (13)

This reparameterizes the second objective function as
E2(w1) = ||Ā2w1 − b̄2||2. The solutions to this problem
can be described by a smaller subspace, parameterized by a
vector w2 as w1(w2) = C2w2 +d2, where C2 = null(Ā2)
and d2 = Ā†2b̄2. If we only have two objectives, such as the
example shown in Figure 1, the solution to the optimization
problem x∗ = C1d2 + d1.

To account for the third objective, we reparametrize g3 in
terms of w2, using:

x(w2) = x(w1(w2)) (14)
= C1(C2w2 + d2) + d1 (15)

g3(w2) = A3x(w2)− b3 (16)
= Ā3w2 − b̄3 (17)

where

Ā3 = A3C1C2 (18)
b̄3 = b3 −A3(C1d2 + d1). (19)

The subspace of optima for this problem is given by
w2(w3) = C3w3 + d3, where C3 and d3 are defined as
above. Then, any value of w3 gives an optimal solution
for the final objective. Substituting in the original space, we
have:

x(w3) = x(w1(w2(w3))) (20)
= C̄w3 + d̄ (21)

where C̄ = C1C2C3 and d̄ = C1C2d3+C1d2+d1. Hence,
a solution to the entire prioritized optimization problem is
given by x∗ = d̄.

5756

C. General Solution
We can generalize to the case of N objectives as follows.

First, we define an initial subspace equivalent to the full
space x(w0) = w0, so that C0 = ID×D and d0 = 0D.
Then for all 1 ≤ i ≤ N , we have:

Āi = Ai

i∏
j=0

Cj (22)

b̄i = bi −Ai

i−1∑
j=1

(
j−1∏
k=0

Ck

)
dj (23)

Ci = null(Āi) (24)

di = Ā†i b̄i (25)

d̄i =
i−1∑
j=0

(
j−1∏
k=0

Ck

)
dj (26)

At each step, the substitution of the subspace is of the form
gi(wi) = Āiwi+b̄i. The solution subspace for this problem
is wi(wi−1) = Ciwi + di. The substitution of di back into
the original space is d̄i, yielding the final solution to the
entire problem x∗ = d̄N .

D. Efficient Algorithm
Equations (22) - (26) provide a recursive description of

the prioritized solver for quadratic constraints. However,
they contain a great deal of redundant computation. We
can define a more efficient recursive algorithm as follows:
Algorithm 1: Quadratic Prioritized Solver

C̄← I , d̄← 01

for i = 1 to N do2

Āi ← AiC̄3

b̄i ← bi −Aid̄4

d̄← d̄ + C̄Ā†i b̄i5

if Āi is full rank then6

return d̄7

end8

C̄← C̄ null(Āi)9

end10

return d̄11

In this algorithm, at each step C̄ =
∏
iCi.

If the objective functions use up all available degrees-of-
freedom (DOF), line 11 will never be reached. For example,
if AN is full-rank, then ĀN must also be full-rank. We
discuss this issue further in the next section.

The nullspace and pseudoinverse computations using SVD
require user-specified tolerances. These tolerances impact
solution smoothness. We use:

tolpinv =
√
ε (27)

tolnull = max(m,n) max(s)ε (28)

where m and n are the dimensions of each Āi, s are its
eigenvalues, and ε is the machine tolerance for the floating
point representation used by the implementation.

The exact complexity of the iterative solver described in
Algorithm 1 depends on the number of tasks and rank of

each task. However, since a SVD is required for each task, a
worst-case estimate is O(D3). This is equivalent to other ex-
isting task-space control approaches, which typically require
a matrix inverse, or pseudoinverse, to compute projection
operators [4], [14].

III. TASK-SPACE CONTROL

We now describe how to apply prioritized optimization to
task-space control of dynamic articulated rigid-body simu-
lation. When defining a controller, one must define a set of
tasks as constraints in the form gi(x) that, at each time-step,
are provided to the optimizer to calculate joint torques. We
define the vector of free variables as:

x =
[

τT q̈T
]T
. (29)

In all of our examples, the top-level constraint is the system
equations of motion relating joint torques and accelerations:

M(q)q̈ + C(q, q̇) + G(q) = τ . (30)

which is written in constraint form as:

g1(x) =
[

I −M
]
x−

[
C + G

]
. (31)

The quantities M, C, and G are the joint space inertia ma-
trix, Coriolis/centrifugal and gravitational forces respectively.
For brevity, we omit dependence of the quantities on q and q̇
in the remainder of the paper. We use the Recursive Newton-
Euler and Composite Rigid-Body algorithms to calculate
these quantities efficiently [15]. Note that this constraint will
always be satisfied exactly (i.e., g1(x) = 0) because it is the
top-level constraint.

We then define additional constraints for the tasks we wish
to control. We use acceleration-level constraints for all prob-
lems described in this paper. For a given system configuration
q, forward kinematics relates generalized system coordinates
to task-space quantities according to:

yi = fi(q) (32)

where yi is any task variable that we wish to control, such
as end-effector position or center-of-mass (COM). Differen-
tiating (32) twice we obtain:

ẏi = Jiq̇ (33)

ÿi = Jiq̈ + J̇iq̇ (34)

where Ji = ∂yi

∂q is the Jacobian matrix of yi. We can specify
a desired acceleration by linear control as:

ÿid = ÿr + Kv(ẏr − ẏi) + Kp(yr − yi). (35)

where Kv and Kp are task-specific servo gain matrices.
yr, ẏr, and ÿr are the reference position, velocity, and
acceleration values. Then, the constraint for this task is:

gi(x) = ÿid − ÿi (36)

= ÿid − (Jiq̈ + J̇iq̇). (37)

Note that the task gi(x) will always be satisfied as long as
it is achievable without violating the equations of motion.

5757

Fig. 2. Planar Four Link Chain Simulation. The chain’s COM is shown
as a black sphere. The Cartesian location of the commanded trajectory is
shown as a red crosshair. Chain movement is restricted to the XY plane.

Lower-level tasks will be satisfied as closely as possible as
well.

It is important to define sufficient tasks to completely
specify the torque. Although Algorithm 1 returns the min-
imum norm solution when ambiguities remain (line 11), in
practice this solution leads to instability due to insufficient
damping. Instead, in all the examples that follow, we define
the final task such that it affects all torques and includes
some dissipative component. For example, the final task may
damp velocities or servo all joints to some default pose. Since
the task will be full rank, it will not be exactly satisfied.
Instead, we will obtain the solution satisfying the damping
task as closely as possible. Based on our experience, this is
sufficient to prevent instability.

IV. EXAMPLES

We now apply our technique to three control problems:
tracking a target with a planar serial chain, tracking a
target with an underacted planar chain using partial feedback
linearization, and performing squats with a planar biped
with bilateral force-ground constraints. All examples are
shown in the accompanying video. These examples employ
a generalized-coordinate simulator using Featherstone’s al-
gorithm [15]. The simulator supports efficient computation
of forward and inverse dynamics, Jacobians, and the matrix
representation of dynamics needed by the task constraints
(37). The simulations range in complexity from 4 to 9 DOFs,
with the individual tasks ranging from 8 to 20 dimensions.
All examples are integrated and controlled at 1 kHz and run
in real time.

A. Fully Actuated Chain

A fully actuated planar serial-chain with four one-DOF
revolute joints is first simulated (Figure 2). All links are
given identical inertial and geometric properties (length=0.7
m, mass=10 kg, inertia=0.41 kg·m2). The primary control
objective is to servo the chain’s COM along a sinusoidal
figure-eight reference trajectory:

yr =
[
A sin(t) A sin(2t)

]T
. (38)

−0.5 0 0.5

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x (m)

y
 (

m
)

Commanded Actual

4 6 8 10 12 14

0

1

2

3

4

5

6

7

x 10
6

t (s)

re
s
id

u
a

l

c

0
c

1
c

2

Fig. 3. Planar Four Link Simulation Results. Top: COM commanded and
actual trajectories, Bottom: Prioritize solver rask residuals.

This yields the task objective:

g2(x) = ÿcomd − (Jcomq̈ + J̇comq̇) (39)

where ÿcom is calculated using (35). To resolve redundancy
in the remaining DOFs, a secondary configuration-space task
servos all joints to a reference posture:

g3(x) = ÿpostured − (Jpostureq̈ + J̇postureq̇). (40)

Since the second constraint is for a configuration-space task
(i.e., Jposture = I, J̇posture = 0), it can be written:

g3(x) = ÿpostured − q̈. (41)

Summarizing all constraints in matrix form we obtain:

g1(x) =
[

I −M
]
x−

[
C + G

]
(42)

g2(x) =
[

0 Jcom
]
x−

[
vcom

]
(43)

g3(x) =
[

0 I
]
x−

[
vposture

]
(44)

where vi = ÿid−J̇iq̇. Figure 3 shows commanded and actual
task-space coordinates for a 15 second simulation using the
described controller. We also see that the first two constraints
are exactly satisfied, while there is error in the third task. This
is expected, since the last task operates in the mechanism’s
configuration space and conflicts with the COM servoing
task.

5758

0 5 10 15
1

1.05

1.1

1.15

1.2

t (s)

c
o

m
 (

m
)

Commanded

Actual

0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

7

t (s)

re
s
id

u
a

l

c

0

c
1

c
2

Fig. 4. Underactuated Chain Example. Left: Time-series of underactuated
chain during COM tracking task. Desired COM height shown as red
crosshair. Actual COM height shown as black circle. Middle: Commanded
(blue) and actual (red) values for COM height. Right: Prioritized optimiza-
tion residuals for provided constraints.

B. Underactuated Chain

A mechanism is said to be underactuated if a control
system is unable to produce accelerations in certain DOFs.
This includes well-known systems such as Acrobot [16] and
all untethered humanoid robots. Underactuation arises when
a system has more DOFs than actuators. One strategy used to
control such systems is to use a partial feedback linearization
(PFL), to couple active and passive DOFs [3], [16]. Due
to the generality of our technique, defining a PFL control
for an underactuated version of the system requires only
minor modifications to the specification. This avoids having
to manually decompose the mass matrix into active/passive
parts [3].

In this example, we constrain the torque on the first joint
of the 4-link serial chain to be passive and perform a setpoint
regulation task. We specify the following constraints:

g1(x) =
[

I −M
S 0

]
x−

[
C + G

0

]
(45)

g2(x) =
[

0 Jcom
]
x− [vcom] (46)

g3(x) =
[

0 I
]
x− [vposture] (47)

where S =
[

I1×1 01×3

]
is the passive joint selection

matrix. We set Kp = 0 in g3, such that it only applies
damping forces. All other quantities and gains are unchanged
from section IV-A.

Figure 4 shows results for this simulation. Despite making
the base joint’s torque passive, the COM height is accurately
tracked. As can be seen from the solver residuals, with the
exception of the final full-rank task, all task constraints are
met.

C. Bilateral Constraints

As a last example and to test how our method scales
to more complex problems, we simulate a planar human
performing squats (Figure 6). We use a HAT model (Figure
7) that aggregates head, arms, and trunk mass properties
into a single link. Character height and weight correspond
to a 50th percentile North American male, with individual
link mass/geometric properties estimated using data from
Winter [17]. Given link mass and geometric properties,

TABLE I
PLANAR BIPED MASS PROPERTIES

Link Length Mass COM (x,y) Inertia
[m] [kg] [m] [kg ·m2]

trunk 0.846 55.47 0.00 0.325 3.670
uleg 0.441 8.18 0.00 -0.191 0.166
lleg 0.443 3.81 0.00 -0.191 0.068
foot 0.274 1.19 0.07 -0.035 0.001
total 1.80 81.82

inertia is calculated using a thin-rod assumption. Provided
COM values are expressed in link local coordinates. Inertia
is expressed about each link’s COM (cf. Table I).

We model foot/ground interaction using a set of bilateral
force constraints, acting at 2 contact points on each foot.
This requires that we include external forces as unknowns

x =
[

τT q̈T fT
]T

(48)

and that we augment the equations of motion accordingly.
Three other tasks are provided in our example: a task to
regulate horizontal and vertical COM position, a task to
regulate trunk orientation, and a final configuration-space
task servoing all joints to a reference posture. The complete
set of constraints is:

g1(x) =

 I −M JTc
0 Jc 0
S 0 0

x−

 C + G
β − J̇cq̇

0

 (49)

g2(x) =
[

0 Jcom 0
]
x−

[
vcom

]
(50)

g3(x) =
[

0 Jtrunk 0
]
x− [vtrunk] (51)

g4(x) =
[

0 I 0
]
x− [vposture]. (52)

In the above JTc =
[

JTc1 JTc2 JTc3 JTc4
]

contains the
Jacobians for all contacts points and S =

[
I3×3 03×6

]
is the passive joint selection matrix for our simulation. We
compensate for numerical drift issues arising from expressing
contact point position constraints at the acceleration level
using Baumgarte stabilization (i.e., β = Kβ

pε+ Kβ
v ε̇) [18].

Figure 5 summarizes key results for this example. As can
be seen, COM position and trunk orientation are accurately
tracked. With the exception of the last full-rank task, resid-
uals for all other tasks are within machine tolerance of zero.

V. DISCUSSION

A. Evaluation

An alternative to executing tasks in strict priority order is
to combine them in a weighted fashion:

x∗ = arg min
x

N∑
i=2

αi||gi(x)||2

subject to g1(x). (53)

This corresponds to formulating control as a constrained
quadratic program (QP), with weights determining each
objective’s influence.

To evaluate the benefits of our prioritized optimization
scheme, we repeat the actuated chain (IV-A) and squatting
simulations (IV-C) using a QP-based control. We reuse the

5759

Fig. 6. Seven frames from the planar biped squatting simulation. Actual and desired COM/contact point positions are shown as red spheres and green
crosshairs respectively.

same tasks, gains, and setpoints from these examples and
combine them as described in (53). Since we wish to ensure
that control does not violate the system equations of motion,
we enforce the top-level dynamics tasks, g1(x), as an equal-
ity constraint. For the squatting simulation, we also include
an additional regularization task (i.e., Areg = I, breg =
0, αreg = 0.01) to improve problem conditioning. Our
implementation uses MOSEK’s (www.mosek.com) interior-
point QP solver [19].

For the actuated chain example, we were unable to find
a set of weights for the QP formulation that achieved both
tasks accurately. Instead, interference was observed between
tasks in all attempted simulations. As one task was achieved,
its contribution to the objective diminished, causing the
optimization to favor the other objective.

For the squatting example, many weight combinations
cause the simulation to fail. With sufficient tuning, the QP-
based controller results approach those from the prioritized
solver. Figure 8 shows QP controller performance for a
representative set of weight combinations. The QP-based
control implementation runs at approximately half the speed
of the prioritized solver.

Our prioritized solver allows a great deal of control design
flexibility. Users are free to specify an arbitrary set of task-
space constraints, as long as they are linear functions of
free variables. In practice, this can result in constraints that
are linearly dependent and that interfere with one another.
For example, in our squatting simulations contact point
Jacobians become ill-conditioned when the foot is flat on
the ground. Jacobians can also become rank deficient near
mechanical singularities, such as when the knee is fully
extended. Because the proposed prioritized solver relies on a
SVD-based singularity-robust pseudoinverse, problems with
ill-conditioned systems are mitigated. Furthermore, since the
pseudoinverse returns the minimum norm solution for a
particular subtask, instabilities arising from excessive control
torques or forces are avoided. The algorithm also works
equally well with single or double precision floating-point
numbers. In contrast, the single-precision implementation of
the QP-based squatting controller fails, since it is unable to
handle the ill-conditioned dynamics constraint.

B. Task Specification Options

In section IV, we presented three simulations of increasing
complexity. To handle differences between the simulated
models, we augmented the highest priority task to include
torque and bilateral force constraints. Although we recom-
mend the formulation presented above, which uses a single
constraint to relate problem unknowns, other alternatives
exist. For example, the top-level constraint (49) in IV-C can
be broken up into several different parts and rewritten as:

g1(x) =
[

I −M JTc
]
x−

[
C + G

]
(54)

g2(x) =
[

0 Jc 0
]
x−

[
β − J̇cq̇

]
(55)

g3(x) =
[

S 0 0
]
x−

[
0
]
. (56)

Another variant is to define the free variables as solely the
torques (x = τ), solve the equations of motion for q̈, and
substitute them into all remaining constraints. Though these
alternative representations are mathematically equivalent, we
found that they were more cumbersome to work with and
did not offer any computational benefits. Nonetheless, this
illustrates the design flexibility afforded by the prioritized
optimization framework.

C. Comparison

Our approach draws inspiration from two areas:
optimization-based control [10], [12], [20] and prioritized
task-space control [6], [9], [21], but provides advantages over
both.

Optimization based approaches such as those based on QP
are versatile and very general. By exploiting off-the-shelf
optimizers, they provide a general framework for reasoning
about control. These methods typically use a weighted sum
of quadratic objectives to specify different aspects of the
desired output motion. Though this is straightforward, tuning
weights for different objective function elements is non-
trivial. This approach also does not allow strict prioritization
of task behaviors.

In contrast, our approach allows the same ease of use
as methods based on optimization while permitting task
prioritization. As shown above, using a single framework,
it is straightforward to incorporate a variety of constraint
types.

5760

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

C
O

M
 (

m
)

x
d x y

d y

1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

T
ru

n
k
 A

n
g
le

 (
ra

d
s
)

θ
d

θ

1 2 3 4 5 6 7 8 9 10

0

200

400

L
e
ft
 L

e
g

 T
o
rq

u
e
s
 (

N
m

)

τ
hip

τ
knee

τ
ankle

1 2 3 4 5 6 7 8 9 10

0

200

400

600

|f
|
(N

)

p1 p2

1 2 3 4 5 6 7 8 9 10

0

2

4

x 10
7

t (s)

R
e
s
id

u
a
l

c

0
c

1
c

2
c

3

Fig. 5. Planar biped squatting simulation results. Right leg joint torques
and contact forces omitted for brevity. From top to bottom, plots show: com-
manded vs. actual COM position, commanded vs. actual trunk orientation,
left leg control torques, magnitude of bilateral contact forces for leg foot
(p1 and p2 are the foot contact points), and residuals for all tasks specified
to the prioritized solver (i.e., ci = ||Aix− bi||).

Techniques based on prioritized task-space control have a
long history in robotics. To truly compensate for system dy-
namics in control, acceleration or force level approaches are
required. Force approaches such Operational Space Control
[9] correctly decouple primary and secondary behaviors and
ensure minimal interference between tasks. However, these
methods require the computation of a complex set of task-
specific projection matrices and of their derivatives.

Our approach guarantees minimal interference between
tasks and does not require computation of any specialized
projection matrices. Instead, we rely on a general solver
that requires only task-dependent Jacobians and a dynamic
system model in standard block form as input, which can be
efficiently computed [22].

VI. CONCLUSIONS

We have presented a general framework for reasoning
and performing task-space control based on the concept of
prioritized optimization. Prioritized optimization combines

trunk

uleg

lleg

foot

x

y

p1 p2

Fig. 7. A 7 link (9 DOF) planar HAT model is used for squatting sim-
ulations. Model parameters are taken for a 50th percentile North American
male. Our model has a floating base, connecting the character’s pelvis to
the world via a three DOF planar joint.

the ease of use of convex-optimization methods, with the
benefit of ensuring strict task prioritization. For the case
of positive semidefinite quadratic objectives, we obtain an
efficient recursive algorithm, with real-time performance.
Because prioritized optimization can ensure minimal inter-
ference between objectives, it is ideally suited for task-space
control. This guarantee enables decomposition of complex
motions into simpler high-level actions using a straightfor-
ward approach. Acceleration, torque, and force constraints
can also be included into our formulation easily.

There are several directions we wish to explore for this
research. We have begun modifying our approach to handle
unilateral constraints. This extension is needed for better
modelling of contact forces with the environment. We are
also incorporating bounds constraints, a requirement to pro-
duce more conservative control strategies. The inclusion of
configuration space bound constraints will also ensure the
solver yields feasible solutions. Following these additions
we plan to test our approach on more interesting systems,
such as more detailed humanoid models.

VII. ACKNOWLEDGMENTS

We thank Jack Wang and Igor Mordatch for their com-
ments on the manuscript. This work was supported by the
Canada Foundation for Innovation, the Canadian Institute
for Advanced Research, a Microsoft Research New Faculty
Fellowship, the National Sciences and Engineering Research
Council of Canada, and the Ontario Ministry of Research
and Innovation.

REFERENCES

[1] E. Todorov and M. I. Jordan, “Optimal feedback control as a theory
of motor coordination.,” Nat Neuroscience, vol. 5, no. 11, 2002.

[2] R. J. Full and D. E. Koditschek, “Templates and anchors: Neurome-
chanical hypotheses of legged locomotion on land,” J. of Experimental
Biology, vol. 202, 1999.

5761

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1
C

O
M

 x
 p

o
s
it
io

n
 (

m
)

x

d
W

0
W

1
W

2
W

3
W

4

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

C
O

M
 y

 p
o

s
it
io

n
 (

m
)

1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

T
ru

n
k
 A

n
g
le

 (
ra

d
s
)

Time (s)

Fig. 8. Planar biped results using non-prioritized QP-based control.
Tracking of task-space quantities for five different sets of weights is shown.
Tasks weights are: W0 = (10, 10, 0.1), W1 = (50, 10, 0.1), W2 =
(50, 50, 0.1), W3 = (100, 50, 0.1), W4 = (100, 100, 0.1). As weights
are increased, QP control output converges to prioritized solver output.

[3] A. Shkolnik and R. Tedrake, “High-dimensional underactuated motion
planning via task space control,” IROS ’08, Sept. 2008.

[4] A. Liegeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” IEEE Trans. on Systems, Man
and Cybernetics, vol. 7, 1977.

[5] P. Hsu, J. Hauser, and S. Sastry, “Dynamic control of redundant

manipulators,” J. of Robotic Systems, vol. 6, no. 2, 1989.
[6] O. Khatib, “A unified approach to motion and force control of robot

manipulators: The operational space formulation,” IEEE J. of Robotics
and Automation, vol. 3, no. 1, 1987.

[7] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based re-
dundancy control of robot manipulators,” Int. J. of Robotics Research,
vol. 6, no. 2, 1987.

[8] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
space control: A theoretical and empirical comparison,” Int. J. of
Robotics Research, vol. 27, no. 6, 2008.

[9] O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole body dynamic
behavior and control of human-like robots,” Int. J. of Humanoid
Robotics, vol. 1, 2004.

[10] Y. Abe, M. da Silva, and J. Popović, “Multiobjective control with
frictional contacts,” in SCA ’07, Eurographics Association.

[11] C. Azevedo, P. Poignet, and B. Espiau, “Moving horizon control for
biped robots without reference trajectory,” in ICRA ’02.

[12] M. da Silva, Y. Abe, and J. Popovic, “Simulation of human motion data
using short-horizon model-predictive control.,” Computer Graphics
Forum, vol. 27, no. 2, 2008.

[13] Y. Fujimoto, S. Obata, and A. Kawamura, “Robust biped walking with
active interaction control between foot and ground,” ICRA ’98.

[14] O. Khatib, “Inertial properties in robotics manipulation: An object-
level framework,” Int. J. of Robotics Research, vol. 14, 1995.

[15] R. Featherstone, Rigid Body Dynamics Algorithms. 2007.
[16] M. Spong, “Partial feedback linearization of underactuated mechanical

systems,” IROS ’94.
[17] D. A. Winter, Biomechanics and Motor Control of Human Movement.

2004.
[18] M. Cline and D. Pai, “Post-stabilization for rigid body simulation with

contact and constraints,” ICRA ’03.
[19] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, March 2004.
[20] A. Hofmann, S. Massaquoi, M. Popovic, and H. Herr, “A sliding

controller for bipedal balancing using integrated movement of contact
and non-contact limbs,” IROS ’04.

[21] Y. Abe and J. Popović, “Interactive animation of dynamic manipula-
tion,” in SCA ’06.

[22] R. Featherstone and D. E. Orin, “Robot dynamics: Equations and
algorithms,” in ICRA ’00.

5762

