
Data Gathering Tours for Mobile Robots

Deepak Bhadauria and Volkan Isler

Abstract— We study a path planning problem which arises
when multiple robots are used to gather data from stationary
devices with wireless communication capabilities. Each device
has a given communication range, and stores a fixed amount of
data. The objective of the robots is to gather the data from these
devices and to upload it to a base-station/gateway. We introduce
a new optimization problem called the Data Gathering Problem
(DGP). In DGP, the objective is to compute a tour for each
robot in such a way that minimizes the time to collect data
from all devices. In order to download the data from a device,
a robot must visit a point within the communication range of
the device. Then, it spends a fixed amount of time to download
the data. Thus, the time to complete a tour depends on not
only the travel time but also the time to download the data,
and the number of devices visited along the tour.

First, we study a special case of DGP where the robots’
motion is restricted to a curve which contains the base station
at one end. Next, we study the 2D version. We show that two
existing algorithms for variants of the Traveling Salesperson
Problem can be combined and adapted to obtain a constant
factor approximation to DGP. Afterwards, we present an im-
provement for sparse deployments. We also present simulations
which shed light on the utility of data gathering using mobile
robots.

I. INTRODUCTION

There are many applications Wireless Sensor Network

(WSN) applications in which a large area must be covered

with a sparse deployment. For example, in habitat moni-

toring, soil humidity and temperature at areas visited by a

particular species is collected. In order to use the current

WSN technology in such applications, a dense network must

be deployed. This is because WSN nodes typically have short

communication ranges, and many nodes must act as relays

so that the data can be gathered at a base station.

In our recent work, we presented an alternative to static

relay-nodes for such applications: using robots as data mules

to collect the data from sensors [8]. This approach has a

number of advantages over deploying a dense static net-

work. First of all, since relay nodes are no longer needed,

operational costs are minimized. Second, the lifetime of the

network is maximized because the robots can get close to the

sensor nodes to download the data. In addition to reducing

the energy consumption during transmission (less power is

needed), proximity also reduces the data loss rate, which

results in smaller number of transmissions per byte. In [8],

we experimentally demonstrated the utility of a robotic mule

system for gathering data.

The authors with the University of Minnesota. Emails:
{bhadau,isler}@cs.umn.edu

This work was supported by the grants NSF CCF-0907658 and NSF
IIS-0917676.

In the present work, we address the problem of planning

the routes of robotic mules: given locations of n sensors,

compute the routes of κ robots so that the time to download

the data from all sensors is minimized. Throughout the paper,

we will refer to this problem as the Data Gathering Problem

(κ-DGP). Note that in DGP, the cost incurred by a robot

depends on not only the robot’s travel time but also the time

to download data from a sensor, and the number of sensors

assigned to the robot.

The well-known Traveling Salesperson Problem (TSP)

asks for the shortest path for a salesperson to visit n cities [1].

There is a variant of TSP, called k-TSP, where k travelers

visit n cities, and the objective is to minimize the length

of the maximum tour [4]. Even though DGP resembles

TSP, a closer look reveals important differences as shown

in Figure 1.

B

Fig. 1. Two robots charged with collecting data from the sensors and
relaying them to the base station B. The filled circles correspond to sensor
locations. The circle around a sensor illustrates its communication range.
The figure shows optimum TSP tours for the two robots which minimize
the maximum travel distkance by any robot. This solution is not appropriate
for data gathering because the robot assigned to the left group would spend
a lot of time downloading the data from the sensors.

As another example, consider a special case where all

sensors and the base station are on a line. Imagine that all

sensors are to the right of the base station. In TSP, there

is no utility in employing more than one robot for this

case: the robot that will visit the furthest sensor can visit

all other sensors on the way. However, when the download

time is incorporated, the utility of employing multiple robots

becomes evident.

Another aspect where DGP differs from TSP is due to

the presence of a non-zero communication range. As shown

in Figure 1, the robot does not need to visit the precise

location of a sensor. Instead, it needs to visit a point in

its acceptable communication range1 to download the data.

There is a variant of TSP, called TSP with Neighborhoods

(TSPN) which captures this aspect of DGP. In the geometric

version of TSPN, we are given n disks. The objective is to

1This is an application dependent parameter that depends on the charac-
teristics of the signal, environment and acceptable signal quality and energy
consumption levels.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3868

compute the shortest tour that visits at least one point in each

disk. Even though efficient algorithms for TSPN exist [2],

[6], there are no algorithms for k-TSPN where the objective

is to compute TSPN tours for k robots.

Our results and organization of the paper: In Section III,

we formalize the Data Gathering Problem. In this paper,

we make three main contributions. First, in Section IV,

we present an optimal algorithm for the 1D version where

the robots are restricted to move along a curve which

contains a base station at the starting point. For the 2D case

(Section IV), we show that the k-TSP algorithm presented

in [4] can be combined with the TSPN algorithm of [2], and

the resulting algorithm can be modified to obtain a constant-

factor approximation algorithm for DGP in 2D (Section V-

B). Next, we focus on sparse deployments where the utility of

using robots is significant, and present an improved algorithm

for this case in Section V-C. In Section VI, we present

simulations which provide further insights on the use of

robots for gathering data. In the next section, we start with

a brief overview of the related work.

II. RELATED WORK

The Traveling Salesperson Problem (TSP) is a funda-

mental, widely studied optimization problem [1]. The work

presented in this paper is based on algorithms for two

variants of TSP. The TSP with Neighborhoods [2], and k-

TSP [4]. An overview of these two algorithms is presented

in Section V-A.

Exploiting mobility in collecting sensor data has received

some recent attention. For example, in [7], Shah et al

presented an architecture that uses mobile entities in the

environment for data delivery. However, in most of the

related literature, mobility is treated as an uncontrolled

process. A recent review on the state of the art in exploiting

sink mobility can be found in [5].

Yuan et al. formulate the problem of collecting sensor

data using a single robot as a TSPN instance [10]. They

do not address the time spent in downloading data. As

shown in Figure 1, ignoring transmission time can worsen the

performance of the system drastically. Tirta et al. presented

algorithms to schedule visits of a mobile agent to collect data

from cluster heads [9]. The authors present heuristics which

focus on data latency and data aggregation rate of clusters.

In [3], Dunbabin et al. present an underwater data muling

system. In the underwater scenario, sensors and underwater

vehicles communicate through optical communication, which

requires a close proximity as well as good view-angle to

start the communication. Moreover, since GPS localization

is not available under the water, the vehicle has to navigate

under high localization uncertainty. This makes designing

global routing algorithms challenging. The authors propose

a solution where the vehicle performs a spiral movement to

find the sensors. This strategy is not efficient for our scenario,

in which the sensor locations are known and the robot can

localize itself.

III. PROBLEM DEFINITION

Suppose we are given the locations of n identical sensors.

There is a base station B, and κ robots which can navigate in

the environment are charged with downloading the data from

each sensor and uploading it to the base station. We define

coverage of a sensor as receiving all data from that sensor

and transmitting it to the base station. We make assumptions

as given below.

The sensors are identical. We assume that each sensor can

sense data and transmit it up to a distance Tr units with

uniform data rate. Therefore, the time required to download

data from every sensor, Td, is identical.

The data is downloaded by κ identical robots which

have wireless communication capabilities and can travel at

a constant speed of ν. In this work, we do not consider

higher order constraints such as acceleration. The robots have

infinite buffer capacities (since they can carry large storage

devices). Similarly, we do not consider energy limitations for

robots. We assume that the robots can localize themselves

and navigate in the environment.

Even though there may be obstacles in the environment,

we assume that the communication disks are obstacle-free.

That is, no obstacle intersects the communication disk of any

sensor.

IV. THE 1-D DATA GATHERING PROBLEM.

In this section, we study the 1-D version of the data

gathering problem where the robots are restricted to move

along a curve X . This case has practical applications in

scenarios where robots move along a rail-line, or there is

a single path they can move along in a rough terrain.

We assume that base station is at an end point of the

curve X; i.e. at x = 0 where x is the parameterization of

the underlying curve.

For each sensor s, compute the intersection the communi-

cation disk (centered at s with radius is Tr) with the curve X .

Suppose all intersections are on one side of the base-station.

Let xs be the first point of this intersection along X . We

will choose xs as the download location of a sensor s. Since

all intersections are assumed to be on one side of the base

station, any robot which will download data from s can

do so from location xs without incurring additional travel

costs. Hereafter, we represent each sensor with its download

location. For this version of the problem where xs > 0 for

all s, we will present an optimal algorithm for gathering data

with κ robots.

Consider a solution to the 1D data gathering problem.

Let U = {u1, u2, . . . , uk} and V = {v1, v2, . . . , vl} be the

sets of sensors assigned to robots u and v (we overload the

notation and use ui to refer both a sensor and its download

location) ordered and labeled such that u1 ≤ u2 ≤ . . . ≤ uk

and v1 ≤ v2 ≤ . . . ≤ vl. While ordering download locations

we break ties arbitrarily. Without loss of generality, assume

that u1 ≤ v1. We say that u and v are non-overlapping if

uk ≤ v1.

The following lemma sheds light onto the structure of

optimal data collection.

3869

Lemma 4.1: There exists an optimal solution to cover n
sensors with κ robots in which every pair of robots is non-

overlapping.

Proof: Among all optimal solutions, consider the opti-

mal solution S with the largest number of non-overlapping

pairs of robots. We claim that no pair of robots in S is

overlapping.

Suppose, to the contrary, that there is a pair of robots u
& v in S which are overlapping. Let U = {u1, u2, . . . , uk}
and V = {v1, v2, . . . , vl} be the sets of sensors assigned to

u and v.

The sensors in U and V can overlap in two primary ways

shown in Figure 2.

Case (a): When there is a partial overlap. Let the coverage

time taken by u and v be T (u) and T (v).

T (u) =
uk

ν
+ kTd and T (v) =

vl

ν
+ lTd

We reassign sensor uk to robot v and sensor v1 to robot

u. New sets of sensors U ′ = U − {uk} + {v1} and V ′ =
V −{v1}+{uk} are assigned to u and v. Let u′

k be the sensor

in U ′ which is farthest from base station. New coverage times

are:

T ′(u) =
u′

k

ν
+ kTd and T ′(v) =

vl

ν
+ lTd

Since u′
k ≤ uk, we have T ′(u) ≤ T (u). Also T ′(v) = T (v).

The reassignment operation does not increase the coverage

cost of any of the two robots. Continue reassigning in the

similar way until u′
k ≤ v1.

Case (b): When there is a complete overlap. In this case

reassign sensor u1 to robot v and sensor v1 to robot u. This

does not increase the cost of coverage of by any of the robot

u and v. Now the case is similar to case (a) but with robots

swapped. This case can be dealt in a similar way as (a).

Let S′ the solution obtained by reassignment of S. S′ is at

most as costly as S and has one more pair of non-overlapping

robots. This contradicts the maximality of S. Hence, S has

no overlapping pair of robots.

(a)

(b)

... ...

...

...

......u1

u1

uk

uk

v1

v1

vl

vl

Fig. 2. Data collection on the line: (a) partial overlap (b) complete overlap.

Lemma 4.1 sheds light onto the structure of sensor assign-

ments in an optimal solution. We now present a dynamic

programming algorithm to exploit this structure and to gather

the data from n sensors using κ robots in an optimal fashion.

Let us order and label sensors from s1 to sn with increas-

ing distance of their download locations from base station

(again, si refers to both the ith sensor and its download

location). Let cost(k, l) be the cost to cover sensors sk to

sl, k ≤ l by a robot. Therefore cost(k, l) = sl

v
+(l−k+1)Td.

We create an n×κ table T . Each entry T [i, j] represents the

optimal cost to cover s1 to si sensors by j robots. The table

is computed using the following recurrence equation:

T [i, j] =

{

si

v
+ iTd if j = 1

mink∈{1,j−1}(T [k, j − 1] + cost(k, i)) otherwise

(1)

Lemma 4.2: T [i, j] will give us the optimal coverage time

for the first i sensors using j mules.

Proof: We prove the lemma by induction on j, the

number of robots. Basis: For j = 1 the minimum time to

cover s1 to si, T [i, 1] = si

v
+ iTd for all i ∈ {1, n}. This is

minimum because to cover i sensors any robot has to travel

up to download location of farthest sensor and download data

from all the sensors. Induction hypothesis: Let T [l, j−1] be

minimum time required to cover first l sensors using j − 1
robots ∀l ∈ {1, n}. Now for j robots T [i, j] = min(T [l, j −
1] + cost(l + 1, i)) where l ∈ {1, i− 1}. Since T [l, j − 1] is

minimum coverage time for l sensors with j − 1 mules and

the value of T [i, j] is set to minimum of all i − 1 possible

values, T [i, j] is minimum coverage time of i sensors with

j mules.

Thus, the entry T [n, κ] gives us the desired solution. The

running time of the algorithm can be easily seen to be

O(n2κ). The main result of this section is summarized by

the following theorem.

Theorem 4.3: There exists an optimal polynomial time

algorithm to solve the 1-D version of the data gathering

problem when all the sensors are on one side of the base

station.

V. K-ROBOT COVERAGE IN 2D

We start this section by reviewing algorithms for two rel-

evant TSP variants: In Section V-A, we present an overview

of a constant factor approximation algorithm by Dumitrescu

and Mitchell [2] for TSP with Neighborhoods where the

neighborhoods are uniform disks, as well as a constant

factor k-TSP algorithm. In Section V-B, we show how these

two algorithms can be modified and combined to obtain

a constant factor algorithm for the data-gathering problem.

Finally, in Section V-C, we present an algorithm which gives

improved results when the sensors are “sparse”2

A. TSPN tour algorithm and TSP splitting algorithm

In [2], Dumitrescu and Mitchell present a constant-factor

approximation algorithm for TSPN with uniform disk neigh-

borhoods. The approximation ratio of the algorithm which

we refer to as TSPN TOUR is 11.15.

TSPN TOUR first finds out a maximal independent set

(MIS) of non-intersecting disks. Then it creates a TSP tour

TI which visits the center of each disk in MIS. A TSPN tour

is formed from the TSP tour as follows: the TSPN tour starts

from the intersection of an arbitrary disk in MIS and TI . It

then follows TI in clockwise direction. If the boundary of a

MIS disk D is encountered, D is traversed clockwise along

the boundary until the next intersection of TI with D. This

2We will quantify the notion of sparsity in Section V-C as well.

3870

continues until the tour returns to starting point. Now the

TI is traversed in similar fashion but in counter clockwise

direction until start point is encountered. Fig 3 illustrates a

TSPN tour obtained by the algorithm TSPN TOUR.

a

Fig. 3. A TSPN tour constructed by algorithm TSPN TOUR. The disks
in MIS are drawn with heavy solid lines. The tour contains two subtours.
After visiting a circle, one subtour traverses its boundary clockwise until
the next intersection of the disk with the tour. On the way back, the other
tour traverses the disk counter-clockwise.

Frederickson et al [4] present an algorithm, k-SPLITOUR,

to split a TSP tour into k subtours. In this algorithm one

travels along the TSP tour and the tour is split each time

when the cost reaches a threshold which is decided by

the average cost of a k-subtour. This algorithm gives an

approximation bound of 5

2
− 1

k
for k-TSP.

In the next section, we show how these two algorithms

can be combined to solve the data gathering problem in 2D.

B. Algorithm for DGP in 2D

The main idea of the algorithm is to create a TSPN tour

of sensors and divide that tour into κ subtours such that

each subtour is of almost similar cost. The main steps of the

algorithm are as follows:

1) For n sensors and base station b find a TSPN tour

R = (b, s1, s2, ..., sn, b) with cost(R) = τ1, where

si is a sensor node and τ1 is the coverage time of n
sensors by one robot.

2) For each j, 1 ≤ j < κ find the last sensor snj
, nj ∈

{1, n} such that the cost (time to travel plus download

data) of path from b to snj along R is not greater than

(j/k)(τ1−2cmax)+cmax. Here cmax is the time taken

for a robot to travel from base station to the download

location farthest from base station.

3) Let sj
i represents the ith sensor in jth subtour. Obtain

the κ subtours by forming jth subtour as Rj =
(b, sj

1
, sj

2
, ..., sj

nj
, b) for all j ∈ {1, κ}. Note that

sj−1

nj−1
= sj

1
for j ∈ {1, κ − 1} and sκ

nκ
= sn.

We now show that by combining the two algorithms for

TSPN and k-TSP, one obtains a constant factor algorithm for

the data gathering problem.

Theorem 5.1: If τk is the cost of the largest subtour

generated by algorithm and τ∗
k is cost of the largest subtour

in the optimal solution for the data gathering problem, then

τk/τ∗
k ≤ e + 2 − 1/k (2)

where e is the approximation ratio of the algorithm used to

find TSPN tour at step 1 of DGP algorithm.

Proof: We sketch the main steps in the proof which

parallels the proof of the performance of the k-SPLITOUR

algorithm by [4]. The cost of any tour Ri, 1 ≤ i ≤ k, does

not exceed (1/k)(τ1 − 2cmax) + 2cmax.

Therefore

τk = max(cost(Ri)) ≤ (1/k)(τ1 − 2cmax) + 2cmax (3)

By triangle inequality τ∗
k ≥ (1/k)τ∗

1
where τ∗

1
is the

optimal cost of coverage with 1 robot. This can be proven

by contradiction: Let us assume that τ∗
k < (1/k)τ∗

1
. We can

combine the subtours in such a way that the last sensor of

each subtour is connected to the first sensor of the next

subtour. By the triangle inequality the new edge will be

shorter than the sum of the edges deleted (edge from last

sensor of the subtour to the base station and edge from the

first sensor of the next subtour to the base station). But this

means τ∗
1

is not optimal which is a contradiction.

Let the cost of TSPN tour at step 1 of the algorithm

with Td = 0 (Cost of a “regular” TSPN tour) be τ and the

cost of optimal TSPN tour with Td = 0 be τ∗. Depending

on implementation a robot may download some amount

of data while it is traveling inside the disk (i.e. overlap

time of traveling and downloading) of a sensor. We have

τ1 ≤ τ + nTd. Also τ∗
1
≥ max(τ∗, nTd). So we get

τ1

τ∗
1

≤
τ + nTd

τ∗
1

≤
τ

τ∗
1

+
nTd

τ∗
1

≤ e + 1 (4)

where e is the approximation ratio of the algorithm used

to find TSPN tour. Combining the results from Equation 3,

triangle inequality, Equation 4 and from the fact that cmax ≤
1

2
τ∗
k we get τk/τ∗

k ≤ e + 2 − 1/k.

If TSPN TOUR is used for finding TSPN tour for step 1

of the above algorithm we have to be careful in dividing the

tour. This is because of the fact that the last sensor covered in

a subtour may be the one whose disk is not in MIS. For such

cases we need to know the exact point on the disk boundary

where we have to make the split. Let A be a disk in MIS

and B be another disk intersecting A. To cover sensor at B,

a robot stops at the point where the line joining center of

A and the center of B intersects with boundary of disk A
for downloading data from B. After downloading data from

sensor at B, the mule continues its TSPN tour. Note that data

from sensor at A is downloaded from the point where tour

first meets boundary of A. By fixing the download location

of sensors whose disk intersect with A it becomes easy to

divide the tour. Fig 4 shows one such subtour division. Note

that second subtour does not visit the base station when it

starts the tour in anti-clockwise direction.

C. Improvement for sparse sensor networks

In TSPN TOUR algorithm each of the edges connecting

the pairwise disjoint disks is traversed twice. This can be

costly when the disks are far apart which is the case for

sparse sensor networks. For this case, we present an im-

proved algorithm which constructs the TSPN tour differently

3871

Download location

Sensor

A

B

s1

s2

s3

s4

s5

s6

s7

s8

R1

R2

b

Fig. 4. Division of a TSPN tour into 2 subtours using DGP algorithm.

than TSPN TOUR. Afterwards, we formalize the notion

of sparsity and provide the condition on which it will be

less costly than TSPN TOUR. We refer to this method of

construction as ONE WAY TSPN TOUR.

We justify the utility of ONE WAY TSPN TOUR in sim-

ulations where we show that it yields considerable cost

reduction for sparse networks.

b

a

Fig. 5. ONE WAY TSPN TOUR makes a complete tour after visiting each
disk in the MIS. This approach improves the coverage time when there are
sensors which are far apart.

In ONE WAY TSPN TOUR, we start the TSPN tour simi-

larly as in TSPN TOUR, i.e., from the point of intersection

of boundary of disk of an arbitrary vertex and TI . Traverse

along TI until the point of intersection, a, of the boundary

of an MIS disk is encountered. Make a complete tour of

the disk boundary until a is encountered again. Now, from

a traverse directly to the next point of intersection, b, of TI

and this disk (Figure 5). From b continue along TI in similar

fashion until the point from where we started is reached. Let

the cost of TI in terms of distance be CI and the number

of disks in MIS be m. We can compare TSPN TOUR with

ONE WAY TSPN TOUR as follows. When compared with

ONE WAY TSPN TOUR, TSPN TOUR covers an extra dis-

tance of CI − 2mTr, since it traverses the tour twice. On

the other hand, ONE WAY TSPN TOUR may cover an extra

distance of 2mTr (along the diameter of the disk to get back

on the tour). Therefore, we can use ONE WAY TSPN TOUR

whenever 2mTr ≤ CI − 2mTr. This gives the condition

Tr ≤
CI

4m
(5)

When this condition is satisfied we will prefer

ONE WAY TSPN TOUR over TSPN TOUR because it

gives at least CI − 4mTr saving in distance to travel. We

believe that this improvement will be significant in environ-

mental monitoring applications where clusters of sensors are

sparsely deployed over large areas. In figure 6, we present

an instance of DGP where the proposed modification yields

significant improvements.

Fig. 6. Data gathering tours for a single robot based on Left: TSPN TOUR
(the total coverage time is 3829 units), Right: ONE WAY TSPN TOUR (the
total coverage time is 2612 units). In this instance, the proposed modification
yields significant improvements. In both figures, gray disks correspond to
the disks in MIS. The base station is the yellow disk on the top left.

VI. SIMULATIONS AND FURTHER INSIGHTS

In this section, we further study DGP with simulations. In

the first experiment, we investigate the utility of increasing

the number of robots. In Figure 7, we plot the coverage time

as a function of κ, the number of robots. In this experiment,

we placed 100 sensors uniformly at random in a 600 × 600
environment. The communication radius Tr was chosen to

be 30. As the figure shows there is a steep decrease in cost

as the number of robot increases. As the number of robots

approach the number of independent disks the decrement in

cost is lesser.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 0 10 20 30 40 50 60 70 80 90 100

C
o
v
e
ra

g
e
 t

im
e

Number of robots

Coverage time as a function of number of robots

Fig. 7. The coverage time as a function of robots for 100 sensors deployed
uniformly at random in a 600× 600 area.

In TSPN-based partitioning, we compute a single TSPN

tour which is then divided among the robots. When the

sensors are uniformly deployed, a reasonable alternative is

to divide the environment into κ equal regions and to assign

a robot to each region. After this assignment, the robots can

compute TSPN tours for the sensors in their region. In the

next experiment, we compare these two approaches.

Figure 8 shows the histogram of the ratio of the coverage

time of area-based partition to the coverage time of the TSPN

3872

based partition. To obtain the histogram, we performed 100

trials in a 600 × 600 environment with uniformly placed

sensors. The number of sensors in each trial was 100. In area

based partitioning we divided the enivronment into six 300×
200 regions and covered each region by a single robot. For

uniform deployment, the performance of the two algorithms

was comparable. On the average, TSPN based partition was

only 1.03 times better. The highest ratio was 1.21 (i.e TSPN

based partition was 21% better.) The tours for this instance

are shown in Figure 9. The lowest ratio (where area based

partitioning was better) was 0.87.

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0

2

4

6

8

10

12

14

16

18

Area−based vs. TSPN−based partitioning

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
0

2

4

6

8

10

12

14

Area−based vs. TSPN−based partitioning

Fig. 8. The histograms shows the ratio of the coverage time of an area-
based partitioning algorithm to the coverage time of the TSPN-based par-
titioning algorithm.Left: In this case the sensors were deployed uniformly
at random, and the performance of the two algorithms was comparable.
Right:In this case the sensors were deployed non-uniformly(See Figure 10)
and the TSPN-based partitioning approach clearly outperformed the area-
based approach.

Fig. 9. Left: Data gathering using an area-based partitioning approach.
Right: Data gathering using a TSPN-based partition. In this instance, TSPN-
based partitioning was 21% better. Gray disks correspond to the disks in
MIS for each partition. The base station is the yellow disk on the top left.

However, when the distribution of the sensors in not

uniform, TSPN-based partition outperforms area-based par-

tition. In the next experiment, we deployed 100 sensors in

a 600 × 600 environment. The distribution of the sensors

were denser in the upper right and lower left portions of

the environment (Figure 10). The histogram of the ratio in

100 experiments clearly shows that TSPN-based partitioning

outperforms area-based approach (Figure 8). On the average,

TSPN based partition was 1.22 times better. The highest ratio

was 1.37 (i.e TSPN based partition was 37% better.) The

tours for this instance are shown in Figure 10. The lowest

ratio was 1.11 (i.e. in all instance TSPN based partition

outperformed area-based).

VII. CONCLUDING REMARKS

In this paper, we introduced a new path planning prob-

lem, the Data Gathering Problem (DGP), which arises in

Fig. 10. Left: Data gathering using an area-based partitioning approach.
Right: Data gathering using a TSPN-based partition. In this instance, TSPN-
based partitioning was 37% better. In both figures, gray disks correspond
to the disks in MIS. The base station is the yellow disk on the top left.

scenarios where robots act as data mules to download data

from stationary wireless devices. We presented an optimal,

polynomial-time algorithm for a special case where the

robots are restricted to move along a curve which contains

the base station at one end. For the 2D version, we showed

that two algorithms developed for variants of the TSP prob-

lem can be combined and adapted to obtain a constant factor

approximation algorithm for DGP in 2D. We also presented

an improvement for sparse networks where robots spend

significant time to travel between clusters that are far away.

This is one of the scenarios where the utility of using robots

for data collection is evident.

Our future work includes extending our work to hetero-

geneous devices with varying communication ranges and

environments with obstacles. The algorithms presented in

the paper can accommodate obstacles as long as they do not

intersect with the communication disks. When this happens,

a new algorithm for DGP in the presence of obstacles is

needed.

REFERENCES

[1] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. The Traveling

Salesman Problem: A Computational Study. Princeton University
Press, 2006.

[2] A. Dumitrescu and J. S. B. Mitchell. Approximation algorithms for
tsp with neighborhoods in the plane. J. Algorithms, 48(1):135–159,
2003.

[3] M. Dunbabin, P. Corke, I. Vasilescu, and D. Rus. Data muling over
underwater wireless sensor networks using an autonomous underwater
vehicle. ICRA, pages 2091–2098, 15-19, 2006.

[4] G. Frederickson, M. Hecht, and C. Kim. Approximation algorithms for
some routing problems. SIAM Journal on Computing, 7(2):178–193,
1978.

[5] J. Ma, C. Chen, and J. Salomaa. mwsn for large scale mobile sensing.
J. Signal Process. Syst., 51(2):195–206, 2008.

[6] J. S. B. Mitchell. A ptas for tsp with neighborhoods among fat regions
in the plane. In SODA ’07, pages 11–18, 2007.

[7] R. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: modeling and
analysis of a three-tier architecture for sparse sensor networks. Ad

Hoc Networks, 1(2–3):215–233, 2003.
[8] O. Tekdas, J.H. Lim, A. Terzis, and V. Isler. Using mobile robots

to harvest data from sensor fields. IEEE Wireless Communications,
2008. Accepted to the Special Issue on Wireless Communications in
Networked Robotics.

[9] Y. Tirta, Zhiyuan Li, Yung-Hsiang Lu, and S. Bagchi. Efficient
collection of sensor data in remote fields using mobile collectors.
ICCCN, pages 515–519, Oct 2004.

[10] B. Yuan, M. Orlowska, and S. Sadiq. On the optimal robot routing
problem in wireless sensor networks. IEEE Trans. on Knowl. and

Data Eng., 19(9):1252–1261, 2007.

3873

