
Robust and Reversible Self-Reconfiguration

Ulrik P. Schultz, Mirko Bordignon, Kasper Stoy.

Abstract— Modular, self-reconfigurable robots are robots that
can change their own shape by physically rearranging the
modules from which they are built. Self-reconfiguration can be
controlled by e.g. an off-line planner, but numerous implemen-
tation issues hamper the actual self-reconfiguration process: the
continuous evolution of the communication topology increases
the risk of communications failure, generating code that cor-
rectly controls the self-reconfiguration process is non-trivial,
and hand-tuning the self-reconfiguration process is tedious and
error-prone.

To address these issues, we have developed a distributed
scripting language that controls self-reconfiguration of the
ATRON robot using a robust communication scheme that
relies on local broadcast of shared state. This language can
be used as the target of a planner, offers direct support for
parallelization of independent operations while maintaining
correct sequentiality of dependent operations, and compiles to a
robust and efficient implementation. Moreover, a novel feature
of this language is its reversibility: once a self-reconfiguration se-
quence is described the reverse sequence is automatically avail-
able to the programmer, significantly reducing the amount of
work needed to deploy self-reconfiguration in larger scenarios.
We demonstrate our approach with long-running (reversible)
self-reconfiguration experiments using the ATRON robot and
a reversible self-reconfiguration experiment using simulated
MTRAN modules.

I. INTRODUCTION

Modular robotics is an approach to design, construction
and operation of robotic devices aiming to achieve flexi-
bility and reliability by reconfigurable assembly of simple
subsystems [1]. Robots built from modular components can
potentially overcome the limitations of traditional mono-
lithic systems by rearranging their physical configuration
on a need basis, a process known as self-reconfiguration,
and by replacing unserviceable parts without disrupting
the system’s operations. Another potential advantage is the
cost-effectiveness over more conventional robots, achieved
through large-scale production of simpler, identical modules.
This dictates economic and space constraints on both the me-
chanical and electronic design of the module units, favoring
control hardware centered around simple microcontrollers
and, in general, resource constrained embedded devices and
dedicated hardware.

Self-reconfiguration is however difficult to implement in
practice: the operations required to rearrange the modules
from one physical shape to another must be determined, and
the physical modules must correctly execute this sequence of

This work was supported by the Danish Council for Technology and
Innovation.

The authors are with the Modular Robotics Lab, Maersk Mc-Kinney
Moller Institute, Faculty of Engineering, University of Southern Denmark,
Denmark. {mirko,kaspers,ups}@mmmi.sdu.dk

operations. The former problem is key to self-reconfiguration
and has been dealt with in the context of numerous different
robotics systems [2], [3], [4], [5], [6], [7], [8]. The latter
problem is the subject of this paper; it is in principle easy
to solve but in practice involves many difficulties: real-
world modules may have partial failures in their neighbor-
to-neighbor communication abilities and may spuriously
fail during the self-reconfiguration sequence. Moreover, the
actual software implementation of the self-reconfiguration
sequence is non-trivial. Even if the implementation is au-
tomatically generated by a planner, subsequent manual opti-
mizations such as parallelization of operations [9] are non-
trivial and significantly complicate the implementation since
a partial ordering of self-reconfiguration operations typi-
cally must be maintained. As modular, self-reconfigurable
robotic systems mature and gradually move into real-world
applications 1, we believe the issue of robustness of self-
reconfiguration will become more critical.

We are interested in enabling the programmer to quickly
and reliably describe precise self-reconfiguration sequences
that execute robustly on unreliable hardware. To this end,
we have implemented a distributed scripting language that
can execute self-reconfiguration sequences on the ATRON
modular robot [10]. This scripting language is an extension
to the DynaRole language [11] but provides a number of sig-
nificant improvements. First, self-reconfiguration sequences
are concisely described and compile to a robust and efficient
implementation based on a distributed state machine. Sec-
ond, dependencies between operations are explicitly stated
allowing independent operations to be performed in parallel
while maintaining an ordering between dependencies that are
dependent on each other. Third, the language is reversible
meaning that for any self-reconfiguration sequence the re-
verse sequence is automatically generated, which depen-
dent on physical constraints makes any self-reconfiguration
process described in the language reversible. We demon-
strate the effectiveness of our approach with long-running,
reversible self-reconfiguration experiments using physical
ATRON modules and a reversible self-reconfiguration ex-
periment using simulated MTRAN modules [2]. Reversible
self-reconfiguration can be used in many cases since a reverse
sequence often is just as useful as the forward sequence.
For example, reversibility significantly reduces the amount
of work needed to deploy robots in larger scenarios where
self-reconfiguration is used to adapt to the environment. We
note that previous work with the DynaRole language used

1A trend witnessed and further stimulated by events such as the ICRA
2008 Planetary Contingency Challenge.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5287

Fig. 1. An ATRON module (left) and various assembled structures (right)

the DCD virtual machine running on the physical modules
as target [11]; in this paper we use a dedicated back-end to
the compiler that generates either a TinyOS component or an
ANSI C implementation. Robust distribution of bytecode and
explicit support for blocking on split-phase operations would
be required to use the DCD-VM but are not yet supported
(see future work in Sect. VII for details).

The rest of this paper is organized as follows. First,
Sec. II provides background information on the ATRON
self-reconfigurable robot. Then, the main contribution is
presented two parts: first Sec. III presents our embedded
software platform for robust self-reconfiguration followed by
Sec. IV which presents our high-level language and describes
how it compiles to our target platform. The effectiveness of
our approach is documented by the experiments in Sec. V.
Last, we compare our contribution to related work in robotics
and reversible computing (Sec. VI), and conclude with an
overview of intended future work (Sec. VII). Our running
example throughout the paper is self-reconfiguration of the
ATRON robot from a flat “8-like” shape to a car shape, both
shown in Fig. 1 along with a snake shape.

II. BACKGROUND: THE ATRON ROBOT

The ATRON self-reconfigurable modular robot (Fig. 1)
is a 3D lattice-type system [10]. Each unit is composed
of two hemispheres which rotate relatively to each other,
giving the module one degree of freedom. Connection to
neighboring modules is performed by using its four actuated
male and four passive female connectors, each positioned
at 90 degree intervals on each hemisphere. The likewise
positioned eight infrared ports are used to communicate
among neighboring modules and to sense distance to nearby
objects. Two Atmel ATMega128 micro-controllers (one per
hemisphere) linked by an RS-485 serial connection control
the hardware. Like most of the other proposed modular
robotic systems, the ATRON on-board processing units are
severely constrained in order to keep the system simple and
potentially cost-effective by mass production: program and
data memories are respectively in the order of tens and units
of KBytes, while clock is within the ∼20 MHz range and
further features common in conventional computers like a
memory management unit (MMU) are absent.

Since the extreme simplicity of the control hardware and
its scarce resources prevent system designers from relying
on the usual methodologies when engineering the software

subsystem, we adopted techniques common in other domains
sharing the same constraints (e.g. sensor networks). The
resulting low-level software implementation for the ATRON
modules, described in more detail in [9], [11], [12], provides
the foundations over which we developed the robust ap-
proach to self-reconfiguration, described in the next section.

III. ROBUST SELF-RECONFIGURATION

We define robust self-reconfiguration as a self-
reconfiguration process that can tolerate partial hardware
failure and still produce the correct target configuration.
Concretely, in the context of this paper we are interested
in an approach that tolerates variable running times for
operations, partial communication failure, and physical reset
of modules; the latter implicitly includes replacing a module
with a new one in the same physical state. Moreover, the
approach should allow parallel operations without violating
sequential constraints (this is non-trivial given that parallel
operations may have variable running times). Note that
we are interested in an approach that enables precise
control over the self-reconfiguration process for physical
modules similar in scale to the ATRON robot, as opposed
to e.g. a probabilistic approach that provides robustness
through redundancy. We now describe the general design
of our approach to robust self-reconfiguration followed by
details on the communication protocol, how module reset is
handled, and how the state machine is implemented.

A. General design

We implement robust self-reconfiguration using a dis-
tributed state machine where each module contains a com-
plete implementation of the state machine but only executes
those states that are associated with the address of the mod-
ule. The address is simply an integer that for example can
be assigned using the preprogrammed internal address of the
module or more generally can be assigned based on a number
of predicates like we do in this paper (see Section IV). The
state machine transfers control between modules by globally
sharing the active state and the address of the module that
should execute the state; the state sharing is done using a
robust communication protocol described later. A fragment
of the source code of the state machine for the “8 to car”
self-reconfiguration is shown in Fig. 2. When the global state
received by a module is addressed to the module, the local
active state is updated to dispatch to the appropriate action.
All operations are at this level non-blocking and hence issue
a break after starting a long-running operation, to ensure
responsiveness of other tasks such as sharing the global
state. The state machine could be written manually using
the techniques described in this section, but we prefer to
generate the implementation automatically, as described in
the next section.

Given a protocol for globally sharing the state, a dis-
tributed state machine that uses a single state can trivially be
used to implement a sequential self-reconfiguration process.
To implement parallel operations we use the concept of a
pending state which is a state that is still actively executing

5288

switch(state) {
case 1: /* Module M0 */
call distState.addPendingState(1);
call Connector.retract[CONNECTOR_0]();
state = 2;
break;

case 2:
call distState.sendState(4,3);
state = 3; /* fall-through */
case 3:
if(call Connector.get[CONNECTOR_0]()

!= MALE_CONNECTOR_RETRACTED) break;
call distState.removePendingState(1);
state = 255; /* inactive state */
break;

case 4: /* Module M3 */
call Connector.retract[CONNECTOR_4]();
state = 5;
break;

case 5:
if(call distState.hasPendingStates()) break;
if(call Connector.get[CONNECTOR_4]()

!= MALE_CONNECTOR_RETRACTED) break;
state = 6; /* fall-through */
case 6: /* Module M3 */
call distState.addPendingState(6);
rotateFromToBy(0,324,FALSE,150);
state = 7;
break;

Fig. 2. nesC fragment of the distributed state machine for “8 to car”
(automatically generated)

an operation while the global active state advances. The
set of pending states is globally shared and maintained, so
that when a module starts or completes a pending state this
information is propagated to the other modules of the robot.
Thus, to implement a sequential operation that executes after
all parallel operations have completed, a given state can
wait for the set of pending operations to be empty. This
approach does not generally support dependencies between
independently executing sequences of actions, e.g. execute
S1;S2 sequentially but in parallel with S3;S4 that also exe-
cute sequentially. In practice this restriction is not a problem
for the self-reconfiguration scenarios we are studying as
they involve a fairly small number of physical modules;
supporting unrestricted dependencies is future work.

The handling of pending states can be seen in the source
code fragment of the distributed virtual machine shown in
Fig. 2. Here, state 1 on module M0 starts a pending operation,
adds 1 to the set of pending states, and transitions to state
2 which transfers control to state 4 on module M3. State 4
on module M3 performs a blocking operation: the operation
is started but execution of the state machine only continues
to state 6 after the operation has completed and there are no
more pending states and (this is checked in state 5). Note
that each module performs operations such as updating the
state on a copy of the global state and only synchronizes the
local and global state when it transfers control to another
module or starts or completes pending states.

Local state G0 = (s0, a0, P0)
Incoming state G1 = (s1, a1, P1)

}
Resulting state G2

G2 =

 (s0, a0, {p ∈ P0|p > s1 ∧ p ∈ P1}, s0 > s1

(s0, a0, P0 ∩ P1), s0 = s1

(s1, a1, {p ∈ P1|p > s0 ∧ p ∈ P0}, s0 < s1

Fig. 3. Global state merge function. Let Gi = (si, ai, Pi) denote a copy
of the global state where si is the currently active state, ai is the address
of the active module, and Pi is the set of pending states. Let G0 be the
local copy of the global state on a module, G1 be the incoming global state
being received over the network, and G2 be the resulting local state which
will be propagated to all neighbors of the module.

〈state,address,pending〉
M0 M3

Initial state 〈1, 0, {}〉 〈1, 0, {}〉
1: M0 retract ⇒ 〈2, 0, {1}〉 〈1, 0, {}〉
2: M0 transition ⇒ 〈4, 3, {1}〉 〈1, 0, {}〉

State propagate ⇒ 〈4, 3, {1}〉 〈4, 3, {1}〉
4: M3 retract ⇒ 〈4, 3, {1}〉 〈5, 3, {1}〉

State propagate ⇒ 〈5, 3, {1}〉 〈5, 3, {1}〉
3: M0 complete ⇒ 〈5, 3, {}〉 〈5, 3, {1}〉

Pending propagate ⇒ 〈5, 3, {}〉 〈5, 3, {}〉
5: M3 continue ⇒ 〈5, 3, {}〉 〈6, 3, {}〉

Fig. 4. Global state sharing for the “8 to car” example

B. Communication protocol

Global sharing of state is central to the robustness prop-
erties of our approach to self-reconfiguration. First, global
sharing of state circumvents partial communication failure,
since if there is a communication path between two modules
information will eventually propagate between the two mod-
ules. Second, global sharing of state helps to tolerate reset of
individual modules since the state of the individual module
can be restored from the neighbors; a more detailed analysis
of tolerating module reset can be found below. All com-
munication between modules is performed using idempotent
messages, meaning that they can simply be transmitted
repeatedly throughout the self-reconfiguration process, which
increases tolerance towards unstable communication where
only a small percentage of messages get through.

Our communication protocol is designed to share the
active state, the address of the active module, and the set
of pending states using idempotent messages. The set of
pending states grows and shrinks as pending operations are
added and complete. Each module continuously broadcasts
packets that contain the local copy of the global state and is
responsible for merging copies of the global state received
over the network. Updates are always made to the local
copy: after completing an operation a module can update
the local copy of the active state and active module address
(according to the state machine transition) and update the
local set of pending states by adding or removing elements.
An update is propagated throughout the module structure
by the continuous transmission of local state to neighboring

5289

modules that in turn merge their local state with the incoming
updated state. The merge function is shown in Fig. 3. The
two key properties that we exploit are (1) that a pending
state p0 added at an active module M0 in active state s0 is
always added before the active state is propagated to some
other module M1, and (2) the active state s1 propagated
to the other module M1 is greater than p0. This implies
that when merging “older” incoming global states which
have a lower active state, removal of pending states should
only be taken into account for those pending states that
the incoming global state could have known about, that is,
those pending states that are lower than the active state of
the incoming global state. The inverse relation holds for
merging “newer” incoming global states which have a higher
active state. A key property of this merge function is that
removal of pending states can propagate along the same path
as the active state is being transferred, improving tolerance
towards partial failure of communication in comparison to,
for example, an algorithm based on first reaching consensus
over the global active state. Such an algorithm would require
the newer state to be propagated back for the resolved
pending states to be appended and then taken into account.
This communication scheme is illustrated in Fig. 4 for the
first few steps of the “8 to car” self-reconfiguration of Fig. 2.
Module M0 starts a pending operation which module M3 waits
for after having performed an operation. The global state
sharing could be done in numerous other ways; we consider
the evaluation of alternative approaches to be future work.

C. Module reset

Numerous kinds of hardware and software faults can occur
during a self-reconfiguration sequence; we are concerned
with a specific fault, namely spurious reset of a module
either due to hardware or software errors. Using our shared
state approach, a module that is not currently performing an
operation can trivially tolerate a reset in the middle of a self-
reconfiguration sequence. The state will be restored from the
neighbors, and if the module was to perform the next action
the global state will simply not be advanced until the module
is ready and starts to execute this state. A more critical case
is reset of a module that is in the middle of performing
an operation. Such a module can in many cases be reset,
but only when all API operations are idempotent, which is
the case for e.g. ATRON. Specifically, we use idempotent
operations such as “extend connector” or “rotate to position
324” and such operations will under normal circumstances
simply complete when power is restored and the global state
is propagated to the module.

Reset of a module that is performing a pending operation
requires special support: the state of the module will after
restarting be reset to the global state which is higher than
the pending state. Due to time constraints we have not yet
implemented restart of pending operations in our system, but
the following approach shows that it is feasible and likely
to require just a small incremental improvement over our
existing implementation. Each module locally keeps track of
the pending states that it has started; this information will

be erased after a reset which can be used to reenter the
pending state when required: by combining the local set of
pending states that have been started with the information
of what states are globally pending and what pending states
a given module is responsible for completing, a module can
detect the situation where it is responsible for a pending state
but has not removed it from the global state because it was
stopped in the middle of the operation. Simply reentering the
pending state will in many cases cause the pending operation
to complete and hence provide the desired robustness.

D. Implementation

Due to the necessarily simple design of the ATRON
hardware, communication among neighboring modules can
be heavily constrained and its performance can drop sig-
nificantly, as the four communication channels on each
hemisphere rely on a single multiplexed UART and that
furthermore, given the half duplex nature of the infrared
channel, packet collisions can easily happen. While we are
exploring other solutions to improve over this situation [13],
at the moment we rely on compile-time virtualization of
the hardware [14] and address the low communication per-
formance using a local continuous broadcast with a simple
random desynchronization. As outlined, the communication
protocol is explicitly designed to support this form of
redundant communication as the packets are idempotent
and thus multiple receptions of the same message do not
halt or disrupt in other ways the distributed state machine
embodying the self-reconfiguration process.

Concretely, the implementation is structured as two com-
ponents: a state machine which is specific to the self-
reconfiguration sequence and a state sharing component
that maintains the shared global state, including the pend-
ing states. When automatically generating a state machine
implementation, as is done in the next section, only the
state machine component needs to be generated. As a side
note, we mention that having precise control of whether an
operation should block or execute in parallel but with a signal
upon termination significantly simplifies the implementation
of blocking and pending operations: our TinyOS based
implementation fully supports this semantics [9], and we are
working on the integration of similar features in our virtual
machine-based runtime implementation [11].

IV. REVERSIBLE SELF-RECONFIGURATION

The distributed state machine design described in the pre-
vious section provides robust self-reconfiguration with safe
parallel operations. Manual implementation of such a state
machine is however tedious and error-prone: the association
between modules and states must be maintained, blocking
operations must be inserted where needed but without ren-
dering the state sharing unresponsive, and pending states
must be handled correctly. The state machine implementation
could be automatically generated from a planner, but each
implementation of a planner would then need a carefully en-
gineered code generator to correctly generate code matching
the state machine design. Moreover, manual optimizations

5290

sequence eight2car {
M0.Connector[$CONNECTOR_0].retract() &
M3.Connector[$CONNECTOR_4].retract();
M3.Joint.rotateFromToBy(0,324,false,150) ;
M4.Joint.rotateFromToBy(0,108,true,150);
M4.Connector[$CONNECTOR_0].extend() &
M1.Joint.rotateFromToBy(0,324,false,150) &
M6.Connector[$CONNECTOR_2].retract();
M4.Joint.rotateFromToBy(108,216,true,150) &
M6.Joint.rotateFromToBy(0,108,true,150);
M0.Connector[$CONNECTOR_0].extend();
M6.Connector[$CONNECTOR_6].retract();
M0.Joint.rotateFromToBy(0,324,false,150) &
M1.Joint.rotateFromToBy(324,0,true,150);
M0.Joint.rotateFromToBy(324,0,true,150);
M5.Connector[$CONNECTOR_0].extend() &
M2.Connector[$CONNECTOR_4].extend() &
M1.Connector[$CONNECTOR_4].extend();
M4.Connector[$CONNECTOR_0].retract();
M3.Connector[$CONNECTOR_6].retract();
M1.Joint.rotateFromToBy(0,108,true,150) &
M3.Joint.rotateFromToBy(324,0,true,150);
M1.Connector[$CONNECTOR_6].extend();
M3.Connector[$CONNECTOR_0].retract() &
M3.Connector[$CONNECTOR_2].retract();
M1.Joint.rotateFromToBy(108,216,true,150);

}

Fig. 5. DynaRole sequence describing the “8 to car” self-reconfiguration
sequence

such as parallelization would require the programmer to
manually modify the state machine implementation, which
could lead to programming errors. To resolve these issues, we
have implemented a distributed scripting language that can
be used directly by the programmer to quickly and concisely
specify self-reconfiguration sequences or alternatively can be
used as code generation target by a planner. Furthermore,
due to the high-level nature of the language, reverse self-
reconfiguration sequences can be automatically generated
from the usual forward ones. We now describe this language
in more detail, first the syntax and semantics, then the
compilation process, and last the reversibility and generality.

A. Syntax and semantics

We have designed and implemented our distributed script-
ing language as an extension to the DynaRole language [11].
In the DynaRole language roles are used to encapsulate sets
of behaviors that should be activated on specific modules
in a structure. The assignment of roles is declarative and
is used as a basis for dynamically updating behaviors in
a running system using a virtual machine approach. Self-
reconfiguration however concerns multiple tightly coordi-
nated modules performing a number of operations, which
is difficult to encapsulate using the concept of a role. As
an alternative, we have implemented a new construct, the
sequence which is a number of operations that are executed
across a number of modules. The concept of a role is still
used to identify which modules perform what operation,
although that topic is not investigated in detail in this paper.

As a concrete example, consider the sequence shown

M.Connector[n].retract()
retracts connector number n (releasing a connected module, if any).

M.Connector[n].extend()
extends connector number n (connecting to an appropriately posi-
tioned module, if any).

M.Joint.rotateFromToBy(f ,t,d,s)
rotates the main joint from f degrees to t degrees in direction t at
speed s (behavior is undefined if the joint is not at f when starting).

TABLE I
THE DYNAROLE ATRON API, SELECTED OPERATIONS

in Fig. 5 which describes the complete “8 to car” self-
reconfiguration process. Each statement is prefixed with a
label indicating what module is executing the statement, e.g.
M0 is used to indicate a specific module. Following the label
is a call to the ATRON API, for example controlling the
connectors or the main joint; see Table I for details. Note that
the rotation call has been augmented with an extra argument
to facilitate reversing the program, as described later.

Each statement is terminated either with a semicolon
“;” meaning sequential execution (the next statement is
dependent on this operation) or an ampersand “&” meaning
parallel execution (the next statement is independent of this
operation), similarly to e.g. UrbiScript [15]. A sequence
of parallel statements are considered independent, that is,
physically unconstrained, and may be executed in any order
but must all be completed before the next sequential exe-
cution point. As an example, consider the first four lines
of the “8 to car” sequence which indicate that modules M0

and M3 can open their connectors in parallel whereas the
rotation of modules M3 and M4 must be done sequentially
and must only take place after both connectors have opened.
We note that nesting of sequential statements inside parallel
statements across multiple modules is not currently supported
(as described earlier this feature is not supported by the
current state machine design).

The labels that indicate what module should execute a
given statement are defined using roles, which again are
defined using logical predicates on the local state and the
context of each module. (The context is defined as the
state of the immediate neighbors.) In this paper we for
simplicity only use a local predicate on the internal ID
of the module which is programmed when flashing the
module. For concrete examples of more general predicates,
see Bordignon et al [11].

B. Compilation process

We have implemented a backend for the DynaRole com-
piler that can generate either a nesC implementation that ex-
ecutes in the TinyOS-based environment described in Sec. II
or alternatively an ANSI C implementation that can execute
in the USSR simulation environment [16]. Concretely, the
compiler generates an implementation of the distributed
state machine described in Sec. III and assigns the module
address based on evaluating the role requirement predicates.
The generic parts of the state machine (state management,
communication, etc.) are generated using a simple template-

5291

based code generator. The sequence implementation is used
to generate the body of the state machine, one statement at a
time. For each statement, a number of states are generated,
depending on whether the statement is parallel or sequential.

• For a parallel statement a state S1 is generated that adds
S1 to the set of pending states, executes the operation(s)
designated by the statement, updates the global state
to the state of the next statement S3, and then and
locally transitions to state S2. The state S2 monitors
the pending operation and updates the global state to
delete it when the operation completes.

• For a sequential statement (including the last of a
sequence of parallel statements) a state S1 is gener-
ated that executes the operation(s) designated by the
statement and then transitions to state S2. The state S2

waits for all pending states to be deleted and for the
operations of the statement to be terminated after which
it transitions to the state of the next statement S3.

The transition between two statements that are on the same
physical module is, when possible, simply performed directly
without updating the global state.

C. Reversibility

Given a distributed sequence written in DynaRole it is
straightforward to generate the reverse sequence: the ordering
of statements must be reversed while retaining dependence
relations between statements, and each statement must in
itself be reversed. Reversal of the ordering of the statements
currently relies on the semantics that a sequential dependence
between two statements requires all parallel statements to
have completed before the next sequential statement can
execute. This implies that the statements can be ordered in re-
verse while retaining the same separator between each given
pair of statements. For example, a sequence of statements
S1&S2;S3; reverses to S3;S2&S1;. Reversal of an operation
is straightforward for the API operations currently supported
in DynaRole sequences: retract becomes extend and vice
versa, whereas rotateFromToBy simply swaps the from and
to angles and reverses direction; see related work in Sec. VI
for a discussion of reversal of non-API operations.

The programmer explicitly defines and invokes reversed
sequences, for example the sequence shown in Fig. 5 is
reversed using the following declaration:

sequence car2eight = reverse eight2car;

After this declaration the name car2eight can be used like
any other sequence name.

D. Generality

We believe that DynaRole could be used to program
reversible self-reconfiguration sequences for most if not all
modular self-reconfigurable robot systems, although not all
sequences will necessarily be reversible. Specifically, given a
self-reconfigurable robot that can change from configuration
C0 to Cn through a number of intermediate configurations
Ci and where each step from Ci to Ci+1 can be reversed
bringing the robot back to configuration Ci, then the entire

self-reconfiguration sequence is reversible using DynaRole.
Not all operations can be reversed on all robots, for example
due to disconnection of the structure, gravity, or a change
in the environment; similarly a connector mechanism that
requires different physical movements to connect and dis-
connect might not be reversible due to motion constraints.
Thus, programming reversible self-reconfiguration sequences
requires the programmer to only use reversible steps and
moreover might require the design of a high-level API that
lets the programmer work in terms of abstract macro-steps
(e.g., “connect” and “disconnect” operations for a connector
mechanism requiring different physical movements).

The program reversal performed by the DynaRole com-
piler works by reversing each API call. For this reason, the
compiler provides a simple plugin model allowing reversal of
different APIs to be implemented. Concretely, the DynaRole
compiler currently supports ATRON and MTRAN APIs.

V. EXPERIMENTS

We now the experiments performed to validate the claims
made in this paper. Three experiments are performed with
physical ATRON modules and one experiment is performed
with simulated MTRAN modules.

A. Physical ATRON modules

The first three experiments are performed using physical
ATRON modules running code generated by our compiler
from scripts written in DynaRole, and are illustrated in the
video accompanying the submission. The first experiment
serves as an overall documentation that our compiler works,
can generate reverse sequences, and that it enables a long-
running self-reconfiguration process. The second experiment
provides a verification of selected robustness claims. The
third experiment puts the self-reconfiguration sequence that
we considered so far in the paper, the so called “8 to car,”
in the context of a more general reconfiguration process,
showing the generality of our approach.

The first experiment is running the “8 to car” self-
reconfiguration sequence implemented by the program of
Fig. 5. The forwards self-reconfiguration sequence runs first
followed by the reverse sequence, after which the process is
automatically restarted. Over three experiments the complete
forwards-backwards self-reconfiguration sequence completes
every time (no restarting) and with restarting it ran the com-
plete forwards-backwards sequence three times after which a
hardware failure in a module caused the process to terminate;
the last sequence is documented by the accompanying video.
This experiment thus demonstrates that our compiler can
generate not only correct forwards-executing code but also
correct backwards-executing code, in both cases correctly
handling dependencies between operations. Moreover, given
that the ATRON modules are prone to hardware-induced
communication failures, the fact that the “8 to car” sequence
completes demonstrates the robustness of our approach.

The second experiment investigates the robustness claims:
during the “8 to car” sequence we power off a module
before it receives the active state (Fig. 7) and power off

5292

Fig. 6. Self-reconfiguration from car to snake; the self-reconfiguration process subsequently reverses and returns the robot to the car shape (not shown)

(a) (b) (c) (d) (e)

Fig. 7. Robustness towards inactive module begin reset: (a) initial configuration, (b) manually powering off module, (c) sequence blocks, waiting for
inactive module, (d) module powered on again, (e) sequence continues

Fig. 8. Left: robustness towards an active module being reset, the high-
lighted module is reset while opening a connector. Right: robustness towards
failing communication demonstrated by manually blocking communication
paths in turn.

a module while it is performing a connection operation
(Fig. 8, left). In both cases the self-reconfiguration process
continues when the module is powered on again. Moreover,
we also physically obstruct the communication paths one at
a time between the module starting the self-reconfiguration
process and the module taking the subsequent step, and in all
cases does the self-reconfiguration continue (Fig. 8, right).
These experiments are also documented by the accompany-
ing video. Thus, we have demonstrated a tolerance towards
certain kinds of partial hardware failures in modules.

Last, the third experiment extends the “8 to car” sequence
used as a running example throughout the paper by first
performing the reverse “car to 8” transformation and then
chaining a further transformation from the “8” shape to a
snake-like configuration, then back again to the original car.
The first half of the self-reconfiguration sequence is shown
in Fig. 6, we refer to the accompanying video for the reverse
sequence. This last example of a reconfiguration between two
ATRON morphologies that are often used for locomotion
is illustrative of the general usefulness of an expressive,
efficient and reliable means for self-reconfiguration in a more
general context.

B. Simulated MTRAN modules

The last experiment is performed using simulated MTRAN
modules, and serves to illustrate the generality of our ap-
proach. The simulation is performed using USSR, a generic
simulator supporting several different modular robots, includ-

Fig. 9. Reversible reconfiguration with simulated MTRAN modules:
displacing a module from the left to the right is manually programmed
whereas the reverse self-reconfiguration is automatically derived.

ing the ATRON and MTRAN robots [16]. The experiment
is a simple reconfiguration of a snake where a module is
moved from one end of the robot to the other, see Fig. 9; as
was the case for the ATRON robot the reverse sequence is
automatically derived.

VI. RELATED WORK

Off-line planning of self-reconfigurable robots has been
studied for a large number of different robotic systems [3],
[7], [8], [17], [18]. These approaches are largely comple-
mentary to our work: any off-line planner (for the ATRON
robot) could use our distributed scripting language as output
and would thus benefit from the robustness and reversibility.
The runtime execution of the self-reconfiguration process on
physical robots is treated in some cases; Brandt for example
uses a token-based approach where a single token that is
explicitly routed through the module structure is used to
represent the active module [19]. This approach is efficient
but less robust since it does not tolerate partial failures.2

Dynamic planning approaches typically address the run-
time execution of the self-reconfiguration process [2], [4],
[5], [6]. These approaches however typically assume working
two-way communication; this assumption is essential for
on-line algorithms that self-reconfigure the robot depending
on the current shape but is not required in our case since
self-reconfiguration is carried out according to an off-line
plan. Robustness is explicitly investigated by Yoshida et al

2Modifying the implementation generated by Brandt by replacing the
token-based approach with the global state sharing approach was experi-
mentally determined to provide a massive advantage in terms of robustness,
which was the initial inspiration for our work.

5293

using the Fracta system, but again two-way communication
is assumed using a synchronization algorithm, so partial
failures in a module would presumably result in the module
being rejected from the robot [20], [21].

General-purpose programs can be made reversible, as
demonstrated by Tetsuo et al for the general-purpose high-
level language Janus [22]. Janus allows general algorithms
such a Fast-Fourier Transform to be implemented and auto-
matically reversed. This approach is much more general than
our highly restricted, distributed scripting language which
for example does not have a representation of state and does
not have control structures. Nevertheless, as demonstrated by
Tetsuo et al the issue of reversing state and control has been
solved in general, and the same principles could be used in
our language. We note that the work by Tetsuo et al has
been highly inspirational for making a reversible language
for self-reconfiguration.

VII. CONCLUSION AND FUTURE WORK

In this paper we have shown how a distributed scripting
language for self-reconfiguration can be compiled to run on
the physical ATRON modules while providing both robust-
ness towards partial failures and reversibility. Our system
provides a significant improvement in terms of robustness
compared to earlier efforts in our group, an improvement
which we attribute to the use of a set of diversified tools to
better address each aspect of the system, like specialized
programming techniques for resource-constrained devices
to provide a reliable runtime and high-level languages to
provide ease of use and expressiveness [12]. Moreover,
the explicit assumption that modules will exhibit partial
failures and our algorithms therefore must be designed to
deal with this situation was a key factor in approaching the
problem from what we believe is the right perspective: as the
mantra of modular robotics is to exploit physical redundancy
to allow for simple, cheap and possibly failing units, the
underlying software should follow this approach as well. We
expect that the use of these principles will enable even more
complex experiments with modular robots in the future.

The immediate future work includes overcoming the lim-
itations listed elsewhere in this paper. A central interest is
in a more complete integration with the DynaRole language
and DCD-VM, which we believe is central to enabling a
more agile and hence productive approach to working with
self-reconfiguration [12].

Acknowledgements: We would like to thank David
Brandt for providing the original source code for the “8 to
car” self-reconfiguration algorithm which was the starting
point for our implementation and moreover for providing
useful insights on self-reconfiguration planning.

REFERENCES

[1] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular Self-Reconfigurable Robot
Systems [Grand Challenges of Robotics],” IEEE Robot. Automat.
Mag., March 2007.

[2] E. Yoshida, S. Murata, H. Kurokawa, K. Tomita, and S. Kokaji,
“A distributed method for reconfiguration of a three-dimensional
homogeneous structure,” Advanced Robotics, no. 13, pp. 363–379,
1999.

[3] A. Pamecha, I. Ebert-Uphoff, and G. S. Chirikjian, “Useful metrics
for modular robot motion planning,” IEEE Transactions on Robotics
and Automation, no. 13, pp. 531–545, 1997.

[4] C. Ünsal, H. Kiliccöte, and P. K. Khosla, “A modular self-
reconfigurable bipartite robotic system: Implementation and motion
planning,” Autonomous Robots, no. 10, pp. 23–40, 2001.

[5] Z. Butler and D. Rus, “Distributed planning and control for modular
robots with unit-compressible modules,” The International Journal of
Robotics Research, no. 22, pp. 699–715, 2003.

[6] M. D. Rosa, S. Goldstein, P. Lee, J. Campbell, and P. Pillai, “Scal-
able shape sculpting via hole motion: Motion planning in lattice-
constrained modular robots,” in Proc. of the 2006 IEEE Int. Conf.
on Robotics and Automation (ICRA’06), 2006.

[7] K. Kotay and D. Rus, “Algorithms for self-reconfiguring molecule
motion planning,” in Proc. of the Int. Confe. on Intelligent Robots
and Systems (IROS’00), 2000.

[8] E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, and
S. Kokaji, “Motion planning of self-reconfigurable modular robot,” in
Proc. of the Int. Symp. on Experimental Robotics, 2000.

[9] M. Bordignon, L. Lindegaard Mikkelsen, and U. P. Schultz, “Im-
plementing Flexible Parallelism for Modular Self-Reconfigurable
Robots,” in Proc. Int. Conf. on Simulation, Modeling and Program-
ming for Autonomous Robots (SIMPAR’08), Venice, Italy, 2008.

[10] M. W. Jørgensen, E. H. Østergaard, and H. H. Lund, “Modular
ATRON: Modules for a self-reconfigurable robot,” in Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS’04), Sendai, Japan,
2004.

[11] M. Bordignon, K. Støy, and U. P. Schultz, “A Virtual Machine-based
Approach for Fast and Flexible Reprogramming of Modular Robots,”
in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’09), Kobe,
Japan, May 12-17 2009.

[12] M. Bordignon, D. J. Christensen, K. Støy, and U. P. Schultz, “Elements
of a Development Ecosystem for Modular Robot Applications,” in
Proc. of the Fourth Int. Workshop on Software Development and
Integration in Robotics (SDIR’09), Kobe, Japan, May 12 2009.

[13] D. Brandt, J. C. Larsen, D. J. Christensen, R. F. Mendoza Garcia,
D. Shaikh, U. P. Schultz, and K. Støy, “Flexible, FPGA-Based Elec-
tronics for Modular Robots,” in Proc. of the IROS’08 Workshop on
Self-Reconfigurable Robots & Systems and Applications, Nice, France,
September 22 2008.

[14] K. Klues, V. Handziski, D. Culler, D. Gay, P. Levis, C. Lu, and
A. Wolisz, “Dynamic Resource Management in a Static Network
Operating System,” Washington University in St. Louis, Tech. Rep.
WUCSE-2006-56, 2006.

[15] J.-C. Baillie, A. Demaille, Q. Hocquet, M. Nottale, and S. Tardieu,
“The Urbi Universal Platform for Robotics,” in Proc. SIMPAR’08
Wksh. on Standards and Common Platform for Robotics, Venice, Italy,
Nov. 3 2008.

[16] D. J. Christensen, D. Brandt, K. Støy, and U. P. Schultz, “A Unified
Simulator for Self-Reconfigurable Robots,” in Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS’08), France, 2008.

[17] D. Brandt, “Comparison of A∗ and RRT-connect motion planning
techniques for self-reconfiguration planning,” in Proc. of the 2006
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS’06),
Beijing, China, Oct. 2006, pp. 892–897.

[18] M. Asadpour, A. Sproewitz, A. Billard, P. Dillenbourg, and A. Ijspeert,
“Graph signature for self-reconfiguration planning,” in 2008 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS’08), September
2008, conference, pp. 863–869.

[19] D. Brandt, “Scalability and complexity of self-reconfigurable robot
control,” Ph.D. dissertation, The Maersk Institute, University of South-
ern Denmark, Sept. 2007.

[20] E. Yoshida, S. Murata, K. Tomita, H. Kurokawa, and S. Kokaji, “An
experimental study on a self-repairing modular machine,” Robotics
and Autonomous Systems, vol. 29, pp. 79–89, 1999.

[21] S. Kokaji, S. Murata, H. Kurokawa, and K. Tomita, “Clock synchro-
nization algorithm for a distributed autonomous system,” Journal of
Robotics and Mechatronics, no. 8, pp. 317–338, 1996.

[22] T. Yokoyama, H. B. Axelsen, and R. Glück, “Principles of a reversible
programming language,” in CF ’08: Proc. of the 2008 conference on
Computing frontiers. New York, NY, USA: ACM, 2008, pp. 43–54.

5294

