
A Lyapunov-stable, sensor-based model for real-time path-tracking

among unknown obstacles

Antonio Sgorbissa, Alessandro Villa, Andrea Vargiu, Renato Zaccaria

Abstract— The article proposes a feedback control system for
real-time navigation and obstacle avoidance that is made of two
components: (i) a sensor-based, real-time model that generates
and periodically updates the path on–line in order to avoid both
known and unforeseen obstacles, and (ii) a feedback-control
model that is capable of driving a unicycle vehicle along the
collision free path. The system has some unique characteristics,
among which it requires very few computational resources as
a consequence of its extreme simplicity. In spite of this, it
is formally demonstrated to be asymptotically stable, as well
as computationally efficient to be implemented in real-world
scenarios where obstacles are not known, and possibly move in
the environment.

I. INTRODUCTION

The article proposes a feedback control system for real-

time navigation and obstacle avoidance (see other approaches

to the problem in [4][5][6]) that is made of two components:

• Motion Planning, i.e., a sensor-based, real-time model

that generates and periodically updates the path on–line

in order to avoid both known and unforeseen obstacles

[8];

• Path Tracking, i.e., a feedback-control model that is

capable of driving a unicycle vehicle along the collision

free path.

Given two points in the Cartesian Space, also referred

to as start and goal, Motion Planning computes the most

promising path to the goal in order to avoid perceived

obstacles. If there is not an immediate danger of colliding

with an obstacle, the start and the goal are simply connected

through the shortest path: a straight line. Otherwise, during

motion, range sensor data returned by sonars or by a laser

scanner are used to periodically update the path to guarantee

safe navigation. To achieve this, differently from other ap-

proaches, the distance from obstacles is neither used to build

a local map, nor to deform the whole path as sometimes

proposed in literature [17][18][19][20]. The general idea is

that of artificially reducing or increasing the position error

(i.e., the distance to the reference straight path measured by

Path Tracking) through simple, real–time computations that

consider only obstacles in the immediate surroundings, thus

implicity defining a new path that is guaranteed not to collide

with the obstacles themselves.

Path Tracking allows to regulate to zero a) the distance

to the path, possibly taking into account the error purposely

added to avoid collisions with obstacles, as well as b) the

A. Sgorbissa, A. Villa, A. Vargiu, R. Zaccaria are with DIST, De-
partment of Communication, Computer and System Sciences, University
of Genoa, Via Opera Pia 13, 16145, Genoa, Italy. Corresponding Author
email:{antonio.sgorbissa}@unige.it.

difference between the vehicle’s orientation and the tangent

to the curve, and it is proven to be asymptotically stable. The

model is different from other models in literature [2] [3] [7]

in the following two points:

• only the distance D(x, y) between the vehicle and the

path is measured and fed to the controller, whereas most

approaches require to measure both the distance from

the path and the difference between the desired and the

actual orientation;

• even if the resulting path is not known a priori and

possibly changes in run-time depending on Motion

Planning, it is demonstrated that the resulting curve is

an analytic function in Cartesian Space described by

its implicit equation y − E(x) = 0, where E(x) is the

error which is artificially added in real-time by Motion

Planning to take into account deviations from the actual

path due to the presence of obstacles.

The system has some unique characteristics, both when

considering the two components separately and as a whole.

Motion Planning requires very few computational re-

sources, and for this reason it can be used in any kind of

unknown or changing environment, even by very simple

robots. This is mainly due to the fact that it reactively

updates the path using only local sensor information (see

[9][10][11][12][13][14][15]): reactive motion planning tech-

niques are known to be computationally more efficient

than global planning techniques, since the latter compute

a complete path to the goal and require a global model

of the environment (see [1] and the references therein).

However, this is not the only reason. With respect to other

path-deformation approaches [17][18][19][20], the proposed

model needs even less computational resources, since it

initially computes a straight path to the goal, but this path is

never really “deformed” to take into account surrounding

obstacles: in fact, this would require complex mathemat-

ical tools to represent the concept of a “deformed path”,

such as sampling the path at a sufficiently high resolution,

and moving the resulting vector of sample points in the

workspace to avoid intersections with obstacles. Instead,

obstacle avoidance is achieved by simply considering the

current position error (i.e., a single point in the path instead

of a vector of points), and by adding/deleting a scalar

quantity to/from such error according to a properly defined

strategy.

The fact that Path Tracking does not require to measure the

vehicle’s orientation is very important, since the orientation is

usually more affected by errors and more difficult to measure

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 2946

with exteroceptor sensors. An example is wall following:

the distance from the wall can be sensed through proximity

sensors (i.e., sonar, laser scanners, etc.) by considering raw

measurements alone (distance corresponds to the minimum

sensed range), whereas measuring orientation requires more

complex computations. Another example is GPS-based out-

door navigation: even if commercial devices return veloc-

ity (and hence heading information), this measurement is

accurate only when velocity is high, and therefore it turns

out not to be enough reliable for path tracking in a general

case. Gyroscopes have the problem of temporal drift, and

therefore they are not a reliable source of information in the

long term. Notice that – with a differentially driven unicycle

vehicle – even a small error in wheels encoders can produce

a significant error in orientation when moving at low speed.

For a deeper investigation, see also [21].

Section II describes general ideas; Section III considers

the problem of avoiding a single in-path stationary obstacle

modeled as an ellipse, and extends the previous case to

N obstacles; Section V describes an asymptotically stable

control law which drives a vehicle along the planned path;

finally, Section VI shows experimental results. Conclusions

follow.

II. MOTION PLANNING - GENERAL IDEAS

The following case is considered: a vehicle is following a

generic straight path when it senses an obstacle on its path

to the goal. The vehicle must be able to avoid the obstacle

in order to safely reach the goal.

Consider a Cartesian’s reference system: without loosing

generality, it is always possible to choose the X-axis as

lying along the vehicle path (a straight line). Under these

conditions the vehicle path can be written as y = 0.

In order to avoid the sensed obstacle, one could be tempted

to re-plan the whole path. However, a different approach can

be pursued; in particular, it is possible to define an error

function:

E = E(x) (1)

The error in (1) represents, for each point along the

X−axis, a safety distance from the reference straight path

that allows to avoid the obstacle. Consider, for example, an

obstacle modeled as a circle with radius R and center in

(xo, yo = 0), i.e., on the reference path (Figure 1). In this

case the minimum error function E(x) that guarantees to

avoid the obstacle has the expression:

E(x) = 0 x < xo − R or x > xo + R
E(x) = R sin(β(x)) xo − R ≤ x ≤ xo + R

(2)

where x is the vehicle’s position along the X-axis, and

β(x) = cos−1((x−xo)/R) is the angle between the X−axis

and the straight line connecting the obstacle center (xo, 0)
to the corresponding point along the obstacle’s boundary

(x,E(x)).

E(x) has the following properties:

Fig. 1. The reference path y = 0, a circular obstacle with radius R, and
the corresponding error function E(x).

Fig. 2. The reference path y = 0, an elliptic obstacle with axes a and b,
and the corresponding error function E(x).

• when x < xo − R or x > xo + R, E(x) lies on the

straight line;

• when xo−R ≤ x ≤ xo +R, E(x) lies on the obstacle’s

boundary;

• E(x) depends only on the current position of the vehicle

and on surrounding obstacles, and can be computed

in real-time through proximity sensors (e.g., a laser

rangefinder or ultrasounds).

• E(x) is a C1 piecewise curve with an analytical expres-

sion.

The general idea is that, for each x along the initial path,

Motion Planner calculates E(x) on the basis of sensor data.

This can be done by clustering data and computing the

corresponding bounding circle, or even by considering each

sensor reading as a separate obstacle, whose radius takes

into account the vehicle dimensions plus a safety distance.

Next, it ideally adds E(x) to the original straight path,

which practically corresponds to subtracting E(x) from the

positioning error in Path Tracking: the final effect is that,

when the robot is moving along the obstacle’s boundary, its

distance to the reference straight path is exactly D(x, y) =
E(x), but the positioning error after subtracting E(x) is

artificially set to zero.

Remark: since E(x) depends only on the current position

of the vehicle and on surrounding obstacles, it is particularly

suited to deal with moving or suddenly appearing obstacles:

there is never a waste of computational resources for re-

planning, since Motion Planning computes exclusively what

is needed here and now, without making any hypotheses on

what will happen in the close future.

2947

Fig. 3. The robot perceives the AB side of the obstacle.

III. THE OBSTACLE MODEL - CLUSTERING

The expression of E(x) in (1) has some limitations: it is

only piecewise C1 and it models obstacles as circles, which

can turn out to be not very efficient especially in cluttered

environments. To overcome these limitations, a slightly more

complex model is proposed, in which obstacles are modeled

as ellipses with center (xo, yo) in a Cartesian space (Figure

2):

(x−xo)2

a2 + (y−yo)2

b2
= 1 (3)

Without loosing generality, the ellipse main axes are

assumed to lie along the X− and Y −axis of the reference

frame, with a and b corresponding to their respective lengths.

The center (xo, yo) can be everywhere in the XY plane. It is

worth noticing that typical proximity sensors (e.g., ultrasonic

sensors or lasercanners) are able to measure the distance from

the surface of the obstacle rather than from its centre. To

understand how the coordinates of the obstacle center are

inferred starting from proximity data, consider Figure 3.

An obstacle ABCD with a rectangular shape intersects

the straight line connecting the start to the goal. The robot,

while approaching the obstacle, is able to perceive side

AB of the obstacle through the measurements returned

by a laserscanner. The raw laser measurements initially

appear as a cloud of small obstacles distributed along the

obstacle profile: in Figure 3 range measurements are shown

as ellipses, whose number is obviously much higher in the

real case (laser scanners have an angular resolution of at

least 2 raw measurements per degree). Consequently, it is

necessary to recursively cluster raw measurements in order

to interpret them as belonging to the same obstacle. To this

purpose, couples of neighbouring obstacles are recursively

considered, which allows to finally obtain – in case that

clustering conditions are met – a single obstacle whose

dimension is properly set to allow safe and smooth obstacle

avoidance. In particular, a couple of obstacles are clustered

if the following conditions hold:

Fig. 4. As the robot moves forward, it periodically updates the ellipse
center and E(x).

• the distance between two neighboring obstacles along

the Y -axis is not sufficient to allow the vehicle passing

between them;

• the distance between two neighboring obstacles along

the X-axis is not sufficient to allow the vehicle moving

back to the original path, once the first obstacle has

been avoided.

In Figure 3 the first rule is recursively applied, with the

final result that all smaller obstacles (corresponding to raw

laser measurements) are clustered to form a bigger ellipse

that contains the AB side of the obstacle. In order to avoid

it, the robot computes the center of the ellipse as well

as the corresponding error E(x), and starts moving along

the corresponding path. As the robot moves forward, the

BC side of the obstacle becomes visible as well: laser

scannner returns new measurments that, once again, can be

represented as small obstacles distributed along BC (Figure

4). The second rule above is recursively applied and the

smaller obstacles along BC are recursively clustered as well,

with the final result that the ellipse that initially enclosed

AB is enlarged in such a way as to contain BC as well.

The center of this ellipse and the error E(x) are updated

correspondingly. Finally, when the vehicle reaches a position

from where it can observe the entire obstacle side BC, the

resulting ellipse completely surrounds the obstacle ABCD,

thus allowing smooth and safe obstacle avoidance.

IV. MOTION PLANNING - COMPUTING THE ERROR

FUNCTION

To guarantee that the robot stay close to the obstacle’s

boundary while avoiding it, it seems reasonable to model

the error function E = E(x) as a Gaussian function, which

“bell-shaped profile” (see Figure 2) can be written in the

form:

2948

E(x) = q · e−
(x−xc)2

w2 (4)

To this purpose, it is necessary to choose the Gaussian

parameters q and w properly, in such a way that E(x) adheres

to the ellipse boundary as close as possible, while taking

safety distance into account.

In order to compute q, consider that it represents the

maximum function amplitude: i.e., x−xo = 0 ⇒ E(x) = q.

Since, when x − xo = 0, the vehicle must be far from

the obstacle center at least as much as the length b of

the corresponding axis, and the distance from the reference

straight path is equal to yo, it is possible to set

q = yo + b + sd · rd (−b − rd ≤ yo ≤ b + rd)
q = 0 (yo < −b − rd or yo > b + rd)

(5)

where rd is a safety distance that takes into account the

vehicle dimension, and sd is a gain that allows to in-

crease/decrease the relative importance of rd in (5).

Equation 5 assumes that the robot tries to avoid an obstacle

only when the latter intersects the reference straight path, i.e.,

when (−b−rd ≤ yo ≤ b+rd); moreover, this is always done

by increasing y, i.e., the robot always avoids the obstacle by

turning on its left. However, it would be more efficient to

properly choose the sign of q in such a way that it can either

be negative or positive, depending on which is the shortest

path to avoid the obstacle. In fact, if −b− rd ≤ yo ≤ 0, the

most promising path to avoid the obstacle can be found by

increasing y; if 0 < yo ≤ b + rd, the opposite is true. To

achieve this, it is necessary to introduce a function, i.e., an

expression of the sign of y:

sign(y) =

{

1 when y ≥ 0

−1 when y < 0
(6)

The first line in (5) becomes:

q = yo − sign(yo) · (b + sd · rd)
(−b − rd ≤ yo ≤ b + rd)

(7)

In order to compute w, consider that the robot must return

to the reference straight path y = 0 after having avoided the

obstacle, i.e., when x > xo + a. Since the Gaussian in (10)

never equals zero, the concept of “lying on the reference

straight path” should be meant as an approximation, which

can be expressed as a function of the robot dimension rd.

That is, after the robot has avoided the obstacle, it must hold:

|q| · e−
(x−xo)2

w2 ≤ 0.1rd
(8)

By solving (8) for x it holds:

x ≤ xo − w
√

ln |q|
0.1rd

x ≥ xo + w
√

ln |q|
0.1rd

(9)

Notice that the line y = 0.1rd should intersect the

Gaussian, in fact the following condition must be satisfied:

ln |q|
0.1rd

≥ 0 ⇒ |q| ≥ 0.1rd (10)

Fig. 5. Path Tracking by controlling the rotational speed u2.

Since the vehicle returns to the reference path after having

avoided the obstacle, only the second set of solutions is

significant. It is now possible to compute a proper value for

w such that:

xo + w
√

ln |q|
0.1rd

> xo + a (11)

By choosing w = a, (11) implies that

√

ln |q|
0.1rd

> 1 (12)

which holds whenever

|q| > e · 0.1rd ≈ 0.27rd (13)

The relation in (13) is always satisfied for q, given that

the gain sd in (10) is properly set. For example, if sd = 1.3,

(10) returns q = 0.3rd (or q = −0.3rd) even in the worst

case when yo = −b − rd (or yo = b + rd), i.e., when the

obstacle is “almost tangent” to the reference path. To adopt

a more conservative approach, it is finally set w = a + rd.

When more obstacles are detected by sensors which cannot

be clustered according to the conditions above, each obstacle

is modeled separately as an ellipse. In general, calculating

E(x) does not present more difficulties than the simpler case

in which only one obstacle is present: each single obstacle

in the workspace is considered as if it were the only one,

and a positioning error is consequently computed according

to (4). Next, all contributes are summed up. Formally, it can

be written:

E(x) =
∑N

k=1 qk · e
−

(x−xo,k)2

(ak+rd)2 (14)

where N is the total number of the surrounding obstacles

detected by sensors. As before, the path E(x) that takes

into account all obstacles is not planned a priori: instead,

it is computed only on the basis of the current position of

the vehicle and on surrounding obstacles, thus being able to

deal efficiently with obstacles that move, or which suddenly

appear and disappear from the field of view.

V. PATH TRACKING

In order to show how Path Tracking works, it is useful to

define a state vector x (Figure 5):

x
T = [x1 x2 x3] = [x y ϑ] (15)

2949

As usual, the unicycle kinematics can be described through

the following state equations:

ẋ1 = u1 cos x3

ẋ2 = u1 sin x3

ẋ3 = u2

(16)

where inputs u1 and u2 are – respectively – the translational

and the rotational velocities.

The control model is aimed at regulating to zero both

the distance D(x1, x2) between the vehicle’s position and

the path and the difference between the vehicle’s orientation

and the tangent to the path. In particular, it is necessary to

demonstrate the asymptotic stability of the system during

obstacle avoidance, i.e., when Path Tracking drives the

vehicle along a path defined by the function:

x2 = E(x1) (17)

Path Tracking is defined here as the problem of minimiz-

ing the distance D(x1, x2) along the Y -axis between the

vehicle’s position (x1, x2) and the curve defined in explicit

form in (17), that is:

D(x1, x2) = x2 − E(x1) (18)

Strictly speaking, D(x1, x2) is not the Euclidean distance

between (x1, x2) and the path, since it is always computed

along the Y -axis and hence it does not correspond to the

shortest distance. However, it still has some good properties

which make it appropriate for our purpose:

• D(x1, x2) is a scalar field.

• D(x1, x2) = 0 when (x1, x2) lies on the curve;

D(x1, x2) locally increases/decreases monotonically

depending on which side of the plane (x1, x2) is located

with respect to the curve.

From (18) it derives, by omitting to write the dependence

of D on (x1, x2):

Dx1
= ∂D

∂x1
= ∂E(x1)

∂x1

Dx2
= ∂D

∂x2
= 1

(19)

Where Dx1
and Dx2

are respectively the partial derivatives

of D with respect to x1 and x2.

It can be demonstrated that, in order to guarantee stability,

it is possible to set:

u1 = U1

u2 = K‖∇D‖(−D − d
dt

D) + d
dt

tan−1
(

−Dx1

Dx2

)

(20)

The rotational velocity u2 is given by a term proportional to

the distance plus a term which depends on the curvature of

the isocline in the current position.

The underlying idea is simple. Consider that, according

to (18), D is equal to the distance between the current

robot’s position and the path that allows obstacle avoidance.

The derivative of D with respect to time is referred to as

approaching velocity: in Figure 5, the approaching velocity

is negative, since the distance between the robot and the

path decreases in time. Notice that the actual approaching

Fig. 6. Simulation run 1

velocity d
dt

D can be increased by controlling x3, which – on

its turn – requires to operate on the rotational speed u2. In

particular (20) sets the rotational speed u2 as proportional

to the difference between a reference approaching velocity

ẋref = −D (i.e., computed as the inverse of the distance)

and the actual approaching velocity d
dt

D. The reference

approaching velocity has the following properties:

• when x2 = E(x), ẋref = 0 as well (the robot lies on

the path);

• when x2 > E(x), ẋref = −D is negative (heading

downward in Figure 5);

• when x2 < E(x), ẋref = −D is positive (heading

upward in Figure 5).

The translational speed u1 is a free variable and can have

a generic profile U1(t) (given that it satisfies kinematics and

dynamics constraints). In the following it is assumed that

U1(t) = U1 is constant.

The whole system can be expressed as:

ẋ1 = U1 cos x3

ẋ2 = U1 sinx3

ẋ3 = K‖∇D‖(−D − d
dt

D) + d
dt

tan−1
(

−Dx1

Dx2

)
(21)

In [21] it is formally demonstrated that, when adopting the

control law in (20), both the distance error x2−E(x2) and the

orientation error x3−tan−1
(

−Dx1

Dx2

)

tends asymptotically to

zero.

VI. EXPERIMENTAL RESULTS

Many experiments have been performed in simulation in

the SimuLink environment, both with moving and station-

ary obstacles. Moreover, preliminary experiments have been

performed with real robots.

As an example, Figures 6 and 7 show two simulation

runs. In Figure 6, the couple A and B is clustered, and the

same happens to C and D. The clustering algorithm does not

cluster E, F , G and H because they are enough far from each

other to allow the vehicle to safely pass through. In Figure

7, the first three obstacles are clustered, whereas the latter

two are not. In all the experiments, simulated sensors have

a very limited sensing range and cannot perceive obstacles

that are occluded by other obstacles; in spite of this, smooth

and safe obstacle avoidance is guaranteed in all situations.

2950

Fig. 7. Simulation run 2

In Table I, simulated results are summarized. Obstacles are

randomly distributed in the environment, according to a pa-

rameter od that determines “obstacle density”, i.e., how much

cluttered with obstacles the environment is. In particular, 20
simulations have been ran for each density value, i.e., Low

density (≈ 3 obstacles), Medium density (≈ 5 obstacles),

and High density (≈ 10 obstacles). In all simulations the

vehicle has to follow a reference straight path for about

50m. Realistic noise is added to motion control, by adding

white noise with zero mean and a 2% standard deviation

both to the left and the right wheel velocity, i.e., ωl and

ωr. Moreover, a systematic error of 5% has been added to

ωr, to simulate a noisy estimate of the vehicle geometric

parameters. The second column of Table I reports the average

error D between the ideal path and the real path of the

robot, whereas the third column reports the correspondent

standard deviation σD. It can be easily notices that – even if

experiments in the real-world are necessary before making

strong claims about the validity of the approach –, simulated

results validate the theoretical assumptions made throughout

the article.

VII. CONCLUSIONS

Preliminary experiments with moving obstacles have been

performed as well, showing that – in its general ideas – the

approach can be immediately applied to this more complex

situation. However, in the case of moving obstacles, the

system is not always able to generate collision-free path

even when the clustering algorithm is active. A preliminary

investigation has been conducted to increase the efficiency of

the algorithm to deal with moving obstacles: notice however

that – in general – it does not seem possible to guarantee

smooth obstacle avoidance in all situations, if obstacles are

able to move fast enough, and they behave as if they did

not want the robot to avoid them (which can be the case

TABLE I

EXPERIMENTS WITH ADDED GAUSSIAN NOISE.

od D σD

Low 0.0104 5.6505e-005

Medium 0.0092 5.0277e-005

High 0.0063 3.5898e-005

of a human that really wants to stop the robot). Should this

happen, it seems reasonable to accept that the robot must

simply stop, and possibly starts a recovery procedure that

can involve planning, but also pronouncing vocal messages

to kindly ask surrounding people to move on. These issues

are currently investigated.

REFERENCES

[1] Steven M. Lavalle, Planning Algorithms, Cambridge Univ Press, 2006
[2] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino. Closed Loop

Steering of Unicyle-Like Vehicles via Lyapunov Techniques. IEEE
Robotics and Automation Magazine, 1995.

[3] Giovanni Indiveri and Andreas Nüuchter and Kai Lingemann. High
Speed Differential Drive Mobile Robot Path Following Control With
Bounded Wheel Speed Commands. 2007 IEEE International Confer-
ence on Robotics and Automation Roma, Italy, 10-14 April 2007

[4] Samson, C. and Ait-Abderrahim, K., Mobile Robot Control Part 1:
Feedback Control of A Non-Holonomic Mobile Robots, Technical
Report No. 1281, INRIA, Sophia-Antipolis, France, June 1991

[5] C. Canudas de Wit, H. Khennoul, C. Samson, and O. J. Sordalen,
Nonlinear control design for mobile robots, in Recent Trends in Mobile
Robots, ser. Robotics and Automated Systems, Y. F. Zheng, Ed. World
Scientific, 1993, ch. 5, pp. 121156.

[6] Z. P. Jiang and H. Nijmeijer, A recursive Technique for Tracking
Control of Nonholonomic Systems in Chained Form, IEEE Trans. on
Robotics and Automation, Vol 44, No 2, 1999, pp. 265-279

[7] Marvin K. Bugeja and Simon G. Fabri Dual Adaptive Control for
Trajectory Tracking of Mobile Robots, 2007 IEEE International Con-
ference on Robotics and Automation Roma, Italy, 10-14 April 2007

[8] Lionel Lapierre, Rene Zapata and Pascal Lepinay, Simultaneous Path
Following and Obstacle Avoidance Control of a Unicycle-type Robot,
2007 IEEE International Conference on Robotics and Automation
Roma, Italy, 10-14 April 2007

[9] O. Khatib, Real-time obstacle avoidance for manipulators and mobile
robots, Int. Journal of Robotics Research, vol. 5, no. 1, 1986.

[10] J. Borenstein and Y. Korem, The vector field histogram – fast obstacle
avoidance for mobile robts, IEEE Trans. Robotics and Automation,
vol. 7, no. 3, pp. 278–288, June 1991.

[11] D. Fox, W. Burgard, and S. Thrun, The dynamic window approach to
collision avoid- ance, IEEE Robotics and Automation Magazine, vol.
4, no. 1, pp. 23–33, Mar. 1997.

[12] N. Y. Ko and R. Simmons, The lane-curvature method for local
obstacle avoidance, in Proc. of the IEEE-RSJ Int. Conf. on Intelligent
Robots and Systems, Victoria, BC (CA), Oct. 1998, pp. 1615–1621.

[13] O. Brock and O. Khatib, High-speed navigation using the global
dynamic window approach, in Proc. of the IEEE Int. Conf. on Robotics
and Automation, Detroit, MI (US), May 1999, pp. 341–346.

[14] P. Fiorini and Z. Shiller, Motion planning in dynamic environments
using velocity obstacles, Int. Journal of Robotics Research, vol. 17,
no. 7, pp. 760–772, July 1998.

[15] J. Minguez and L. Montano, Nearness diagram (ND) navigation:
collision avoidance in troublesome scenarios, IEEE Trans. on Robotics
and Automation, vol. 20, no. 1, pp. 45–59, Feb. 2004.

[16] Hanna Kurniawati and Thierry Fraichard, ”From Path to Trajectory
Deformation”, August 28, 2007

[17] M. Khatib, H. Jaouni, R. Chatila, and J.-P. Laumond, Dynamic path
modification for car-like nonholonomic mobile robots, in Proc. of the
IEEE Int. Conf. on Robotics and Automation, Albuquerque, NM (US),
Apr. 1997, pp. 2920–2925.

[18] O. Brock and O. Khatib, Elastic strips: a framework for motion
generation in human environments, Int. Journal of Robotics Research,
vol. 21, no. 12, pp. 1031–1052, Dec. 2002.

[19] F. Lamiraux, D. Bonnafous, and O. Lefebvre, Reactive path deforma-
tion for nonholo- nomic mobile robots, IEEE Trans. on Robotics and
Automation, vol. 20, no. 6, pp. 967–977, Dec. 2004.

[20] Y. Yang and O. Brock, Elastic roadmaps: Globally task-consistent mo-
tion for au- tonomous mobile manipulation, in Proc. of the Robotics:
Science and Systems, Philadelphia, USA, August 2006.

[21] A. Sgorbissa and R. Zaccaria, A Minimalist Feedback Control for Path
Tracking in Cartesian Space, 2009 IEEE/RSJ International Conference
on Intelligent RObots and Systems, October 11 – 15, 2009, St. Louis,
MO, USA

2951

