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Abstract— A new method for fast visual grasp of unknown
objects using a camera mounted on a robot in an eye-in-
hand configuration is presented. The method is composed of
a fast iterative object surface reconstruction algorithm and of
a local grasp planner, evolving in a synchronized parallel way.
The reconstruction algorithm makes use of images taken by a
camera carried by the robot. A reconstruction sphere, virtually
placed around the object, is iteratively compressed towards
the object visual hull, dragging out the fingers attached to it.
Between two steps of the reconstruction process, the planner
moves the fingers, floating on the current reconstructed surface,
according to suitable quality measures. The fingers keep moving
until a local minimum is achieved, then a new object surface
estimation provided by the reconstruction process is considered.
Quality measures considering both hand and grasp proprieties
are adopted. Simulations are presented to show the performance
of the proposed algorithm.

I. INTRODUCTION

Grasping and manipulation tasks generally require a priori

knowledge about the object geometry. Autonomous operation

in unstructured environments is a challenging research field

and, especially the problem of grasping unknown objects,

has not been widely investigated yet.

One of the first approaches to grasping in unknown

environments can be found in [19], where visual control

of grasping is performed employing visual information to

track both object and fingers positions. A method to grasp an

unknown object using information provided by a deformable

contour model algorithm is proposed in [11]. Recently,

in [18], an omnidirectional camera is used to object shape

recognition while grasping is achieved on the basis of a

grasping quality measure, using a soft-fingered hand.

It is easy to recognize that two main tasks have to be

performed to achieve unknown objects grasping, namely,

object recognition/reconstruction and grasp planning.

Different methods have been proposed in the literature to

cope with 3D model reconstruction of objects. The main

differences rely on how the available images are processed
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and, of course, on the algorithms used for object reconstruc-

tion. A number of algorithms can be classified under the

so called volumetric scene reconstruction approach [3]. This

category can be further divided into two main groups: the

shape from silhouettes and the shape from photo-consistency

algorithms. Another method, proposed in [17], considers a

surface that moves towards the object under the influence of

internal forces, produced by the surface itself, and external

forces, given by the image data.

A technique for computing a polyhedral representation of

the visual hull [7] –the set of points in the space that are

projected inside each image silhouette– is studied in [5].

Other approaches rely on the use of apparent contours [2],

[12]; in these cases, the reconstruction is based on the spatio-

temporal analysis of deformable silhouettes.

On the other hand, grasp planning techniques rely upon the

choice of grasp quality measures used to select suitable grasp

points. Several quality measures proposed in the literature

depend on the grasp geometry and on the positions of the

contact points. Some of them are based on the properties of

the grasp matrix; others are based on the area of the polygon

created by the contact points or on the external resistent

wrench. Simple geometric conditions to reach an optimal

force closure grasp both in 2-D and in 3-D are found in [10].

The geometric properties of the grasp are used also in [8] to

define quality measures; moreover, suitable task ellipsoids

in the object wrench space are proposed to evaluate grasp

quality also with respect to the particular manipulation task.

A geometrical approach to obtain at least one force closure

grasp in 3D discretized objects is studied in [13], where two

algorithms are investigated: the first finds at least one force

closure grasp, while the second optimizes it to get a locally

optimum grasp.

Another class of quality measures is based on the eval-

uation of the capability of the hand to realize the optimal

grasp. Therefore, these measures depend on the hand con-

figurations [14]. To plan a grasp for a particular robotic

hand, quality measures depending both on grasp geometry

and hand configuration should be taken in account. In the

literature, only few papers address the whole problem of

grasping an object using a given robotic hand, able to reach

the desired contact points in a dexterous configuration. Some

examples can be found in [1], [4], [6], while a rich survey

of grasp quality measures can be found in [16].

In this paper, a new method for fast visual grasping of un-

known objects using a camera mounted on a robot in an eye-

in-hand configuration is presented. This method is composed

of an iterative object surface reconstruction algorithm and of

a local grasp planner, which evolve in a synchronized parallel
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way. The reconstruction algorithm makes use of images taken

by a camera carried by the robot. First, a rough estimation

of the object position and dimensions is performed, a re-

construction spherical surface is virtually placed around the

object, and the fingers of the robotic hand are suitably placed

on it. Then, the reconstruction sphere, sampled by points, is

iteratively compressed towards the visual hull of the object

projections, dragging out the fingers attached on it. Between

two steps of the reconstruction process, the planner moves

the fingers, floating on the current reconstructed surface at an

imposed safety distance, according to some quality measures.

For this reason, we call this new method Floating Visual

Grasp. The fingers keep moving until a local minimum is

achieved, then a new object surface estimation provided by

the reconstruction process is considered. Quality measures

considering both hand and grasp proprieties are adopted:

the directions of the finger motion leading toward grasp

configurations that are not physically reachable, or causing

collisions or loss of hand manipulability, are discarded.

Moreover, a discretized method of the Mirtich and Canny

quality measure is applied to the remaining possible motion

directions to select those leading toward an optimal (in a

local sense) grasp configuration. Notice that many other

quality measures may be chosen in place of those proposed

in [10], without affecting the proposed framework.

Simulations results are presented to show the performance

of the proposed algorithm.

II. FLOATING VISUAL GRASP ALGORITHM

The block diagram of the proposed visual grasp algorithm

is shown in Fig. 1. It can be observed that the algorithm may

be divided into three main parts: a number of preliminary

steps, the object surface reconstruction algorithm, and the

local grasp planner.

Object Detection

Image Acquisition Station
Generation

Images Acquisition
and Elaboration

Sampling Sphere
Generation and Placing

Current Object Surface
Estimation

Surface Convergence

Convex Hull
Back Projection Test

Visual Hull
Back Projection Test

Current Hand Configuration

Local and Global
Kinematic Index Test

Initial Hand Configuration
Evaluation

Grasp Quality Measure
Rating

Local Motion Directions
Evaluation

Convergence Step Size

Fig. 1. Block diagram of the visual grasp algorithm.

Initially, using a detection algorithm based on a classical

blob analysis, the presence of an object in the field of view

of the camera is detected. Therefore, by holding the optical

axis perpendicular to the plane where the object has been

detected, the camera is moved until the optical axis intercepts

the centroid of the object. At the end of this step, the

camera is exactly over the unknown object and ready to start

the image acquisition process. Moreover, during this step, a

rough estimation of the object center is evaluated using the

centroid of the object shape extracted from some images.
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Fig. 2. Camera stations (bullets) and trajectories of the camera during
image acquisition.

The image acquisition stations are chosen as illustrated

in Fig. 2. Image acquisition is carried out as follows: 1) an

image is acquired from the top of the object; 2) a subset of

n1 images is taken from camera stations equally distributed

over a circular path of radius r1, with the optical axis of the

camera pointing to the estimated center of the object and

forming an angle α1 with respect to the revolution axis z;

3) a subset of n2 images is acquired as in 2), but using a

radius r2 and an angle α2. In the following, the total number

of acquired images will be denoted as n = n1 + n2 + 1.

At this point a blob analysis technique is employed to

determine the silhouette of the object for each image. Each

silhouette is improved using suitable filtering techniques (e.g.

dilatation and erosion iterative process) to reduce the effects

of the image noise, and the centroid of the corresponding

blob is evaluated. Then, the center of mass of the object (as-

suming homogeneous mass distribution) is estimated using

a least-squares triangulation method.

On the basis of the dimension of each silhouette, the

radius rs of a 3D spherical surface that surely contains

the object (with a safety margin ǫ) is estimated. Finally,

the reconstruction sphere with radius rs, centered at the

estimated center of mass of the object, and sampled with

a number of ns points is built, as shown in Fig. 3.

The initial grasp configuration of the hand can be set on

the basis of the initial reconstruction sphere. In this paper,

a three-fingered hand and point contact type at the tip of

each finger are considered. Hence, a direct correspondence

between the position of a point on the sphere and the position

of each finger of the hand can be assumed.

Due to the symmetry of the sphere, infinite grasp config-
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Fig. 3. Sampled reconstruction sphere surrounding the object.

urations, ensuring force-closure grasp, could be selected. To

this purpose, it is well known that a three contact grasp of

a sphere is force-closure if the contact points are 120◦ apart

on the same plane. Therefore, the plane parallel to the floor

halving the sphere is chosen, and three points 120◦ apart are

selected on the circumference intercepted by the plane. These

points should be reachable on the basis of the kinematics of

the selected hand.

At this point, both the object model reconstruction process

and the local planner start in parallel and cooperate to the

final goal. In particular, as shown in Fig. 1, the reconstruction

algorithm updates in real-time the estimation of the object

surface, while the local planner, on the basis of the current

estimation, computes the fingers trajectories toward the cur-

rent local optimal configuration for the grasp.

These two parallel processes are independent and can be

allocated under two different threads or, in a multi-processor

system, on different CPUs. In other words, the proposed

method exhibits an intrinsic capability to be run in parallel.

More details of these two crucial steps are provided in the

next two sections.

III. FAST OBJECT SURFACE RECONSTRUCTION

The object surface reconstruction method employed in this

paper is an evolution of the method proposed in [9].

Starting from the set of n silhouettes evaluated as de-

scribed in the previous section, the reconstruction sphere

radius is progressively reduced, using a variable step size

depending on the distance from the object surface (the

step size is set larger at the start, to reduce the overall

computational time). When a sample point of the sphere

intersects the visual hull, it is brought back of one step and, in

the next iteration, a smaller step size is used for that point. At

the occurrence of the second intersection, the point is fixed to

the reached position. The iterative process is stopped when

all the points are fixed or are lost (points are lost when the

center of mass is outside the object volume).

It can be easily understood that the precision of the

reconstruction depends on the number of views, on the

observation angles and distances, and on the density of the

points of the reconstruction sphere. On the other hand, the

computational time of the algorithm increases if n and/or ns

are increased. Considering that the reconstruction process is

the most computationally expensive step of the whole algo-

rithm, a suitable trade-off must be found between time and

precision. However, the final goal of the algorithm is object

grasping and not model reconstruction; this latter can be

considered as a secondary outcome of the proposed method.

Therefore, the accuracy of the reconstruction process needs

only to be adequate for the requirements of the grasp planner

algorithm.

Fig. 4. Steps of the object surface reconstruction process.

In Fig. 4 some images showing intermediate steps of

the reconstruction algorithm of an object are shown, with

parameters: α1 = 45◦, α2 = 80◦, n1 = 4, n2 = 8, and

ns = 6500 sampling points for the reconstruction sphere.

The corresponding computational time, using a Pentium IV

3.4GHz processor, for 1500 reconstruction points is of 49 ms,

for 3300 points is 52 ms, and for 6000 points is 61 ms.

IV. LOCAL GRASP PLANNER

The local grasp planner proposed here makes use of the

current estimation of the discretized object surface to update

the trajectories of the finger tips which move floating on

the surface, keeping a fixed floating distance δf between the

fingers and the surface along the outgoing normals, on the

basis of suitable quality indices (see Fig. 5).

Namely, starting from the initial grasp configuration on the

reconstruction sphere (chosen as described in the previous

sections), at the end of each step of the reconstruction

algorithm, the planner generates the motion of the fingers

from the current position to a point of the updated surface.

The contact points of the grasp are first “virtually” moved

to the updated surface, achieving an initial “target” grasp

configuration. Then, for each contact point of the current

target grasp configuration, the contour made by the eight

neighboring points of the surface is selected. Considering

the contours of all the contact points, the set of all the

combinations of possible reachable grasp configurations is

evaluated on the basis of suitable quality measures. If the
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Fig. 5. Floating visual grasp.

current grasp configuration of the set has a value better than

the value of the target configuration, this is chosen as the

new target grasp configuration, establishing “de facto” the

motion direction of each finger, as shown in Fig. 6. The

process is repeated in a recursive manner until there are

no more improvements of the quality measures and restarts

anytime the object surface is updated. The whole process

ends when the object reconstruction algorithm stops and the

planner computes the final grasp configuration. Hence, the

safety floating distance δf is progressively reduced to achieve

the desired grasp action.

df

Fig. 6. Contour of neighbor points of the current target grasp point.

The floating distance is used to avoid collisions of the

fingers with the object during the object reconstruction and

approaching, and before that the final grasp configuration

is reached. Moreover, the final progressive reduction of the

floating distance implies that each fingertip moves perpen-

dicularly to the surface.

Notice that only few points are considered as candidates

for the next grasp configuration, so that the number of

combinations to be inspected is limited, resulting in a compu-

tationally fast algorithm. Moreover, a certain number of grasp

configurations are discarded during the evaluation process.

Namely, a local kinematic index is used to discard all the

candidate grasp configurations that cannot be reached. Then,

a global kinematic index is adopted to discard all the configu-

rations causing finger collisions or lack of manipulability for

the hand. Finally, a grasp quality measure is applied to the

remaining configurations to evaluate possible improvements

of the grasp quality.

In the next subsections, the quality indices and the finger

trajectory planner are presented.

A. Local kinematic index

The local kinematic index allows to discard all the can-

didate contact points that cannot be reached, on the basis

of the finger kinematics. With reference to a single contact

point and finger, the kinematic test is carried out for all the

contour points (see Fig.6). Namely, for each point, finger

joints are computed using an inverse kinematics algorithm.

Hence, those points for which joint limits are exceeded, or

that are too close to kinematics singularity, are discarded.

This latter condition is evaluated on the basis of the condition

number of the finger Jacobian.

A standard CLIK algorithm [15] is adopted to compute

the inverse kinematics; in particular, the scheme based on the

transpose of the Jacobian has been used to achieve a faster

computation, together with a Singular Value Decomposition

technique for the evaluation of the Jacobian condition num-

ber.

B. Global kinematic index

For the remaining points of the contour, the global kine-

matic index computes the distance between the fingers corre-

sponding to all the possible grasp configurations. Hence, all

the configurations for which the distances are under a given

safety threshold, are discarded.

Moreover, the condition number of the hand Jacobian

is evaluated to discard the configurations close to hand

singularities.

C. Grasp quality measure

The grasp quality is evaluated only for the configurations

that are left after the kinematic tests. The method proposed

in [10] is adopted, suitably modified to cope with the

discretization of the grasp configurations. Assuming that the

moments and transversal forces are negligible, the method

proposed in [11] can be easily integrated here.

Let us denote with w =
[

fT mT
]T

the wrench vector

collecting force f and moment m. Assuming that the finger

forces are applied along the direction normal to the object

surface, the force direction is specified only by the contact

point.

Let W denote the space of wrenches, Wf ⊂ W the

space of unit forces acting in the grip plane (the plane

containing the three contact points) through the center of

grip, W⊥m ⊂ W the space of pure moments acting along

the direction perpendicular to the grip plane. Moreover, let

g−1(−w) denote the set of finger forces which can resist

the external wrench w.

Finally, consider the quantity

Q1 = min
w∈Wf

(

max
f∈g−1(−w)

1

‖ f ‖f

)

,

which is a measure of the grasp ability to resist unit forces

in the grip plane, and the quantity

Q2 = min
w∈W⊥m

(

max
f∈g−1(−w)

1

‖ f ‖f

)

,
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which is a measure of the grasp ability to resist unit moments

normal to the grip plane.

The optimal grasp proposed in [10] is defined as the grasp

that maximizes Q2 among all grasps which maximize Q1.

It can be proven (see [10]) that the optimum grasp with

three fingers in a 2-D case under the above optimal criterion

is reached when the normal forces are symmetric, with direc-

tions spaced 120◦ apart. Moreover, this grasp maximizes also

the size of the outer triangle, defined as the triangle formed

by the three lines perpendicular to the normal finger forces

passing through the respective contact points. Under the same

criterion, the optimum grasp with three fingers in a 3-D case

is achieved when the maximum circumscribing prism-shaped

grasp, that has the largest outer triangle, is selected among

the grasps where the normal finger forces lie within the same

grip plane and are in equilateral configuration.

Therefore, to reach the optimum in the 3-D case with three

fingers, the planner has to seek three points in equilateral

configuration on the object surface, so that the normal forces

lie in the same (grip) plane, and for which the circumscribing

prism grasp is maximum.

In our case, since the reconstructed object surface is

discretized, the above method cannot be directly applied.

Differently from the continuous case, due to the presence

of a finite set of sampled points, the existence of a “grip

plane” containing all the normal forces is not guaranteed.

This is mainly due to the fact that, because of the discretiza-

tion, the surface normals are an approximation of the real

ones. Considering that the optimal criterion requires that the

desired normals have to be spaced 120◦ apart, a discretized

implementation of the method of [10] is proposed here.

For each candidate configuration of three grasp points,

the normal directions are estimated on the basis of the

available point-wise approximation of the surface. Then, the

unit vector normal to the grip plane containing the three

points is evaluated. Denoting with αj the angle between

the direction of the normal force applied to point j and the

direction normal to the grip plane, a Coplanarity Error Index

(CEI) can be defined as follows:

CEI =

∑3
j=1 | αj − 90◦ |

3
.

Obviously, the closer CEI to zero, the more the normal

forces lie in the same plane. The definition of a threshold

ΦCEI allows discarding all those configurations having a

value of CEI higher than ΦCEI ; hence, all the remaining

grasp configurations are assumed to have forces lying in the

same grip plane and can be further processed.

The next step consists in looking for an equilateral grasp

configuration. To this purpose, for each grasp configuration,

the unit vector normal to the object surface at each contact

point is projected on the grip plane. Denoting with βj the

angle between these projections for each of the 3 couple of

points of the considered configuration, an Equilateral Error

Grasp Index (EEGI) can be defined as:

EEGI =

∑3
j=1 | βj − 120◦ |

3
.

Clearly, the closer EEGI to zero, the nearer the configu-

ration to an equilateral grasp. The definition of a threshold

ΦEEGI allows discarding all those configurations with value

of EEGI higher than ΦEEGI ; hence, all the remaining grasp

configurations are assumed to be equilateral.

Among all the equilateral configurations, the maximum

circumscribing prism has to be found; if the grasp config-

uration associated with the largest prism is different from

the current target configuration, this is taken as new grasp

configuration.

Notice that, in the case that the grasp configuration

changes, the whole process starts again with the new contact

points, by considering the new contours and applying the

complete sequence of index-based tests starting from the

kinematic ones. The algorithm stops if the best grasp con-

figuration remains unchanged at the end of the optimization

process, or in the case that all the candidate grasp configu-

rations are discarded during the process.

D. Finger trajectory planner

At each iteration of the object reconstruction algorithm,

the local grasp planner produces a sequence of intermediate

target grasp configurations which ends with the optimal grasp

configuration (in local sense), as illustrated in Fig. 5. These

configurations are used to generate the finger paths.

Namely, the sequence of intermediate configurations is

suitably filtered by a spatial low-pass filter in order to achieve

a smooth path for the fingers on the object surface. To this

purpose, notice that only the final configuration needs to be

reached exactly, while the intermediate configurations can be

considered as via points.

With respect to the smooth paths through the points of

the filtered configurations, the actual finger paths generated

by the finger trajectory planner keep a floating distance δf

along the normal to the surface (as explained in Section IV).

This feature produces a floating effect of the fingers over

the reconstructing object surface during the reconstruction

process while they move according to the deformation of

the reconstruction sphere. When the final configuration is

reached, this safety distance is progressively reduced to zero,

producing the desired grasp action.

V. SIMULATIONS

The proposed method has been first tested in simulations

on the synthesized object shown in Fig. 4. The first three

fingers of the virtual hand of Fig. 5 have been used. Setting

ΦCEI = 15◦, and ΦEEGI = 10◦, the grasp configuration

and the finger trajectories are those of Fig. 7. The final grasp

configuration (which can be proven to be the global optimal

grasp configuration) is characterized by the values CEI =
8.15◦ and EEGI = 1.79◦.

A prism with smooth lateral corners has also been con-

sidered. The grasp configuration and the corresponding tra-

jectories are shown in Fig. 8. The values CEI = 9.20◦

and EEGI = 2.89◦ are obtained in the final configuration.

Remarkably, an equilateral symmetry is achieved in the final

grasp configuration: two fingers are placed on the smooth
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Fig. 7. Finger trajectories evaluated by the local grasp planner (green)
and the corresponding sequence of grasp points on the reconstructed object
surface (blue).

corners, and the other finger is placed in the middle of

the opposite surface. This configuration corresponds to an

opposite grasp ensuring force closure; as before, it can be

proven that this grasp configuration is optimal also in a global

sense, although the proposed approach can only guarantee

that a local minimum is achieved.

Fig. 8. Finger trajectories evaluated by the local grasp planner (green) and
the corresponding sequence of grasp points on the reconstructed surface for
the smooth prism (blue).

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

A new method for fast visual grasp of unknown objects

has been presented. The proposed method is composed of a

fast iterative object surface reconstruction algorithm and of a

local optimal grasp planner, which evolve in a synchronized

parallel way. An eye-in-hand camera is adopted to acquire

the images used by the reconstruction algorithm. A recon-

struction sampled sphere, virtually placed around the object,

is iteratively compressed towards the visual hull, dragging

out the fingers attached on it. During the reconstruction

process, the planner moves the fingers, floating on the current

reconstructed surface at a safety distance, according to local

and global kinematic indices and grasp quality measures.

In particular, a discretized version of the Mirtich and Canny

quality measure has been developed to guide the hand toward

an optimal grasp configuration. The effectiveness of the

proposed method has been shown in simulation.

B. Future Work

Future developments of the algorithm will be devoted

to the improvement of the object reconstruction algorithm,

e.g., for the case of objects with holes. Moreover, quality

indices connected to the tasks to be performed by the hand

with the object could be considered. A further improvement

may be the adoption of suitable pre-shaping techniques,

based on visual information, for the choice of the initial

grasp configuration. Finally, the extension of the proposed

approach to the case of more than three fingers or to bi-

manual manipulation, with the adoption of suitable quality

measures, is an interesting issue of research.
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