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Abstract— The problem of mobile robot self-localization is
considered as solved since Thrun’s et. al [1] pioneering work us-
ing monte-carlo filters for robot Localization (MCL). However,
MCL is robust and precise under constraints like completely
known environments and the sensor data must contain enough
”true data” as contained in the map. In fact these conditions
cannot always be guaranteed, which may results in a poor
accuracy of the localization.
In this paper we present a area-based observation model that
is applied to MCL self-localization. The model is based on the
idea of tracking the ground area inside the ”free space” (not
occupied cells) of a known map. Experimental data shows that
the proposed model improves the robustness and accuracy of
laser and stereo vision sensors under certain conditions like
incomplete map, limited FOV and limited range of sensing. We
also present an efficient approximation of our sensor model
based on integral images.

I. INTRODUCTION

Robust self-localization is the base for many behavior-

based systems. It has to cope with uncertainty due to

imprecise sensors, incomplete knowledge of the environment

and limited range of sensing. Very popular approaches for

localization are the dynamic state space models using

bayesian filter variants like monte-carlo filters (MCL) [1]

or extended Kalman filters (EKF) [2]. They address the

problem of estimating the state x of a dynamic system from

measurements and sensor readings. Control theory describes

a dynamic system [3] as an interaction model between a

controller with its environment. Both entities interact with

each other through signals y (e.g., Laser range data) and

actions u (e.g., Odometry). A motion model is used to

integrate the actions u into the current pose/state while the

observation model integrates the observations. In this paper

we will focus on the observation model for MCL filters

with range sensors.

The observation model, i.e., p(y|x,M) is the heart of many

self-localization system. It is a likelihood function that

specifies how to compute the likelihood of an observation

y given a believed robot pose x in an a-priori known map

M. The function is often a trade-off between accuracy

and robustness. A restrictive model may produce good

accuracy with monte-carlo filters, but at the cost of

robustness and vice versa. Other filters like EKF may use

a restrictive observation model to avoid mis-associations
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Fig. 1. Basic Concept of the proposed Model. The red areas are used in
the individual models for calculating the likelihood p(y|x,M).

which can have side effects on the filters itself. The

literature proposes several observation models for specific

sensors and applications, e.g., models able to cope with

sonar crosstalk [4] or omni-directional vision [5]. Many

observation models are based on the basic concept of

the well known beam model [1], [3] that is also used in

traditional MCL methods. The beam model considers the

sensor readings as independent measurement vector y (e.g.,

distance and angle) and represents it by a one dimensional

parametric distribution function depending on the expected

distance in the respective beam direction.

The well known MCL method has been proven a robust

and precise method [3], [1], [6], but only under certain

constraints: The map must contain the complete environment

and the sensor data must contain enough ”true data” that

is known from the map (See section VI). In fact not all

constraints can always be fulfilled due to, e.g., technical

restrictions of the sensor or changing environment. A map

that does not contain all features as well as limited sensing

(Field of view or range) often lead to unsatisfactory accuracy.

In this paper, we propose a new area-based observation

model that tracks the ground area inside a the ”free space”

(that is, the not occupied cells) of a known map by using

(extracted) visibility information according to the believed

pose to the map. In practical experiments carried out with

data obtained by a real robot we demonstrate that our model

improves the accuracy and robustness of standard MCL

methods when dealing with incomplete maps and limited

range of sensing. We use laser and raw stereo vision data

as sensors in order to demonstrate the robustness of our

model. We also propose an efficient real-time approximation

of the observation model that is based on integral images
and image decomposition.
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The paper is organized as follows: After discussing the state

of the art, we describe in section III the motivation for using

a volumetric model. This is followed by a description of

the volumetric observation model for self-localization. In

section V an efficient approximation of our approach is given.

Experimental results are presented in Section VI. Finally, we

discuss the results and the approach in Section VII.

II. RELATED WORK

The literature proposes various techniques for computing

the likelihood of the observation model. They either directly

approximate the physical characteristics of the sensor or

use models that try to provide smooth likelihood models to

increase the robustness of the localization process. A well

known variant of the first type of model is the beam model,
by Thrun et al [1]. The model calculates the likelihood

of each individual beam to represent its one-dimensional

distribution by a parametric function depending on the ex-

pected range measurement. This model is sometimes called

raytracing or ray cast model because it relies on ray casting

operations within an environmental model e.g., an occupancy

grid map, to calculate the expected beam lengths. Bennewitz

et al. [7] extend the standard raytracing technique by utilizing

reflection properties of the sensor and surfaces by incre-

mentally learning the environment. Pfaff et al. [8] propose

an approach for multi-modal likelihood Models by using

Gaussian Mixture Models to learn the observation Model.

The GMM does two things: It smoothes the observation

model for better robustness to outliers and compresses the

state space due to its parametric representation. Plagemann

et al. [9] use the Gaussian process instead of GMM. The

advantage of the Gaussian process is that does not tend to

get stuck in local minima as GMMs do. Both systems [8], [9]

still rely on an underlying gaussian distribution of the state

space. In fact both models are sensitive to discontinuities in

the map i.e. when the environment is cluttered or the map is

not precise [10], [8], [9]

A different approach to observation models is the so called

likelihood field technique [10], [11] or beam end point model.
It provides smooth and multi-modal likelihood functions to

better deal with clutter in the environment. These kind of

model ignores the physical constraints on purpose to improve

the robustness on cost of accuracy [9]. The likelihood of

a single sensor reading depends on the distance of the

corresponding endpoint to the closest wall in the map. These

models suffer from two drawbacks. First, they do not take

visibility constraints into account. Second, they provide no

direct mechanism to deal with maximum-range readings,

which is why these readings are typically ignored.

III. MOTIVATION

A. Incomplete Map

Depending on the type of robot application, a map for robot

localization can be incomplete, i.e., it does not contain all

objects like chairs, side table or drawer. This can happen ac-

cidentally, because objects were missing during map building

or on purpose due to practical reasons, i.e., movable objects

might confuse localization.

B. Short Sensing Range of the Sensor

Recent developments in range sensors have produced a new

series of laser scanners, e.g., the Hokuyo URG-04LX. This

kind of sensors is quite popular in robotics due to their small

size, weight, power consumption and price. The relatively

short sensing range, e.g., max 4m for the URG-04LX is a

clear constraint compared to the well known SICK LMS 200

with up to 80m sensing range (30m typically).

4 m

Fig. 2. Hokuyo URG-04LX on the robot in a spacious environment: The
circular area shows the FOV and sensing range of the sensor. The thick
red line represents the only wall segment that is detected, the rest is out of
range.

In Figure 2 the localization accuracy is unsatisfactory, be-

cause only the wall on the left is in range of the sensor.

Traditional feature-based approaches always expect a dis-

tance and angle to the observed feature, e.g., the wall or a

wall segment. The sensor readings that report out of range
do not report a true observed distance. Hence they cannot

be used. In the Example, Figure 2, about 75% of the sensor

data reports out of range and is not used in a feature-based

method.

Fig. 3. Stereo vision as range sensor: The left picture shows the input
camera image. The green area represents the extracted ground with stereo
vision.

The short range sensing problem is not bounded to low cost

laser range sensors. This problem also appears with vision

based range sensors for feature extraction, e.g., using stereo

vision to detected wall segments. Due to the nature of stereo

cameras, i.e., motion blur, false matching, poor resolution

it is not always possible to detect a wall segment. Let us

consider Figure 3: The detected wall segments with a high

confidence have been marked with arrows. The little wall

segment information is due to the clutter in the scene and

motion blur. It is possible to extract at least a fragment of

the ground plane.
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C. Narrow FOV of the sensor

The use of camera-based solutions for navigation and lo-

calization has become quite popular in the last decades.

Compared to typical laser range sensors cameras provide a

rich set of information [12], [13], e.g., texture. However,

these sensors typically have a narrow field of view, e.g.,

stereo cameras up to 110o (typically 50o) or Time-of-Flight

cameras like MESA Imaging’s SwissRanger ≈ 45o FOV.

A narrow FOV can lead to unwanted side effects, if the

known map of the environments is incomplete: Figure 4

demonstrates such a behavior with a wide and narrow FOV.

The narrow-FOV sensor starts to consider the unmapped

box as the wall if no true wall segments are observed. The

wide-FOV sensor is more robust with respect to scan points

produced by the box, because the scan contains enough data

from the true known wall (See Figure 3)

(a) Field of View 180o

(b) Field of View 60o

Fig. 4. Unwanted behavior due to narrow FOV and incomplete map:
The wall in front of the robot is mapped, the box on the left is not. The
robot moves through the corridor and estimates the pose with a laser range
scanner. In both subfigures the estimated pose is shown, the true position is
hinted by a transparent robot. One can see that the robot with limited FOV
starts to consider the box as the wall if less than 50% of the true wall is
observed. The robot with the wide FOV is able to track the true wall as
enough sensor readings of the true wall are received.

IV. PROPOSED OBSERVATION MODEL

The model is inspired by the work of Thrun [14] on

robot mapping using a ground space model for local maps.

The ground space model is used for alignment, but not for

localization itself since the ground cannot be transformed

into e.g. laser-like scan. Such a scan contains measured

distances to objects while the ground space model contains

only the free space that does not necessarily corresponds to

the distance to an certain object, for instance with distances

”out of sensor range”. The main idea of our observation

model is as follows: We detect the ground space area and

keep the detected space inside the non-occupied area of the

a-priori known map, see Figure I. In the fashion of bayesian

filters and Markov Chains we track and refine the pose over

time. It is assumed that the ground can be detected rather than

detecting a wall. We model the ground space in contrast to

standard localization approaches in an opportunistic way: We

define an observation model that calculates the difference of

the observed ground space and the free space according to

the map at the believed pose. This approach implicitly deals

with unmapped regions as well. For instance, the result is

zero, if the believed ground is actually in a non-occupied (≈
free) part of the map. The error grows if the believed area

is actually not in the free space of the map.

As result we obtain possible poses that are not violated (i.e.,

not wall/unexplored areas are intersected) by the observed

area. In combination with a state estimation algorithm and

motion model we are able to track the pose (see section IV-

B).

A. Observation Model

We propose the Observation Model p(yt |xt) in bayesian

fashion [3]: Let x be the believed state in an n-dimensional

state space and y the observation from a range finder sensor,

e.g., stereo vision, sonar. The observation model reflects the

probability of measuring yt if we assume that the state of the

robot is xt. Let M be the a-priori known occupancy grid map

that is used for localization. It contains information about

free space (absence of objects), solid objects (e.g., walls)

and unexplored space. Let A be the ground space that has

been observed by the sensor measurements y.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

x

y

Fig. 5. Comparison of the squared error function (dashed line) and the

more robust M-estimator e → 1− c2

c2+e2
(solid line)

First, the map M is converted into a cost matrix K in the

spirit of the likelihood fields [10], [15] technique. The costs

of unexplored and solid object areas are calculated first. The

Euclidean distance of each ”wall” cell to its nearest free cell
of the map M is used as metric. Let e denote the distance

of a point from an unexplored or solid object area in M. e
is applied to a weight function: The squared error function

e → 1
2e2, which is standard for many applications, is not

appropriate for the given task since it is not robust with

respect to outliers [16]. Due to noise and imprecision of the

sensors, i.e., crosstalk with sonars or false correspondence

matching with stereo cameras, there is a substantial amount

of erroneously detected ground space that would distort the

estimate. Instead, we use the error function e → 1− c2

c2+e2
with parameter c = 100 (1m), see fig. 5. This error function

is very similar to the squared error function for errors e ≤ c
and is bounded above by a constant for larger errors, thus

the influence of outliers onto the estimate is bounded.
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Let k1..n ∈ K|xt be elements that represent the ground space A
with n elements in the cost matrix K. We use the following

model to calculate the likelihood of the sensor model

p(yt |xt) = η

n∑

i=0

[1.0−B(ki|xt)] (1)

with η as normalizing constant. Here it is also assumed that

all observations are independent from each other. B(ki|xt)

does a lookup in the cost matrix K and returns the likelihood

of the observation model p(yt |xt). In contrast to the approach

in literature [6] we are summing up the probabilities instead

of multiplying them. This results in a lower sensitivity of the

probability to (few) false-positive observations.

B. Applying the model to Localization

In theory the observation model can be applied to all

kinds of Bayesian localization methods, but we recommend

the usage of a multi-hypothesis system, e.g., MCL. We

use the standard MCL motion model using non-/holonomic

constrains [3]. With our observation model MCL is able to

perform an initial global localization, but more iterations

are needed to find the initial pose (like when using sonar

sensors compared to a laser scanner). It is important that

the robot has to move or rotate in order to refine the pose

and eliminate the false hypotheses (i.e., ground space that

intersects the walls). The usage of gaussian noise on the

particles is the same as in motion models used for MCL.

The translation part of the pose is updated with ground space

observations if it contains a true distance to (a part of) a wall.

(a) Robot moves forward (b) Robot rotates

(c) Robot moves forward (d) Robot rotates

Fig. 6. MCL with the proposed model in practice with the map of figure
11. The black dot represents the robot, the red ellipse the uncertainty of
our model, the blue one the standard MCL model . Both ellipses have been
magnified 8x for better visibility.

The ground space model also refines the rotational part, at

best with observed (true) edges in the room (see Figure 6).

Please note that due to our ground space model a believed

pose ”behind” the true pose has possibly the same likelihood

as the true pose (assuming the ”behind” pose is not a wall or

non explored area in the map and is not intersecting walls).

This is due to the fact that both areas are not intersecting

any walls. Such hypotheses can be removed by observing

edges (see above) or passing a doorway to another room. In

the case of MCL such hypotheses are automatically removed.

Experiments show that it is not necessary to observe true wall

data all the time. If no wall or edge is visible, the pose is

tracked inside the free space of the map without loosing the

true pose. The theoretical worst case is that the hypothesis

covers the whole free space of the map, analogous to MCL

with sonar sensors. In this case the situation is identical to

the initial global self-localization.

V. APPROXIMATION USING INTEGRAL IMAGES

The polynomial complexity of the reference implemen-

tation using a grid map is O(n) where n is the number of

cells that need to be considered for the observation model.

Depending on the implementation, additional cell lookups

might be needed identifying the cells for considerations first.

For instance computation of an area of 8m2 (n = 3200)

needs 35ms on an 2.4 GHz Quad-Core processor with a

cell size of 5cm of the map (for a single hypothesis !). The

clear bottleneck is the piecewise lookup. Another issue is

that it is hard to apply anytime constraints on the reference

implementation.

Our approximated model describes the ground space by

using square primitives. The main idea is that we start

with the smallest enclosing square of the ground space and

subtract smaller overlapping square areas that do not belong

to the ground space itself. The area can be obtained in O(1)

using the integral images [17] technique. It calculates the

exact area for any rectangular shape without loss of precision.

Before we consider how to obtain the square primitives, we

have a brief look on integral images.

A. Integral Images

The integral image I is an intermediate representation of the

original image. It contains the sum of all gray scale pixel

values of image N with height y and width x, i.e.,

y
y+

h

x+wx

Fig. 7. Computation of values F in the shaded region
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I(x,y) =
x∑

x′=0

y∑

y′=0
N(x′,y′)

The integral image is computed recursively, by the formulas:

I(x,y) = I(x,y− 1)+ I(x− 1,y)+ N(x,y)− I(x− 1,y− 1) with

I(−1,y) = I(x,−1) = I(−1,−1) = 0, therefore requiring only

one scan over the input data. This intermediate representation

I(x,y) allows the computation of a rectangle value at (x,y)
with height and width (h,w) using four references (see Fig.

7):

F(x,y,h,w) = I(x,y)+ I(x+w,y+h)−
I(x,y+h)− I(x+w,y)

We use an extension of the integral images proposed by

Barczak [18]: It allows the rectangular area extraction at any

rotational angle, but restricts the area to a square instead of

the rectangle of the original implementation [17]. Please note

that the original implementation of integral images allows

only the use of rotated rectangles with angles of 0 and 45

degrees.

B. Square Area Decomposition

(a) 16 Iterations (b) 64 Iterations (c) 256 Iterations

Fig. 8. Square Area Decomposition

The ground space is decomposed into a set of square primi-

tives that are either used for adding or subtracting areas from

the smallest enclosing square of the ground space (using the

Integral images). In the computer graphics literature many

solutions exist for this problem [19], [20], but unfortunately

most of them are NP-hard for general rectangular areas,

while heuristic with O(n2) exist for square primitives. The

strategy for the square area decomposition works as follows

(Figure 8):

1) Extract the maximum enclosing square prect of the

ground space area and create an empty bitmap with

the dimension of prect.

2) Initialize the bitmap with an inverted ground space area
bitmap

3) Extract the maximum square area of the ground space
4) Subtract the found square area pixels from the bitmap

5) go to 3, until pmaxiteration squares are found or no more

squares are found in the bitmap

The extracted squares are used to calculate the area of the

ground space itself. The lookup for the maximum square area

can be accelerated to O(logn) by using run-length encoding

of the bitmap instead of accessing each pixel individually. In

practice it is not really necessary to apply a full (zero error)

decomposition. Figure 9 shows the decomposition error for

pmaxiteration iterations. One can see that the error dramatically

decreases over all iterations. Experiments have shown that

using 64 iterations is a good trade-off between speed and

precision.
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Fig. 9. Square area decomposition error

C. Computational Consideration

The polynomial complexity of the approximated model is

O(m2 + logn+mk) with k hypothesis of MCL, m iterations

and n cells cells of the ground space. O(mk) is the number

of lookups with the integral images for k hypothesis. We

simplify to O(logn), because k,m are constant.

VI. EXPERIMENTAL RESULTS

In this section we compare our proposed area-based

observation model with the standard beam model using the

well-known monte carlo localization method in practice.

In order to demonstrate the high robustness of our model

we use also stereo vision as sensor. The beam model with

stereo uses an modified model [21] that also uses wall

features. The main difference to the laser beam-model is a

that it rejects outliers.

For our experiments we use a non-holonomic mobile robot

manufactured by Bluebotics with an additional SICK LMS

200 laser range finder mounted to its front. We use the

MOVEMENT prototype b/w stereo sensor [22] with vertical

camera alignment and approx. 90 degrees field of view.

The sensor is oriented into the robot’s driving direction

and mounted at a height of 30 cm over ground. We use

the Videre-Design SRI stereo engine for dense stereo-data

calculation at a resolution of 640x480 (VGA) and using 96

disparities.

We choose a typical office environment (see fig. 11) for

data acquisition using the camera system, odometry and

laser data. An external sensor system (multiple vision and

laser scanners) for ground truth with a precision of 2cm is

used. We use two different maps of the same environment:

The first map contains the full environment like traditional

localization systems [3], [21], [9]. The second map of the

environment consists only of wall and ground segments like

the footprint of a building. Please note that the furniture

(in green) is only shown the sake of completeness but not

included in the map. This is done on purpose to demonstrate

the robustness and accuracy of our approach. The data of

17



0 25 50 75 100 125 150 175 200

10

100

1000

E
rr

or
 Y

 (c
m

)

0 25 50 75 100 125 150 175 200

10

100

1.000

E
rr

or
 X

 (c
m

)

0 25 50 75 100 125 150 175 200
1

10

100

1.000

E
rr

or
 (d

eg
re

e)

time (s)

Laser Laser (max 4m) Laser (FoV 66 degree) Laser (Fov 66 degree, max 4m) Stereo

(a) Standard MCL observation model
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Fig. 10. Average error of the robot localization of the tour as shown in figure 11. Please note that both plots have different scale.
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Fig. 11. Sample map of the used environment. The robot is shown as black
circle/red line, green areas as furniture and walls as black . The furniture is
not mapped.

TABLE I

Average localization error of the complete data

MCL’s Model Our Model
translation rotation translation rotation

Sensor Error [cm] Error [deg] Error [cm] Error [deg]

Laser / full range, complete Map 1.825 1.176 2.135 1.023
Laser / full range, incomplete Map 3.864 4.776 2.253 1.383
Laser / 4m range, incomplete Map 23.396 31.589 1.825 1.041
Laser / FoV 66 deg, incomplete Map 32.975 47.166 1.994 1.175
Laser / Fov 66 deg, 4m, incomplete Map 25.190 21.716 2.736 2.750
Stereo Vison full range, incomplete Map 9.427 13.063 4.858 1.993

all sensors is recorded at 15 frames per seconds. All stereo

data is calculated off-line from the previously recorded

image pairs. We recorded representative eight tours through

our lab with a total length of approximately 1600 meters.

The robot moves with an average traveling speed of 0.65m
s .

In order to demonstrate the robustness and accuracy of our

model, we additionally constrain the SICK laser scanner in

its range of sensing and field of view.

Now let us consider one tour of the recorded data set in more

detail: The robot starts at the desk at the bottom of the map

and moves through the office in s-curves to the long corridor.

After passing the corridor the robot enters a spacious office

environment and moves through it. At the end, the robot

leaves the spacious office and stops in the middle of the

corridor.

Table I shows the average localization error on the complete

data set. First we see that the unconstrained laser scanner

with a complete map shows a good accuracy with the Beam-

Model and our Model. Well, this result is not unexpected,

MCL has already been proven a robust and precise method

TABLE II

Average error of the approximated model compared to the reference

implementation

Translative Rotative Approximated execution

Iterations Error [cm] Error [deg] Area [%] time [ms]

1 +89.985 +25.137 51.687 2
2 +32.269 +8.425 66.005 3
4 +28.872 +6.188 79.367 6
16 +26.105 +4.185 92.375 26
32 +14.344 +3.351 95.765 52
64 +7.768 +1.655 97.154 103
128 +5.237 +0.183 97.780 205
256 +0.241 +0.076 98.52 406
reference implementation - - 100.00 1421

under these conditions. We want to emphasise that our

proposed model works as good as the usual model under

these conditions.

The usage of the footprint map shows an influence on MCL

while we still achieve a good accuracy compared to the

unconstrained one. Figure 10(a) shows a plot of the pose

error for the translative (X&Y, both relative to the robot

heading) part and rotative part. The curve shows a max

error of about 35cm before entering the large room. As

expected the unmapped furniture degenerates the accuracy

to a max error of 130cm, while the error of the angle shows

a similar scheme. The constrained map has less influence

on our model: The error shows a similarly smoothed curve.

The better accuracy is due to the better handling of visibility

information of the sensor data in contrast to the standard

beam model. The more we constrain the laser data i.e.

reducing the range, field of view or both, the more the

accuracy degenerates with MCL. Again, this behavior is

not unexpected. MCL relies on precise data in order to

maintain the believed robot pose. With limited sensing, it

has to rely on the motion model which leads to measured

drift as shown in the plots. Our proposed model has less

dependency on the constraint due to the fact that we are able

to explicitly use visibility information. This helps to avoid

the localization being stuck in local minima. For instance,

constrained Laser with 66 degree field of view and max. 4m

range is temporarily stuck in a local minimum at time index

160-170 while our model is not.

At last, we consider the accuracy of the approximated ground
space using integral images. The results are shown in table

II and in figure 12. We see that the rotaion error converges

much faster than the translation error. This is due to the non-

holonomic constraints of the robot we used.

VII. CONCLUSION

In this paper we presented a new area-based observa-

tion model for Monte Carlo localization. The model shows

good results in partially mapped environments where the

traditional MCL fails or shows poor performance. We also

demonstrated that the model is able to cope with a limited

sensing range, limited field of view or even stereo vision. The

approach performs as good as standard MCL under ordinary
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Fig. 12. Average Error of the Approximated Model compared to the
reference implementation

conditions like a completely known environment. The ap-

proximation with integral images and image decomposition

into squares provides a significant speed improvement with

an adequate additional error. It should be emphasized that

the area-based observation mode applies also to other sensor

modalities such as ladar or sonar.

Our next steps will aim for an extended approximation model

in 3D. Actually, the extension of integral images to 3D is

straightforward, but preliminary experiments have shown that

the extension from square to cubes decomposition of the

volume is inefficient from the computational point of view:

About 16x more iterations of the decomposition are needed

to achieve the accuracy of the 2D Model.
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