
A Simple Inexpensive Interface for Robots using the Nintendo Wii

Controller

Sven Olufs and Markus Vincze

Abstract— To have a robot at home might be great fun: it
could fetch and carry things. However it remains open how to
teach the robot the places it should go to in a manner that
is cheap and entertaining for the user. This paper presents an
easy-to-use interface that takes the robot on a virtual leash:
using the Nintendo Wii remote the user can go towards target
places while pointing at the robot. Using the inbuilt infrared
camera and accelerometers and a couple of LEDs on the robot,
the robot will follow the user. We show how a particle filter and
an interacting multiple model (IMM) Kalman can be configured
such that simple hand gestures with the Wii make the robot
follow the user’s intention. The concept has been implemented
on a mobile robot developed within the robotshome project. The
robot leash interface has been tested with 12 volunteers who
are interested in new technology but have never controlled a
robot. The result is that most users could within a few minutes
show the robot the first three places in a home environment.
Given the little cost of the interface (about $ 50) the proposed
robot leash is a promising human robot interface.

Disclaimer: We do not propose the usage of the Nintento
Wii remote for commercial robot projects. It is only used for
proof of concept.

I. Introduction

Apple released the first personal computer ”PC” on June

5th, 1977 for the mainstream market. Experts proposed that

a commercial success of personal computers will depend on

their market price and usability. Apple’s computer was cheap

($1298), ease to use via onboard BASIC, and thus became

the first successful home computer for the mainstream mar-

ket. Today we know one of the main reasons for the success

that was totally underestimated: the Apple II was fun to use.

Due to a wide and quickly growing developer community in

the pioneering age of personal computers, a wide range of

(free) computer games was available. Even people without

any previous interest in computers found easy access to this

”new world” via games. Today we see the same development

with Appls iphone. That’s why we propose that an interface

to a robot must be fun for the user, and inexpensive.

The BASIC interface of the Apple II was quite primitive

compared to today’s computer/robot state of the art inter-

faces, there was no graphical interface or no mouse. But to

assume that current user interfaces are much easier to use is

a post hoc fallacy. Let’s face it: there are no things in the

real world like ”Windows”, ”Start” menus or ”Sliders” as in

Microsoft’s Windows or Apple’s MacOS. Even the peripheral

The research leading to these results has received funding from the Eu-
ropean Community’s Sixth Framework Programme (FP6/2003-2006) under
grant agreement no FP6-2006-IST-6-045350 (robotshome)

Sven Olufs and Markus Vincze are with the Vienna University of
Technology, Automation and Control Institute, Gusshausstrasse 30 / E376,
A-1040 Vienna, Austria

interfaces itself, i.e., mouse, keyboard etc., is for the most

people still a myth, especially the elderly. In the case of a

robot interface this is even more difficult. For instance, using

a joystick to steer the robot like a toy RC-car is easy, but hard

to manage for inexperienced users. In fact, even for many

simple interfaces an assistance system would be needed.

In this paper we present an inexpensive interface (total

hardware costs less than $50) for mobile robots that is easy-

to-use and fun-to-use. Instead of considering the robot as

a mere piece of technology, we consider the robot as a pet.

For instance, we control the robot like a dog, i.e. by a virtual

leash to guide it and by using simple gestures. Commands for

a robot can be ”stay”, ”follow”, ”bring xy” etc. In practice

the recognition of spoken words or the visual detection of

the user & gestures is quite hard. We equip the user with

dedicated hardware that simplifies the recognition process:

the Nintendo Wii Remote.

The Wii remote (approx $40) is a quite interesting device

for human robot interfaces, because it is inexpensive and

equipped with an infrared camera. The main idea is to equip

the robot with patterns of infrared beacons (custom build

approx $10) that are used to calculate the relative pose to

the user. An additional sensor in the Wii allows also tracking

the pose when no beacons are visible. If the robot has a

basic understanding of the environment and its pose, we

can also extend the interface with ”pointing to things” for

manipulation.

This paper is organised as follows: The next Section gives

a brief overview of the related work. This is followed by

a description of the concept of the interface. In section 4

the Nintendo Wii is presented. Sections 5 and 6 present

the technical details of our implementation as well as the

experimental setup. Experimental results are presented in

Section 7. Finally, we discuss the results and the approach

in section 8.

II. RelatedWork

Our interface is based on the idea that for interaction we

identify the position of the user and the direction he/she is

pointing. The related literature propose many approaches,

for example vision based ones: Waldherr et al. [1] proposed

an vision based gesture interface that is able to detect and

recognize up to four gestures (Left, Right, Turn, Stop, etc).

It is based on colour tracking for human identification and a

neuronal network for gesture detection. The user must stand

face to face with the robot. The direction of pointing is

indirectly obtained using the gestures. Instead of neuronal

networks, Isard and Blake [2] used active contours to track

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 473

hand gestures and the human silhouette with a multi hypoth-

esis system in camera images. In contrast to [1] it is able to

detect the orientation of the fingertips, but not to detect the

arm of the user. [3] is using an opportunistic approach by

attaching the camera directly to the human head instead of

the robot. The user’s hand is tracked through colour trackers

and gestures are detected through Hidden Markov Models.

The environment is mapped in 3D, the pose of the human is

known.

Another approach is the usage of external devices. The

easiest device are buttons or touch screens. In this case, the

pose of the user is not important. Recent robot projects like

Minerva [4] have shown that such interfaces are suboptimal:

Due to their technical nature they were not understood

by most of the audiences. Kemp et al. [5] used a laser

pointer to point to things that the robot shall grasp. The

robot is equipped with an omnidirectional camera with an

appropriate filter for the wavelength of laser i.e. only the laser

beam is visible in the image. An additional stereo camera

detects grasping points on the objects. Corrales [6] used an

opportunistic approach like [3]: the user wears a jump suit

that is equipped with gyroscopes and accelerometers. The

position of the user is known through an external localisation

system.

The use of the Wii as robot interface has become quite

popular in the last years. Rehm et al. [7] uses the accelerom-

eters for gesture recognition, while Connolly [8] used the

accelerometers for robot arm control. Guo and Sharlin [9]

used two Wii remotes to control humanoid robots with the

accelerometers.

Please note that the use of IR-Cameras and beacon is quite

popular [10] in the Augmented Reality Community. The

method is vice-versa to our approach: Multiple external ir-

cameras are used and the user is equipped with beacons.

The matching of the beacons is commonly done with the

well known 3 point or 4 point algorithm.

III. Concept of the interface

The main idea of the interface is to guide the robot through

the environment on a leash like a dog, i.e. to show it around

in an unknown environment: the robot is guided to a position

through straining at the leach. The use of the Wii Interface

and robot is easy: The user takes a position in front of

the robot and points the Wii to the centre of the robot.

The relative pose of the user is detected using the infrared

beacons on the robot and the Wii’s infrared camera. The

robot tries to keep a constant distance (1.2m) to the Wii by

moving forward or backwards. For instance, a distance of

0.8m will result in a backward motion of the robot (pushing).

The robot also tries to keep the angular orientation to Wii.

That is, the robot will turn left when the user moves the

Wii to the left. This allows the user to guide the robot

through the environment by walking ”in front” of the robot.

Once the environment is learned (or a-priori known) we can

assign nodes in the environment and send the robot to the

nodes through gestures. The nodes are also learned through

gestures. Using nodes simplifies the use of gestures due to

the fact that the user does not have to do ”precise” pointing

all time. Now we use can use another application of the

interface i.e. ”point to things” that the robot shall manipulate.

This is possible because the robot knows its position in the

environment and can detect and track the user by means

of the Wii remote. Please note that manipulating does not

always mean to grasp objects: For instance, if the user points

the remote at a lamp, it can be switched on/off, or pointing

at tv set can be used to change the channel. To enable this,

the robot would dispose of a device to remotely control

appropriately euipped power plugs or be integrated into a

home automation system.

IV. NintendoWii Remote

IR Camera

3-axis Accelerometer

Fig. 1. Nintendo Wii Remote

The Nintendo Wii remote is a commercial product that

is used as wireless bluetooth input device or ”game pad”

for the Nintendo Wii video game console. The Wii is the

fifth home video game console released by Nintendo. The

console is the direct successor of the Nintendo GameCube.

Figure 1 depicts the Wii Remote. It has been available

since spring 2007 worldwide and it is inexpensive. It

assumes a one-handed remote control-based design instead

of the traditional gamepad controllers. The remote has extra

sensors for measuring the relative movement and rotation

of the controller in 3D Space via 3-axis accelerometers.

The sensor is located in the centre of the remote. This

sensor enables us to recognize gestures, e.g. using hidden

Markov models [11], [7]. Nintendo and AiLive Inc. offer

a gestures recognition software development kit that uses

SVN and neuronal networks. The remote also features

a simple actuator: the ”rumble kit” for tactile feedback.

Furthermore, it contains a CMOS ”PixArt Multi-Object

Tracking” infrared camera that is able to simultaneously

track up to four infrared beacons. Nintendo uses two active

infrared beacons to initialise the 3D pose of the controller

in a 2D Plane (the beacons are usually placed below the

screen connected to the Wii game console). The sensor has

a resolution of 80x60 pixels and is able to detect blobs

at this resolution (only bounding boxes of the blobs are

provided through the interface). Additional information i.e.

centre of gravity of the blob is provided with 1
4 sub pixel

precision.

474

visible quasi point like beacon

visible directional beacon

invisible quasi point like beacon

invisible directional beacon

Fig. 2. Technical implementation of our Approach: The user points the remote at the robot (gray box) to localize the user relative to the robot. The
a-priori known active beacons are detected through the IR-camera of the remote and the pose is tracked using monte carlo techniques. Each side of the
robot shows a unique beacon pattern that is easy to distinguish. Two kind of infrared beacons are used: directional light source beacon and quasi point
like light source beacon with a angle of beam of 30 degree and 180 degree respectively. The approach takes also the visibility (occlusion by the robot) of
the beacons into account.

Nintendo announced in 2008 an extension for the Wii

Remote: the Motion-Plus. The device incorporates a dual-

axis ”tuning fork” angular rate sensor, which can determine

rotational motion. The information captured by the angular

rate sensor can then be used to distinguish true linear motion

from the accelerometer readings. This allows for the capture

of more complex movements than possible with the Wii

Remote alone.

V. Technical Implementation

Our technical implementation is inspired by the Nintendo

Wii video game console: It is based on the concept that

the user actually points to the desired position on the

screen with the input device itself instead of controlling the

console via a joystick or mouse. This is done using pose

estimation via triangulation using two active a-priori known

beacons. We use a different setup to obtain the position of

the controller in 3D by extending the beacon setup itself

to 3D. We equip the robot with a-priori known beacons

with specific unique pattern on each side of the robot that

is easy to distinguish (see Figure 2). We use two kind of

infrared beacons: directional light source beacon and quasi

point like light source beacon with a angle of beam of 30

degree and 180 degree respectively. Both types of beacons

are made of five infrared diodes that are aligned in quasi

star like orientation. The quasi point like beacons uses an

additional prism to extend the angle of beam. Please note

that a typical infrared diode has a angle of beam approx. 16

degree.

The pose is estimated by applying a variant of Markov

chain monte carlo filters to the data: the monte carlo locali-

sation (MCL). MCL is a popular approach to self localisation

of mobile robots introduced by Fox et al. [12]. It is a

Bayesian probabilistic method, in which the position of

the robot is represented by a set of n weighted particles.

Each particle contain a ”believed” position with an assigned

probability π. The pose of the robot is estimated by using

the observations as a likelihood function of the believed

poses/states while MCL attempts to maximise the likelihood

of the beliefs. We denote Φ(x,y,z,α,β,θ) for the pose of the

Wii (and particles): x/y/z represents the absolute position

in polar coordinates and α,β,θ for roll, pitch and yawn

respectively. The point (0,0,0) denotes the centre of the

robot.

MCL uses the sensor readings of the infrared camera,

accelerometers readings and the a-priori known visibility

information of each beacons to estimate the pose of the

Wii. It is assumed that even a point-like beacon is not

visible through the robot body itself. The MCL framework

provides a framework that is able to deal with outliers and

provides also a framework for tracking using sensor and

motion models i.e. even if no sensor data is available. The

Wii remote is able to track and detect up to 4 light sources i.e.

so the beacons and other light sources that emits light in the

infrared spectrum (normal lamps does). Due to this limitation

it is not feasible to use the well known 3 or 4 point algorithm

or RANSAC for pose estimation. Experiments have shown

that approx 2.1 beacons are visible using the Wii interface;

In 31% no (true) beacon was visible in the field of view of

the camera.

A. Monte Carlo Localisation
As all Bayesian filters, MCL methods address the problem

of estimating the state x [13] of a dynamic system from

measurements or sensor readings. The control theory de-

scribes a dynamic system as an interaction model between

a controller and its environment. Both entities interact with

each other through signals y and actions u. The signal is

taken as an input of the controller and contains observations

or measurements of the environment, i.e. observational data

such as features extracted from images. The action is the

output of the controller and is also considered as a measure-

ment, e.g. accelerometers data containing information about

Wii motion. The Bayes filter assume that the environment

is Markov, i.e. past and future data are (conditionally)

independent if one knows the current state.

The implementation of a MCL requires two things: the

motion model and the sensor model. The motion model is

used to integrate the actions u to the current pose/state while

475

the sensor model integrates the observations. The usual MCL

algorithm works recursive in four different stages: (1) first,

in the prediction stage the motion model is used to integrate

the actions u to all particles e.g. the particles are simply

moved. In the following stage (2) the observations are used

to update the weight π of the particles. Next (3) the weight of

all particles is normalized to one. At last (4) the particles are

resampled to get the posterior distribution. Technically the

resampling discards particles with low weights and moves

it to a specific (random) particle with a high weight. In our

implementation we move to position of the new ”offspring”

particle in respect to the weight of the parent particle i.e. a

low weight of the parent particle will result in a relative high

translation. The next section gives the used models that are

needed to implement MCL.

B. Motion Model

The motion model p(xt |xt−1,ut−1) represents the effects of

action ut−1 on the Wii’s pose (here xt) in respect to the pose

in the last time step. We expect that the Wii is moved by

rotation and translation. Our kinematic model assumes the

rotational center in the elbow joint of the user, see Figure 3.

This assumption enables us to obtain to rotational speeds of

roll, pitch and yawn from the accolometers. In experiments

we figured out that this assumption ussally holds true: In

90 % of all cases the remote was used properly. To obtain

the rotational and translative speeds some addinal work is

needed.

Fig. 3. Kineamtic model of the Wii remote. The rotational center of roll,
pitch and yaw is in the elbow joint.

1) Accelerometer data processing: An accelerometer is

measuring acceleration and gravity induced reaction forces.

One can see that the acceleration can be easily obtained if the

influence of the gravity is known. In the case the Nintendo

Wii the influence of gravity on the remote is not known

due to missing sensors which measures rotational speeds

e.g. gyroscopes. We use the particle filter system itself to

compensate this: The believed pose (including orientation)

of each hypothesis is used to guess to guess the gravity

individually for each particle. Due to the theory of particle

filters particles [14] with a proper pose (and orientation) will

survive in the sample set and populate the resample set. In

theory the set will convert to ”good” values after several (> 3)

time iterations if beacon are detected. Finally the acceleration

can be obtained simple vector algebra.

As next we have to extract the rotational and translative part

from the processed acceleration of the Wii. The problem

here is that a direct mapping is not possible from a three

dimensional vector. For instance the absolute angles of pitch

and roll can be easily obtained if the remote is not moved

i.e. using the accelerometers output as gravity vector. In the

case of a (fast) moving Wii we can only obtain the rotational

and translative parts with a certain probability. We use the

length of the 3-axis vector �axel of the raw accelerometers

data to calculate the probability τ with a weight function τ =
gaussianFunction(a|1g− | �axel||,μ,σ). The parameters a,μ,σ
are learned with ground truth data. Due to spread of standard

factory models the learning process is necessary for all new

(not yet unused) Wii remotes. Finally we translate the angles

of pitch and roll into rotational speed values.

2) IMM Kalman: We use the standard Interacting multiple

model (IMM) Kalman [15] filter as framework for our

motion model. The IMM framework provides for multiple

models by allowing distinct process noise models for each

of the underlying motion models. The extension to extended

Kalman filters with IMM is straightforward. We use two

independent models in our implementation: a model for a

moving remote and a model for a non-moving Wii, both first

order for translation and rotation. Each particle uses own

individual IMM Kalman filters instead of a global IMM filter

for all particles.

C. Sensor Model

The sensor model is the heart of the MCL. It reflects

the probability of measuring yt if we assume that the state

of the Wii is xt. In our case yt is the data obtained from

the camera sensor. Let m be the number of observations

coming from the camera Ψ = {Ψ1, ...,Ψm} and k be the

number of the a-priori known beacons Ω = {Ω1, ...,Ωk}.
Each Ψ reflects a possible sensor reading of Ω so first a

data association is needed. Unfortenatly the problem of a

optimal association is NP-hard with known solutions like

combinatorial optimization approach e.g. MHT (multiple

hypothesis tracking) [16], [17] or sequential Bayesian

approach e.g. JPDAF (Joint probabilistic data association

filter) [18]. Due to the fact that we use a multi hypothesis

tracking system above, it is not needed to track all data

associations over time. We use an exhaustive search

algorithm (O(n2)) in each time step instead. The algorithm

works as follows: First a Ψ ×Ω matrix of the euclidian

error of all possible combinations of Ψ1...m and Ω1...k is

calculated. The euclidian error is the minimal distance of the

projected view ray of Ψi|xt to the point Ωl|xt. Note that Ωl|xt
is ∞ if the beacon is not visible from xt due to occlusion

of the robot itself or angle of beam of the beacon itself.

Now the algorithm searches the smallest error in the matrix

and assigns the sensor data i exclusively to the beacon j: Ψ j
i .

476

We use the following model to calculate the likelihood:

p(yt |xt) =

m∑

i=0

p(Ψ j
i |xt)p(Ω j|xt) (1)

Here it is also assumed that all observations are indepen-

dent from each other. Here p(Ψi|xt) calculates the probability

of every observation with respect to the believed pose (of the

particles). In contrast to the approach in literature [19] we are

summing up the probabilities instead of multiplying them.

This enables a lower sensitivity of (few) ”bad” observations

to the probability. p(Ω j|xt) reflects the probability that the

beacon Ω j is visible from an specific angle i.e. xt. We use a

gaussian weight function using the angle depending on the

type of beacon (quasi point or directional). The likelihood

function p(Ψi|xt) is defined as

p(Ψi|xt) =
c2

c2+B(Ψ j
i , xt)

2
(2)

The function is very similar to the squared error function for

errors B(Ψ j
i , xt) ≤ c and is bounded above by a constant for

larger errors, thus the influence of outliers onto the estimate

is bounded. We do not use a squared error function due to it

is not robust with respect to outliers. In our implementation

we choose c≈ 50. B is a function which returns the euclidian

error from the matrix of Ψ
j
i .

D. Initialisation and Pose estimation

For initialisation the user has to point the Wii remote

steady to the centre of the robot. This ensures that sensor data

is available and reduces the state space during initialisation.

Yaw is zero and roll and pitch can be read out of the

accelerometers. The initialisation of the system itself is done

in the monte carlo fashion: All hypothesis are randomly

distributed in the state space on the x/y/z axis.

In analogy to traditional monte carlo approaches our pose is

obtained by building the weighted average of all particles.

In the case of no available sensor information of the camera

the motion model is only applied to the particles. Here the

particles are just moved and not resampled. Due to drift of

the sensors we use an additional damping factor of 95% for

the motion model if no camera data is available.

VI. Experimental Setup

For our experiments we use a quasi-holonomic mobile

robot (Fig. 4) ”James”. James is based on the BlueBotics

platform "Movement" [20] and is equipped with an SICK

LMS 200 laser range finder mounted to its front and two

stereo cameras for navigation. With a payload of 150 kg, the

platform has a maximum speed of 5km/h.

We mounted four quasi point-like ir- beacons and three

directional ir- beacons on James. All beacons are visible

if the remote is places in front of the robot and points to

its centre. The quasi point-like on top of the setup are 170

degrees visible from the front of the robot. This is due to

construction issues of the robot itself. The other quasi points

like beacons on bottom are almost visible from all sides of

quasi point like beacon

directional beacon

Fig. 4. Implemention of the interface on our robot James

the robot. The MCL prototype is implemented in Matlab

on a Laptop with 1.6Ghz Pentium M. and runs with 5Hz

with 40 particles in the normal use and 200 particles in the

initialisation phase.

VII. User Trails and Results

In this section we describe the evaluation of the Wii ”vir-

tual leach” interface with a reprehensive group of volunteers.

The main concept of the evaluation is to let a volunteer to

guide the robot to three specific spots in a test living room

(Fig. 5) in a specific order (1 to 2, 2 to 3 and 3 to 1) as fast

as possible using the Wii interface. After a short instruction

the volunteer had to guide the robot without any help of the

instructor. For the sake of simplification we place the robot

at spot no 1 as start spot for all trails. The environment itself

and spots are identical for all volunteers.

The test environment consists at of two rooms with a

driveable area of 15m2. The room on the left-hand side is a

typical living room with at two seating-accommodation; The

right room is a workroom. The room layout offers enough

space for three non overlapping ”spots of interest”:

1) A start spot that is easy to access.

• min 1.5m to the margins

2) A second spot that is difficult to reach and to leave.

• 0.2m - 0.3m to the margins left and right, min

1.5m to the front

3) A third spot that is close to solid furniture and provides

a (partial) different type of ground surface e.g. carpet.

• max 0.3m to the furniture in front, 0.5m-1m left

and right

The different margins of each spot are defined on purpose.

The first spot is easy to give the volunteer a chance to

477

1

2

3

Fig. 5. Panoramic view of the used test environment. Three spots are marked with a black 1x1m square. The arrow shows the required orientation of the
robot for each spot.

30 cm
80 cm

(a) Spot 2

50 cm

(b) Spot 3

Fig. 6. Details of the environment

get a ”feeling” for the interface and robot. The second

spot requires advanced navigation skills to move the robot

through corridor (Fig. 6(a)). The narrowness of the corridor

has also another purpose: It is too tight to fit a human and

robot at the same time. This prevents the volunteer to pass

the robot while it’s moving though the corridor. As a side

effect the volunteer has only two chances to leave the place

with the robot: The robot must be turned 180 degree or

”pushed back”. The idea behind spot three is similar to the

previous one: The place does not offer enough space in front

of the robot (Fig. 6(a)) for the volunteer to reach the spot.

At least 1.2m free space to the furniture would be needed

to reach the spot. Please note that the user must be in front

of the robot. It is on purpose that the user has to ”move

around / move behind” the furniture first. In our setup we

used a small coffee table on a carpet. The alignment of

the carpet relative to the spot is again on purpose: The

robot has to turn to the left to reach the start position; it is

likely that at least one wheel1 runs on the carpet while the

other wheels still run on the regular ground. In our setup

the carpet provides a much better grip than the (slippery)

normal ground. Now the robot is more difficult to control.

We asked a group of 12 volunteers to use the Wii interface

for evaluation. The mean age of the group is 30 years old

(i.e. 21-38). The overall experience using robots is ranging

form ”first time I touches a robot” to ”I know how use a

remote controlled toy car”. Almost all volunteers consider

themselves ”open to new technologies”. First, every volun-

teer was instructed who to use the interface and the robot

(approx 30sec), by the typical learning-by-doing approach.

Then the user had to control the robot to all spots in the

specific order 1 to 2,2 to 3 and 3 to 1 with no help from the

instructor. A spot is considered as reached if:

• The robot is surrounded by the 1m x 1m black square

on the ground (see Fig. 5)

• No part of the robot is touching the black square

• The orientation of the robot is the desired orientation of

the spot

• The robot is inside the area for at least 2 seconds

Every user was allowed to do a restart or try a better/faster

trail with the robot once. All volunteers were able to guide

the robot through the environment with ”almost” no touching

of the environment during the first run. All volunteers were

willing to try a second trail; a restart was not needed by any

user. The second run was almost 20% faster than the first

one.

00:00 01:26 02:53 04:19 05:46 07:12 08:38 10:05

Time (mm:ss)

Fig. 7. Results of the User Trails. The fastest run per volunteer is counted.
The diamonds represents the Wii interface, the square the average time for a
touch-panel interface and the triangle average the time of a joystick interface

Figure 7 shows the time for the fastest run per volunteer.

The time for a touch panel and joystick interface are

provided for the sake of completeness. One can see that the

average time is in good company with the touch panel and

joystick interface.

As expected the corridor of spot no. 2 was the most difficult

part of the environment. No user tried to ”push back” the

robot to leave the spot and move to spot no 3. All tried to

turn the robot ”on-spot”. The two different types of ground

was no problem for the most users. In fact all users were

478

surprised that the robot reacts total different with two types

of ground with different grip (see above).

Two volunteers underestimated the speed of the robot and

hit slightly the corridor of spot no. 2. Another volunteer

managed to bend a metal trashcan by moving the robot back-

wards. One user stated: ”I did not understand the concept

behind the interface, but its fun”. 10 of 12 liked to interface,

the rest was unsure. All in all the interface was well accepted

by the users.

VIII. Conclusions

In this paper we presented an approach for an inexpensive

interface for Robots using the Nintendo Wii Remote. It

is build from inexpensive hardware i.e. the Nintendo Wii

Controller and a couple of infrared LEDs. The needed

computational power for computation is manageable and ad-

justable trough the number of hypothesis. We were surprised

that the interface was quickly accepted by most of the users

(Fig. 8).

1

2

3

4

5

6

Int
erf

ac
e D

es
ign

Int
erf

ac
e C

on
ce

pt

Int
erf

ac
e U

sa
bil

ity

Eas
e t

o U
se

Fun
-to

-U
se

Doe
s it h

elp
yo

u ?

W
ill y

ou
 re

co
men

de
d i

t ?

Fig. 8. Results of the User Interviews. ”1” is best, ”6” is worse.

First implementations of the leach (the robot & Wii was

connected through a leach) have shown that a real leach is

inefficient: The leach was almost wrapping the robot after

a short amount of time. It turned out that a virtual-leach is

much easer to handle, but it is difficult to understand. One

user complained the missing haptics-feedback of the virtual

leach compared to a real leach which is a clear drawback of

our approach. Another drawback is the limited accuracy of

the accelerometers inside the Wii. Slow motions (< 1.5 cm
s)

are not recognized by these sensors. We plan to extend our

approach by the usage of cyclic switch on/off ir-beacons

running at different a-priori known frequencies e.g. 1Hz and

0.33Hz to improve the robustness to false positives. The

accuracy of our approach can be improved using the Wii-

motion plus.

IX. Acknowledgments

The research leading to these results has received funding

from the European Community’s Sixth Framework Pro-

gramme (FP6/2003-2006) under grant agreement FP6-2006-

IST-6-045350 (robotshome). We thank all our participants

who spent their time and efforts for the user trials. The au-

thors gracefully acknowledge the support of Peter Einramhof

and Manuel Pascual.

References

[1] Stefan Waldherr, Roseli Romero, and Sebastian Thrun. A gesture
based interface for human-robot interaction. Autonomous Robots,
9(2):151–173, 2000.

[2] Michael Isard and Andrew Blake. ICONDENSATION: Unifying low-
level and high-level tracking in a stochastic framework. Lecture Notes
in Computer Science, 1406:893–908, 1998.

[3] Walterio Mayol, Andrew J, Davison, Ben Tordoff, Nick Molton, and
David W. Murray. Interaction between hand and wearable camera in
2d and 3d environments. In Proceedings of British Machine Vision
Conference (BMVC), 2004.

[4] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, F.
Fox, D. Hähnel, G. Lakemeyer, C. Rosenberg, N. Roy, J. Schulte, D.
Schulz, and W. Steiner. Experiences with two deployed interactive
tour-guide robots. In Proceedings of the International Conference on
Field and Service Robotics, Pittsburgh, PA, 1999.

[5] Charles C. Kemp, Cressel D. Anderson, Hai Nguyen, Alexander J.
Trevor, and Zhe Xu. A point-and-click interface for the real world:
laser designation of objects for mobile manipulation. In Proceedings
of the 3rd ACM/IEEE international conference on Human robot
interaction (HRI), 2008.

[6] J. A. Corrales, F. A. Candelas, and F. Torres. Hybrid tracking of
human operators using imu/uwb data fusion by a kalman filter. In
Proceedings of the 3rd ACM/IEEE international conference on Human
robot interaction (HRI), 2008.

[7] Matthias Rehm, Nikolaus Bee, and Elisabeth André. Wave like
an egyptian Ů accelerometer based gesture recognition for culture
specific interactions. In Procedings of HCI 2008 Culture, Creativity,
Interaction, 2008.

[8] Christine Connolly. Kuka robotics open architecture allows wireless
control. Industrial Robot: An International Journal, 35(1):12–15,
2008.

[9] Cheng Guo and Ehud Sharlin. Exploring the use of tangible user
interfaces for human-robot interaction: a comparative study. In
Proceeding of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, 2008.

[10] T. Pintaric and H. Kaufmann. Affordable infrared-optical pose tracking
for virtual and augmented reality. In IEEE VR Workshop on Trends
and Issues in Tracking for Virtual Environments, 2007.

[11] Timo Pylvänäinen. Pattern Recognition and Image Analysis, chapter
Accelerometer Based Gesture Recognition Using Continuous HMMs.
Springer Berlin / Heidelberg, 1th edition, 2005.

[12] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localisa-
tion: Efficient position estimation for mobile robots. In the National
Conference on Artificial Intelligence, 1999.

[13] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert.
Robust monte carlo localization for mobile robots. Artificial Intelli-
gence, 128(1-2):99–141, 2000.

[14] Dan Crisan. Particle filters - a theoretical persperctive. In Arnaud
Doucet, Nando de Freitag, and Neil Gordon, editors, Sequential Monte
Carlo Methods in Parctise, pages 17–41. Springer New York, 2001.

[15] H.A.P. Blom and Y. Bar-Shalom. The interacting multiple model
algorithm for systems with markovian switching coefficients. IEEE
Transactions on Automatic Control, 33(8):780–783, Aug 1988.

[16] D.B. Reid. An algorithm for tracking multiple targets. IEEE
Transaction on Automatic Control 24(6), pages 843–854, 1979.

[17] Yaakov Bar-Shalom and Thomas E. Fortmann. Tracking and data
association. Mathematics in science and engineering ; 179. Boston,
first edition, 1988.

[18] D. Schulz, W. Burgard, D., Fox, and A.B. Cremers. People tracking
with a mobile robot using sample-based joint probabilistic data asso-
ciation filters. In International Journal of Robotics Research (IJRR).
Springer, 2003.

[19] Sebastian Thrun, Dieter Fox, and Wolfram Burgard. Monte carlo
localization with mixture proposal distribution. In AAAI/IAAI, pages
859–865, 2000.

[20] P. Mayer, G. Edelmayer, G.J. Gelderblom, M. Vincze, P. Einramhof,
M. Nuttin, T. Fuxreiter, and G. Kronreif. Movement -modular versatile
mobility enhancement system. In Procedings of IEEE International
Conference on Robotics and Automation (ICRA), Rome, 2007.

479

