
Optimal Path Planning in the Workspace for Articulated Robots

using Mixed Integer Programming

Hao Ding†∗, Mingxiang Zhou∗, and Olaf Stursberg†

Abstract— This paper considers the task of path planning
for articulated robots such that the end effector is driven
optimally between two points in the workspace while collision
with dynamic obstacles is avoided. Compared to path plan-
ning in the configuration space, approaches in the workspace
save the computationally expensive step of mapping obstacles
from the workspace into the configuration space. The method
presented here builds on a problem formulation as a mixed-
integer program considering time-varying constraints resulting
from moving obstacles, as well as state and input constraints
depending on the region of the work space. The method is
applied to a two-link robot with static and moving obstacles
and is evaluated for different situations.

I. INTRODUCTION

The task of path planning for articulated robots means to

find a feasible path from an initial to a goal configuration

of the robot such that no collision with obstacles occurs.

The latter may be considered to be fixed in their position or

to have an own dynamic behavior. In addition to feasibility

of path generation, the property of performance becomes

important if, e.g., the time or usage of resources required to

reach the goal configuration has to be minimized – however,

optimizing performance in path and trajectory planning of

articulated robots is much less investigated as the case where

only the determination of feasible paths is to be achieved.

For the latter case, several algorithms and approaches have

been developed in the last decades, see e.g. [3], [16] for

recent overviews of corresponding techniques. An important

class are potential field methods which combine repulsive

potentials of obstacles (to account for collision avoidance)

with an attractive potential of the goal, see [8] for an early

treatment of this idea. Using randomized methods for escap-

ing from local equilibrium states, the robot can in many cases

be driven to the goal without collision, however, obtaining

a feasible solution is not guaranteed. (For techniques which

certainly provide a feasible path if one exists, we use the term

complete method, according to [5]). In addition, an optimal

or high performance of the motion (in the above sense) is

not considered.

In order to reduce the complexity of the planning problem

and abstract it in a unified way, the configuration space

(C-space) is often introduced, the dimension of which is

equal to the number of degrees of freedom (DOF) of the

robot. The planning problem for the whole robot body in

† Hao Ding and Olaf Stursberg are with the Institute of Control and
System Theory, Dept. of Electrical Eng. and Computer Science, University
of Kassel, Germany. (hao.ding@tum.de, stursberg@uni-kassel.de)

∗ Mingxiang Zhou was with the Institute of Automatic Control Engineer-
ing, TU München, Germany.

the workspace can be reduced to path planning for a single

point (the configuration) in the C-space. Several methods for

path planning in this space have been suggested before, like

e.g. the exact and approximate cell decomposition methods

presented in [10]. The difficulty of planning in the C-space

lies in the obstacle representation, in particular for robots

with many DOF and for dynamic obstacles. As a remedy

to this drawback, sampling-based algorithms have been de-

veloped, as rapidly-exploring random trees (RRT) in [9] and

probabilistic roadmaps (PRM) in [7]. By random sampling in

the C-space, a tree or a roadmap can be built for determining

a connection of the start and the goal configuration (two

points in the C-space). The validation of the samples for

collision avoidance is checked by mapping the sample into

the workspace using forward kinematics. Based on the tree

or the roadmap, search algorithms like A* [14] or D* [17]

can be used to find the path. However, the completeness of

the sampling-based algorithms can only be guaranteed in a

probabilistic sense [1], i.e. the methods are guaranteed to

find a feasible solution (if one exists) only for the limit of

infinitely many samples. Moreover, the path is not optimized

with respect to a given performance criterion like minimum

energy or time.

Therefore, Blackmore and Williams developed a complete

algorithm for planning paths of robotic manipulators directly

in the workspace [2]. The method extends the formula-

tion for planning of mobile robots in [12], [13], [15] to

articulated robots. The optimal trajectory is computed by

disjunctive programming, taking into account the kinematic,

dynamic, and obstacle constraints. The optimization with

regard to, e.g., the minimization of the energy consumption

is considered and the completeness of the method can be

guaranteed. Furthermore, the costly mapping of obstacles

from the workspace to the C-space is avoided. A lower-level

controller, e.g. a PID controller employing computed torque

principles, is used to track reference trajectories for the

velocities and positions of each joint, where the trajectories

represent the series of points obtained in the path planning

step.

This paper exploits and extends the method presented in

[2] in the following aspects:

• The approach presented here is extended to the case

of varying constraints, i.e. state and input constraints

differing between different regions of the workspace

and, in particular, time-varying state constraints result-

ing from the requirement of collision avoidance with

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5770

dynamic obstacles1. The basic technique proposed for

this task is mixed integer programming.

• The method is numerically evaluated with respect to

the computational time for (a) varying numbers of the

particles introduced for the robot links and (b) for

different discrete time steps required to move the end

effector into the goal. This investigation is carried out

for the example of a two-link robot with static and

moving obstacles.

This paper is organized as follows: the transformation

of the path planning task into problems of mixed integer

programming is described in Sec. II for the cases of static

and dynamic obstacles. Section III contains the numerical

results for the application to a two-link robot for different

configurations, followed by a discussion and an outlook on

future work in Sec. IV.

II. PATH PLANNING IN THE WORKSPACE USING

MIXED INTEGER PROGRAMMING

The task of path planning considered in this paper can

be summarized as follows: for optimizing a given perfor-

mance criterion, like minimization of energy consumption

or transition time, determine the best way of driving an

articulated robot from a start configuration into a specified

goal configuration while all relevant kinematic and dynamic

constraints in the workspace are satisfied, including in par-

ticular the avoidance of collision with static and dynamic

obstacles operating in the same space as the robot.

A. Collision Avoidance Formulation

To formulate the obstacle avoidance, we choose a scheme

similar to the one presented in [2]. The formulation is first

given for the case of a single point on a robot link and then

extended to articulated robots with a set of points (particles)

on the links and joints of the robot.

1) Collision Avoidance for a Single Point: A polyhedral

obstacle can be regarded as the intersection of N halfspaces

with outward normal vectors c1, . . . , cN , cj ∈ R
1×n and

position scalars d1, . . . , dN with dj ∈ R. Let x denote a

point in the Euclidean workspace X ⊂ R
n with dimension

n. The open region of X filled by the obstacle (possibly

including a safety area surrounding it) can be expressed by:

P = {x | C ∈ R
N×n, d ∈ R

N×1 : C · x < d}. (1)

To guarantee that a point lies outside the polyhedron

at least one of the N inequalities must be violated. The

sufficient condition to ensure a point outside the polyhedron

can be expressed using the ’Big-M’ method according to

[19]:

C · x ≥ d + (b − 1) · M, (2)

where b = (b1, . . . , bN)T is a vector of binary variables bj ∈
{0, 1}, 1 = 1N×1 a vector of ones, and M a large constant,

1Within this paper, it is assumed that the obstacle dynamics is known for
the planning task, i.e. the dynamics is identified from measured data or it
is communicated by the obstacle itself.

e.g. ∞. An equality contained in (2) is relaxed when the

corresponding bj has the value zero and is enforced for bj =
1. To achieve that a point x must lie outside the polyhedron

specified by (1), at least one among the N inequalities must

be satisfied leading to the following condition:

N
∑

j=1

bj ≥ 1. (3)

If the formulation according to (2) and (3) is considered

as a set of constraints for an optimization problem, it is

enforced that the optimizer never leads to a state x (e.g.

a joint position) which is contained in the region occupied

by the obstacle. If more than one obstacle has to be con-

sidered, the same formulation with corresponding matrices

C and d is introduced and considered in conjunction for the

optimization.

2) Collision Avoidance for Manipulators: To appropri-

ately describe the planning task for articulated robots, the

extension of the robot body has to be represented in X .

Selected points of the robot geometry (particles) are chosen

for this purpose. Assuming that the links form straight

lines between adjacent joints, the particles must satisfy the

following equalities:

xt
sl = λ · xt

q + (1 − λ) · xt
q+1, (4)

where xt
sl indicates the position of a point with index s on

a link l of the robot arm at time t. The link with index l
connects the two joints indexed by q and q + 1. For the

indices applies that l ∈ {1, . . . , L} for a total number of L
links and q ∈ {0, 1, . . . , Q− 1} for a number of Q = L + 1
joints including the end effector. By selecting λ ∈ [0, 1],
the position xsl of the particle is defined. The constraints to

enforce that each link of the robot lies outside of an obstacle

are obtained by substituting (4) for any particle into (2). The

number of particles has to be chosen such that the geometry

of any link is sufficiently represented in relation to the shape

of the obstacle(s). This means in particular that the distance

between two adjacent points on a link l must be smaller than

the size of every obstacle in any direction.

B. Kinematic Constraints

Again assuming that the Q joints of the robot are con-

nected by straight links, the kinematic constraints imply that

the distance between the joints q and q + 1 is equal to the

length rq,q+1 of the respective link, what can be expressed

by:

(xt
q+1 − xt

q)
T · (xt

q+1 − xt
q) = r2

q,q+1 (5)

with q ∈ {0, . . . , Q − 1} and t ∈ {1, 2, . . . ,H} where H is

the number of considered discrete time points.

If this constraint is used within an optimization which

requires linear constraints (as is the case for mixed inte-

ger linear programming below), the quadratic form of the

equation must be replaced. This can be achieved by using

the approximation of a conjunction of a circumscribing

polytope and an inscribing polytope of the circle defined

by (5). By enforcing that xt
q+1 − xt

q lies in the region

5771

defined by the conjunction, the kinematic constraints can be

imposed approximately. The fact that xt
q+1 − xt

q lies inside

the circumscribing polytope is expressed by:

Ccs · (x
t
q+1 − xt

q) ≤ dcs, (6)

where Ccs and dcs specify the circumscribing polytope.

Likewise, xt
q+1−xt

q must lie outside the inscribing polytope

what is formulated by (similar to (2)):

Cis · (x
t
q+1 − xt

q) ≥ dis + (bt − 1) · M (7)

and
Nis
∑

j=1

bt
j ≥ 1 (8)

with Nis as the number of faces of the inscribing poly-

tope. The conjunction of (6), (7), and (8) approximates the

quadratic equality constraint (5) in form of linear inequali-

ties.

C. Varying Dynamic Constraints in Different Regions

The dynamics of the robot is considered by specifying

the velocities by which the joint positions are changed.

More specifically, constraints for the joint velocities are

formulated to describe physical limits for the joint actuation.

Furthermore, to account for the safety of operation, the limits

permitted for the velocities are reduced if the robot is close

to obstacles. Otherwise, it moves faster towards the goal

for time or energy efficiency. This leads to the problem

of varying dynamic constraints in different regions of the

workspace. For illustrating corresponding formulations, the

simple example of varying velocity limits in two different

regions is described here. The workspace is divided into two

halfspaces by a hyperplane and different allowable maximal

and minimal velocities are assigned to each region.

The halfspace c·x = d with c ∈ R
1×2, d ∈ R partitions the

workspace into two regions R1 = {x | c · x < d} and R2 =
{x | c · x ≥ d}. To specify different velocity limits for the

two halfspaces, binary variables bt
1 and bt

2 are introduced, and

the constraints are formulated by the following two groups

of inequalities:

c · xt
q < d + bt

1 · M (9)

xt+1
q − xt

q ≤ Vq,max1 · ∆t + bt
1 · M

xt+1
q − xt

q ≥ Vq,min1 · ∆t − bt
1 · M

c · xt
q ≥ d − bt

2 · M (10)

xt+1
q − xt

q ≤ Vq,max2 · ∆t + bt
2 · M

xt+1
q − xt

q ≥ Vq,min2 · ∆t − bt
2 · M

where [Vq,min1 Vq,max1] and [Vq,min2 Vq,max2] are the

permitted ranges of velocities of the joint q in region 1 and

region 2, respectively, and ∆t is the time interval.

If bt
j = 0 for j ∈ {1, 2}, the corresponding group of

inequalities is enforced, otherwise it is relaxed. At any time

t, only one of the two groups of inequalities should be

enforced, i.e.:

bt
1 + bt

2 = 1. (11)

In case of varying constraints in more than two different

regions, more binary variables have to be introduced.

D. Robot Interaction with Moving Obstacles

With little modification, the above formulation can cope

also with moving obstacles. Assume that the dynamics of

the moving obstacles is known a-priori. The corresponding

characteristic parameters Ct and dt of a moving obstacle

become time-varying and have to be updated in any time

step t based on the dynamics of the obstacle.

For particles chosen according to (4), the condition for

obstacle avoidance can then be expressed as:

Ct · xt
sl ≥ dt + (bt − 1) · M (12)

with binary variables defined for any t.
In addition, the following condition has to be fulfilled in

each time step t (equivalent to (3)):

N
∑

j=1

bt
j ≥ 1. (13)

E. Optimization

Different criteria for formulating the performance of the

robot motion can be considered and encoded in linear,

quadratic, or other arbitrary form. Here, the minimization of

the average kinetic energy of the robot and the minimization

of the time for reaching the goal, respectively, are used.

1) Minimization of the Average Kinetic Energy: Average

kinetic energy of a robot arm over time can be expressed as

a quadratic function as follows: let xt
cl denote the position

of the mass center of the link l at time t and let ml denote

the mass of the link l. Then the velocity of the mass center

of the link l can be expressed as:

vt
cl =

xt
cl − xt−1

cl

∆t
. (14)

Hence, the average kinetic energy of the robot over the

planning horizon is:

J =
1

H

∑

t=1,...,H

∑

l=1,...,L

1

2
ml(v

t
cl)

T vt
cl, (15)

where H is again the number of discrete time points consid-

ered for the path from the start to the goal.

2) Minimization of the Transition Time: An objective

function for achieving time optimality can be formulated as a

simple linear function. Before constructing the cost function,

a binary variable at is introduced to indicate the first time

step at which the goal is reached. The value of at is defined

as2:

at =

{

1
0

xt
q ∈ Gq ∧ xt−1

q /∈ Gq

else

2Assume that the horizon H (number of time steps from the start to the
goal) is chosen sufficiently large such that the goal can be reached in H .

5772

where t = {1, . . . ,H}, Gq denotes the goal region of the

joint q. The above condition can be enforced by imposing

the following constraints:

xt
q ≥ G

′

q − (1 − at) · M (16)

xt
q ≤ G

′

q + (1 − at) · M

where xt
q denotes the position of the joint q at time t, and

G
′

q represents the goal value for the position of the joint q.

Now the specific cost function is defined as:

J =

H
∑

t=1

at · t, (17)

where its value encodes at which time step the goal is

reached. By minimizing this cost function, the robot is forced

to reach the goal within the minimal number of time steps.

When the goal is reached the subsequent at must not add any

contribution to the cost function, so an additional constraint

on at is imposed:
H

∑

t=1

at = 1. (18)

Overall, the optimization is formulated by using (15) or

(17) subject to: the obstacle avoidance constraints according

to (2) and (3), the constraints for linear approximation of

kinematic constraints3 (6) and (7), the constraints for varying

velocity limits in different regions (9) to (11), the constraints

for avoiding the moving obstacles (12) and (13), as well

as the terminal constraints (16) and (18). This optimization

problem can be solved by existing tools for mixed integer

linear or quadratic programming.

III. APPLICATION AND SIMULATION RESULTS

In this section, the method is tested and evaluated by the

application to a two-link robot arm. Different scenarios are

considered to account for the cases of static obstacles (with

different velocity limits for the joint actuators and the end-

effector in two different regions) and of moving obstacles.

The optimality criteria of (15) and (17) are used.

A. Implementation

To model the mixed integer optimization problem, AMPL

is employed, which is a widely applied optimization mod-

eling language interfaced to a variety of solvers [4]. The

parameters of the optimization and the description of the

obstacles are defined in Matlab [11] and are converted into

the AMPL data file through an AMPL-Matlab interface.

After loading the model and data file, AMPL calls the

mixed integer programming solver CPLEX [6] to perform

the optimization. The result is saved as ASCII file and can

be loaded in Matlab for visualization.

3In case of direct consideration of the quadratic constraints of (5) in the
optimization, solvers for mixed integer nonlinear programs have to be used,
but this option is not considered in the paper on hand.

B. Minimization of Average Kinetic Energy with Varying

Velocity Limits and Static Obstacles

A scenario of the two-link robot with two static obstacles

is considered here. Both obstacles are modeled as squares of

size 0.05m× 0.05m. One is located at [0.45, 0.15]T m, the

other one at [0.4, 0.35]T m. The transition time is discretized

into H = 10 steps, and the duration of each step is set to

∆t = 0.1s. To ensure the obstacle avoidance of the links,

10 particles are taken with equal distribution on each link,

and their obstacle avoidance constraints are included in the

optimization problem. The length of the two links are both

0.3m and their masses chosen to be 1 kg. The mass center

of each link lies in its midpoint.

The base of the robot is rooted in the origin. The initial

relative joint angles for the two joints are [0, 0]T rad. At the

end of the motion, it should reach [π/2, π/4]T rad. The

motion of the robot should conform to different velocity

constraints in the two different regions shown in Fig. 1. In

this application, the workspace is divided into two halfspaces

by the plane c · x = 0 with c = [1,−1]. In the halfspace

c · x < 0, the absolute values of Vmax (velocity of the

joint position) for the two joints and the end-effector are

set to [0, 0.7, 1]T m/s and to [0, 1, 1.5]T m/s in the other

halfspace given by c · x ≥ 0.

With respect to the optimality criterion specifying the

average kinetic energy (15), the optimized path of the robot

is shown in Fig. 1, where the two rectangles with solid lines

mark the two obstacles and the two rectangles with dashed

lines are the safety margins around the corresponding obsta-

cles. Because of the discrete time setting used in the planning

problem, the path connecting two subsequent steps may pass

through the obstacle what would be safety critical. Hence,

the obstacles are enlarged depending on the values of Vmax,

∆t, the number of particles, and the length of the links. The

solver CPLEX for mixed integer linear programming found

the solution in 133 s on a 2 GHz CPU.

C. Minimization of the Transition Time and Static Obstacles

In the scenario of minimizing the transition time, namely

the optimal criterion given by (17), two static obstacles are

represented by the rectangles with solid lines surrounded by

their safety margin (rectangles with dashed lines) as shown

in Fig. 2. The optimal trajectory for this case (which does

not include a variation of the velocity limits over different

regions) are obtained for a time step ∆t = 0.1 s and a

planning horizon of 25 steps. The maximal velocities for the

two joints and the end-effector are set to [0, 0.4, 0.6]T m/s.

The other parameters are set the same as in the previous

scenario. The motion completed within 14 steps, namely

1.4 s.

D. Minimization of Average Kinetic Energy Considering

Moving Obstacles

In this scenario, the method is applied to the case with a

moving obstacle. The whole motion is discretized into H =
20 steps, with a constant time step interval of ∆t = 0.1 s.

The initial and goal settings are the same as in the above

5773

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 (m)

x
2
(m

)

Goal

Region 1

Region 2

Obstacle 1

Obstacle 2

Safety margin

Start

Robot

Fig. 1. Planning result of a 2-DOF robot among static obstacles for the
minimization of the average kinetic energy.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 (m)

x
2
(m

)

Obstacle 1

Obstacle 2

Safety margin

Start

Goal

Robot

Fig. 2. Planning result of the 2-DOF robot with static obstacles for the
minimization of the transition time.

case. During the motion of the robot, the safety margin of

the obstacle, which is a 0.1m × 0.1m square moves from

the position [0.05, 0.55]T m to [0.45, 0.15]T m with uniform

velocity. The maximal absolute velocities of the joints are

set to Vmax = [0, 0.4, 0.6]T m/s for the whole workspace.

In order to save computational time, 4 equally distributed

particles on each link are considered for obstacle avoidance.

The other parameter settings are the same as in the first

scenario.

The cost criterion is chosen as the average kinetic energy

(15), and the optimal solution was found in 227 s. A series

of plots in Fig. 3 shows the optimal path of the robot and

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 (m)

x
2
(m

)

Goal

Start

Safety margin

(a) t1, t2

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 (m)

x
2
(m

)

(b) t3, · · · , t12

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 (m)

x
2
(m

)

(c) t13

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 (m)

x
2
(m

)

(d) t14

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 (m)

x
2
(m

)

(e) t15

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 (m)

x
2
(m

)

(f) t16

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 (m)

x
2
(m

)

(g) t17

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

x1 (m)

x
2
(m

)

(h) t18, t19, t20

Fig. 3. Planning result of the 2-DOF robot with a moving obstacle.

the movement of the obstacle from the start time t1 to the

goal at t20. (The shown rectangle marks again the safety area

around the obstacle.)

E. Discussion

The two optimality criteria lead to significantly different

optimal paths as shown in Fig. 1 and Fig. 2. For the case

of minimizing the average kinetic energy, the computational

times for different numbers of particles (which are equally

distributed on the links) and for different discretization steps

from the start to the goal are given in Tab. I. The results

show that the computational time depends critically on varied

5774

TABLE I

COMPUTATIONAL TIME (SECONDS) FOR DIFFERENT NUMBERS OF

PARTICLES PER LINK AND FOR DIFFERENT NUMBERS OF

DISCRETIZATION STEPS

h
h

h
h

h
h

h
h

h
h

h
h

h
hh

Particles per link

Discretization steps
10 12

2 15 23

4 52 121

6 46 77

8 332 265

parameters. In addition, the position of the particles also

affect the computational effort, as can be concluded from the

fact that the computational time with 4 equally distributed

particles is longer than for the case with 6 equally distributed

particles.

The following observations can be derived from the results

in addition:

• The shape, the position, and the dynamics of the obsta-

cles affect the computational time.

• For the optimality criterion of minimizing the average

kinetic energy, the velocities of each joint are optimized

with fixed overall time and discretization steps. In the

case of a small range of velocity limits, the overall time

and the discretized steps must be carefully selected in

order to guarantee the feasibility of the problem.

• Since the method discretizes the planning problem,

jumping behavior to circumvent a corner of the safety

area are relatively often observed. This problem can be

resolved by decreasing the maximal allowable velocity

what increases the transition time and also the compu-

tational time.

• It can be observed that obstacles may collide with the

robot in between two adjacent particles on the links if

the distance between particles is chosen too large. In

future work, it makes sense to develop a scheme for

adaptive assignment of particles to the robot links.

IV. CONCLUSIONS AND FUTURE WORK

The path planning algorithm of articulated robots directly

in the workspace for the case of static and moving obstacles,

as well as with varying constraints over different regions

was formulated as a constrained optimization problem with

regard to different optimality criteria. The solution by mixed-

integer linear or quadratic programming is complete and

leads to the results which are (at least sub-)optimal with

respect to the selected criterion. The application results show

that the approach is suitable to compute off-line solutions for

known dynamics of the obstacles.

A more ambitious goal is to identify the dynamics of

the obstacles from measured data and compute the path

and trajectory of the robot online – given the computation

times in the experiments, the time has to be decreased still

considerably to meet this goal. Thus, we currently investigate

adaptive distribution of particles on the robot links as well

as adaptive time steps in encoding the optimization problem.

Further accelerations can be expected by using the moving

horizon scheme known from model predictive control rather

than optimizing at once over the complete time required to

reach the goal (compare to [18]).

V. ACKNOWLEDGMENTS

This work was partially supported by the cluster of ex-

cellence Cognition for Technical Systems (CoTeSys), funded

by the German Research Foundation (DFG) (see also

www.cotesys.org).

REFERENCES

[1] J. Barraquand and J.C. Latombe, Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obsta-
cles, Algorithmica, vol. 10, no. 2-4, 1991, pp. 121-155.

[2] L. Blackmore and B. Williams, ”Optimal manipulator path planning
with obstacles using disjunctive programming”, Proc. of the American

Control Conference, 2006, pp. 3200-3202.
[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.

Kavraki, and S. Thrun, Principles of robot motion, MIT Press, 2005.
[4] R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A Modeling

Language for Mathematical Programming, 2nd ed., Duxbury Press,
2002.

[5] K. Goldberg, ”Completeness in Robot Motion Planning”, Proc. 1st

Workshop on the Algorithmic Foundations of Robotics, 1994.
[6] ILOG, CPLEX Product Datasheet, http://www.ilog.com.
[7] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, Probabilistic

roadmaps for path planning in high-dimensional configuration space,
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, 1996,
pp. 566-580.

[8] O. Khatib, Real-time obstacle avoidance for manipulators and mobile
robots, Int. Journal of Robotics Research, vol. 5, no. 1, 1986, pp. 90-
98.

[9] J.J. Kuffner and S.M. LaValle, ”RRT-Connect: An efficient approach
to single-query path planning”, Proc. IEEE Int. Conf. on Robotics and

Automation, 2000, pp. 995-1001.
[10] J. Latombe, Robot Motion Planning, Kluwer, Boston, 1991.
[11] Matlab, http://www.mathworks.com/.
[12] A. Richards and J. How, ”Aircraft trajectory planning with collision

avoidance using mixed integer linear programming”, Proc. of the

American Control Conference, 2002, pp. 1936-1941.
[13] A. Richards and J. How, ”Mixed-integer programming for control”,

Proc. of the American Control Conference, 2005, pp. 2676-2683.
[14] S.J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

2nd ed., Prentice Hall, 2002.
[15] T. Schouwenaars, B. DeMoor, E. Feron, and J. How, ”Mixed integer

programming for multi-vehicle path planning,” European Control

Conference, 2001, pp. 2603-2608.
[16] B. Siciliano and O. Khatib, eds., Springer Handbook of Robotics,

Springer, 2008.
[17] A. Stentz, ”Optimal and efficient path planning for partially-known

environments”, Proc. IEEE Int. Conf. on Robotics and Automation,
1994, pp. 3310-3317.

[18] O. Stursberg and S. Engell, ”Optimal Control of Switched Continu-
ous Systems Using Mixed-Integer Programming”, 15th IFAC World

Congress, 2002, ThA06-4.
[19] H. P. Williams, Model building in mathematical programming, 4th ed.,

WILEY, 2001.

5775

