
Multi-robot Active Target Tracking

with Distance and Bearing Observations

Ke X. Zhou∗ and Stergios I. Roumeliotis†

∗Dept. of Electrical and Computer Engineering, †Dept. of Computer Science and Engineering

University of Minnesota, Minneapolis, MN 55455 Email: {kezhou|stergios}@cs.umn.edu

Abstract— In this paper, we study the problem of optimal
trajectory generation for a team of mobile robots tracking a mov-
ing target using distance and bearing measurements. Contrary
to previous approaches, we explicitly consider limits on the
robots’ speed and impose constraints on the minimum distance
at which the robots are allowed to approach the target. We first
address the case of a single sensor and show that although this
problem is non-convex with non-convex constraints, in general,
its optimal solution can be determined analytically. Moreover,
we extend this approach to the case of multiple sensors and
propose an iterative algorithm, Gauss-Seidel-relaxation (GSR),
for determining the set of feasible locations that each sensor
should move to in order to minimize the uncertainty about the
position of the target. Extensive simulation results are presented
demonstrating that the performance of the GSR algorithm,
whose computational complexity is linear in the number of
sensors, is indistinguishable of that of a grid-based exhaustive
search, with cost exponential in the number of sensors, and
significantly better than that of a random, towards the target,
motion strategy.

I. INTRODUCTION

Optimally tracking a moving target under motion and pro-

cessing constraints is necessary in a number of applications

such as environmental monitoring, surveillance, human-robot

interaction, as well as defense applications. In most cases

in practice, multiple wireless static sensors are employed

in order to improve the tracking accuracy and increase the

size of the surveillance area. Contrary to static sensors,

whose density and sensing range are fixed, mobile sensors

(robots) can cover larger areas over time without the need to

increase their number. Additionally, their spatial distribution

can change dynamically so as to adapt to the motion of the

target, and hence provide informative measurements about

its position. Selecting the best sensing locations is of par-

ticular importance especially when considering time-critical

applications (e.g., when tracking a hostile target), as well

as limitations on the robots’ processing and communication

resources.

In this paper, our objective is to determine optimal tra-

jectories for a team of heterogeneous robots that track a

moving target using distance and bearing measurements.

Since accurately predicting the motion of the target over

multiple time steps is impossible, we focus our attention

to the case where the robots must determine their optimal

sensing locations for one time step at a time. Specifically,
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we seek to minimize the uncertainty about the position of

the target, expressed as the trace of the posterior covariance

matrix for the target’s position estimates, while considering

maximum-speed limitations on the robots’ motion. Addition-

ally, and in order to avoid collisions, we impose constraints

on the minimum distance between any of the robots and

the target (cf. Section III). Due to the non-linearities of the

robots’ motion and measurement models, this formulation

results in a non-convex objective function with non-convex

constraints on the optimization variables (i.e., the robots’

sensing locations).

The main contributions of this work are the following:

• We first investigate the case of a single sensor and

for the first time we prove that the optimal solution to

the active target tracking problem, when using distance

and bearing measurements, can be determined analytically

(cf. Section IV-A). In particular, we show that depending

on the distance between the robot and the target, three

distinct cases must be considered, each corresponding to

different pairs of polynomial equations in two variables. The

solutions of these bivariate polynomial systems are computed

by first employing the Sylvester resultant to eliminate one

of the variables and subsequently determining the roots of

the resulting univariate polynomial through the companion

matrix [1].

• We extend this approach to the case of multiple sen-

sors by employing the non-linear Gauss-Seidel-relaxation

(GSR) algorithm whose computational complexity is linear

in the number of sensors (cf. Section IV-B). Additionally,

we compare the performance of the GSR algorithm to that

of a grid-based exhaustive search (GBES), whose cost is

exponential in the number of sensors, and show that GSR

achieves comparable tracking accuracy at a significantly

lower computational cost (cf. Section V).

Before describing the formulation and solution of the

active target tracking problem, in Sections III and IV, respec-

tively, we first review related work in Section II. Simulation

results are presented in Section V, while the conclusions of

this work and directions of future research are discussed in

Section VI.

II. LITERATURE REVIEW

Although target tracking has received considerable at-

tention, in most cases the sensors involved are static and

the emphasis is on the optimal processing of the available
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information (e.g., given communication constraints [2], [3]).

Significant work on the problem of single-robot active target

tracking using bearing-only measurements, has been pre-

sented in [4], [5], [6]. Additionally, the case of multi-robot

active target tracking using distance-only measurements has

been addressed in [7], [8], [9]. Due to the key differences

in the observation models when distance-only or bearing-

only, instead of distance and bearing, measurements are

considered and their impact on selecting the next best sensing

location, we hereafter limit our discussion to multi-robot

tracking approaches that use both distance and bearing

measurements.

Stroupe and Balch [10] propose an approximate tracking

behavior, where the mobile sensors attempt to minimize

the target’s location uncertainty using distance and bearing

measurements. The objective function is the determinant

of the target position estimates’ covariance matrix. The

optimization process in this case does not consider the set of

all possible trajectories. Instead, a greedy search is performed

over the discretized set of candidate headings, separately

for each sensor. Additionally, the expected information gain

from the teammates’ actions is approximated by assuming

that the other sensors’ measurements in the next time step

will be the same as these recorded at their current locations.

Chung et al. [11] present a decentralized motion plan-

ning algorithm for solving the multi-sensor target tracking

problem using both distance and bearing measurements.

The authors employ the determinant of the target’s position

covariance matrix as the cost function. The decentralized

control law in this case is based on the gradient of the cost

function with respect to each of the sensor’s coordinates,

multiplied by constant step-size of 1. The authors, however,

do not account for the speed constraints on the motion of

sensors. In addition, the convergence rate of the gradient-

based method and the existence of local minima are not

considered.

The main drawback of the previous approaches is that

no constraints on the speed of the sensors are considered.

Furthermore, their impact on the computational complexity

of the optimization algorithm used is not examined. The only

exception is the work presented in [10]. In that case, however,

these constraints are used only to define the discretized

region over which the heading of each sensor is optimized

independently (i.e., each sensor determines its next sensing

location without considering the constraints on the motion

of its teammates). Contrary to previous approaches, in our

formulation, we account for the existence of prior informa-

tion and explicitly consider constraints on the motion of the

sensors (maximum speed and minimum allowed distance to

the target).

III. PROBLEM FORMULATION

Consider a group of mobile sensors (or robots) moving

in a plane and tracking the position of a moving target by

processing distance and bearing measurements. In this paper,

we study the case of global tracking, i.e., the position of the

target is described with respect to a fixed (global) frame of
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Fig. 1. Illustration of the i-th sensor’s and target’s motion: Sensor-i moves
in 2D with speed vi, which is bounded by vimax. From time-step k to k+1,
the sensor can only move within a circular region centered at its position at
time-step k with radius ri = vimaxδt. Furthermore, to avoid collision with
the target, sensor-i is prohibited to move inside a circular region centered
at the target’s position estimate at time-step k + 1 with radius ρi. SipT is
the target’s position with respect to sensor-i. The distance measurement of
sensor-i is the norm of sipT (k+1) plus noise, and the bearing measurement
of sensor-i is θi(k + 1) plus noise.

reference, instead of a relative group-centered one. Hence,

we hereafter employ the assumption that the position and

orientation (pose) of each tracking sensor are known with

high accuracy within the global frame of reference (e.g., from

precise GPS and compass measurements).

Furthermore, we consider the case where each sensor can

move in 2D with speed vi, which is upper bounded by vimax,

i = 1, . . . , M , where M is the number of sensors. Therefore,

at time-step k + 1, sensor-i can only move within a circular

region centered at its position at time-step k with radius

ri = vimaxδt (cf. Fig. 1), where δt is the time step. In order

to avoid collisions with the target, we also require that the

distance between the target and sensor-i to be greater than

a threshold ρi, i.e., sensor-i is prohibited to move inside a

circular region centered at the target’s position estimate at

time-step k + 1 with radius ρi (cf. Fig. 1). Note also that

since the motion of the target can be reliably predicted for

the next time step only, our objective is to determine the

next best sensing locations for all sensors at consecutive time

steps.

In the next two sections, we present the target’s state

propagation equations and the sensors’ measurement model.

A. State Propagation

In this work, we employ the Extended Kalman Filter

(EKF) for recursively estimating the target’s state, xT (k).
This is defined as a vector of dimension 2N , where

N − 1 is the highest-order time derivative of the position,

(xT (k), yT (k)), described by the motion model, and can

include components such as position, velocity, and accel-

eration:

xT (k) = [ xT (k) yT (k) ẋT (k) ẏT (k) ẍT (k) ÿT (k) ... ]T (1)

We consider the case where the target moves randomly

and assume that we know the stochastic model describing the

motion of the target (e.g., constant-acceleration or constant-

velocity, etc. [12]). However, as it will become evident later
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on, our sensing strategy does not depend on the particular

selection of the target’s motion model.

The discrete-time state propagation equation is:

xT (k + 1) = ΦkxT (k) + Gkwd(k) (2)

where wd is a zero-mean white Gaussian noise process with

covariance Qd = E[wd(k)wT
d (k)].

The estimate of the target’s state is propagated as:1

x̂T (k + 1|k) = Φkx̂T (k|k) (3)

where x̂T (ℓ|j) is the state estimate at time-step ℓ, after

measurements up to time-step j have been processed.

The error-state covariance matrix is propagated as:

Pk+1|k = ΦkPk|kΦT
k + GkQdG

T
k

where Pℓ|j is the covariance of the error, x̃T (ℓ|j), in the state

estimate. The state transition matrix, Φk, and the process

noise Jacobian, Gk, that appear in the preceding expressions

depend on the motion model used [12]. In our work, these

can be arbitrary, but known, matrices, since no assumptions

on their properties are imposed.

B. Measurement Model

At time-step k+1, sensor-i measures its distance di(k+1)
and bearing θi(k+1) to the target (i = 1, . . . , M ), as shown

in Fig. 1. Assume the orientation of sensor-i is φi(k + 1),
therefore the measurement equation is:

z(k + 1) =




d1(k + 1)
θ1(k + 1)

...

dM (k + 1)
θM (k + 1)




+




nd1(k + 1)
nθ1(k + 1)

...

ndM
(k + 1)

nθM
(k + 1)




(4)

with (i = 1, . . . , M )

di(k + 1) =
√

∆x2
Ti

(k + 1) + ∆y2
Ti

(k + 1)

θi(k + 1) = arctan

(
∆yTi

(k + 1)

∆xTi
(k + 1)

)
− φi(k + 1)

where

∆xTi
(k + 1) = xT (k + 1) − xSi

(k + 1)

∆yTi
(k + 1) = yT (k + 1) − ySi

(k + 1)

and pT (k + 1) = [xT (k + 1) yT (k + 1)]T, pSi
(k + 1) =

[xSi
(k+1) ySi

(k+1)]T are the positions of the target and the

i-th sensor, respectively, expressed in the global frame of ref-

erence. Note also that ni(k+1) =
[
ndi

(k + 1) nθi
(k + 1)

]T

is the noise in the i-th sensor’s measurements, which is a

zero-mean white Gaussian process with covariance Ri =
E[ni(k + 1)nT

i (k + 1)] = diag(σ2
di

, σ2
θi

), and independent

of the noise in other sensors, i.e., E[ni(k + 1)nT
j (k + 1)] =

Riδij , where δij is the Kronecker delta. Thus, the covari-

ance corresponding to the measurement noise n(k + 1) =

1In the remainder of the paper, the “hat” symbol, ˆ , is used to denote
the estimated value of a quantity, while the “tilde” symbol, ˜ , is used to
signify the error between the actual value of a quantity and its estimate.
The relationship between a variable, x, and its estimate, x̂, is x̃ = x − x̂.
Additionally, “≻” and “�” denote the matrix inequality in the positive
definite and positive semidefinite sense, respectively.

[
nT

1 (k + 1), . . . ,nT
M (k + 1)

]T
is R = E[n(k + 1)nT(k +

1)] = diag(Ri).

The measurement equation (4) is a nonlinear function

of the state variable xT . The measurement-error equation,

obtained by linearizing (4) is:

z̃(k + 1|k) = z(k + 1) − ẑ(k + 1|k)

≃ Hk+1x̃T (k + 1|k) + n(k + 1) (5)

where

ẑ(k + 1|k) = [ẑT
1 (k + 1|k) , . . . , ẑT

M (k + 1|k)]T

ẑi(k + 1|k) = [d̂i(k + 1|k) θ̂i(k + 1|k)]T

d̂i(k + 1|k) =

√
∆̂x

2

Ti
(k + 1|k) + ∆̂y

2

Ti
(k + 1|k)

θ̂i(k + 1|k) = arctan

(
∆̂yTi

(k + 1|k)

∆̂xTi
(k + 1|k)

)
− φi(k + 1)

∆̂xTi
(k + 1|k) = x̂T (k + 1|k) − xSi

(k + 1)

∆̂yTi
(k + 1|k) = ŷT (k + 1|k) − ySi

(k + 1)

x̃T (k + 1|k) = xT (k + 1) − x̂T (k + 1|k)

Note that the measurement matrix in (5) has a block

column structure, which is given by the following expression:

Hk+1 =
[
He,k+1 02M×(2N−2)

]
(6)

where 2N is the dimension of the state vector and

HT
e,k+1 =

[
h1(k + 1) , . . . , hM (k + 1)

]
(7)

hi(k + 1) =
[
hdi

(k + 1) hθi
(k + 1)

]
(8)

hdi
(k + 1) =

−1√
pT

i pi

pi , hθi
(k + 1) =

1

pT
i pi

Jpi (9)

pi = pSi
(k + 1) − p̂T (k + 1|k) (10)

where J = C
(
−π

2

)
and C(·) is the 2× 2 rotational matrix.

C. State and Covariance Update

Once the distance and bearing measurements, z(k + 1),
from all the sensors are available, the target’s state estimate

and its covariance are updated as:

x̂T (k + 1|k + 1) = x̂T (k + 1|k) + Kk+1z̃(k + 1|k)

Pk+1|k+1 = Pk+1|k − Kk+1Sk+1K
T
k+1 (11)

where Kk+1 = Pk+1|kHT
k+1S

−1
k+1 is the Kalman gain,

Sk+1 = Hk+1Pk+1|kHT
k+1 + R is the measurement residual

covariance.

Our objective in this work is to determine the active sens-

ing strategy that minimizes the uncertainty for the position

estimate of the target. In order to account for the impact of

the prior state estimates on the motion of the sensors, we

first present the following lemma.

Lemma 1: The posterior (updated) covariance for the tar-

get’s position estimate depends on (i) the prior (propagated)

covariance sub-matrix of the target’s position (i.e., it is in-

dependent of the uncertainty in the estimates of higher-order

time derivatives of the position such as velocity, acceleration,

etc., and hence it is independent of the target’s motion model)

and (ii) the measurement information matrix corresponding

to the target’s position, i.e.,
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Pk+1|k+1,11 =
((

Pk+1|k,11

)−1
+ H

T
e,k+1R

−1
He,k+1

)−1

(12)

where Pℓ|j,11 denotes the 2 × 2 upper diagonal sub-matrix

of Pℓ|j corresponding to the covariance in the position

estimates.

Proof: The proof is shown in [13].

The importance of this lemma is that the optimization

algorithm presented in Section IV can be derived based

on (12) for the position covariance update – instead of (11)

for the entire state covariance update – regardless of the

stochastic process model employed for describing the target’s

motion.

In the next section, we formulate the sensors’ one-step-

ahead optimal motion strategy as a constrained optimization

problem, and discuss its properties.

D. Problem Statement and Reformulation

As evident from (7)-(10) and (12), after each update step

the target’s position covariance matrix will depend on all the

next sensors’ positions pSi
(k + 1) = [xSi

(k + 1) ySi
(k +

1)]T, i = 1, . . . , M . Assume that at time-step k, sensor-i is

at location pSi
(k) = [xSi

(k) ySi
(k)]T. At time-step k+1 its

position pSi
(k + 1) is confined in a circular region centered

at pSi
(k), due to the maximum speed constraint, and outside

a circular region centered at p̂T (k + 1|k) to avoid collisions

(cf. Fig. 1):

‖pSi
(k + 1) − pSi

(k)‖ ≤ ri = vimaxδt (13)

‖pSi
(k + 1) − p̂T (k + 1|k)‖ ≥ ρi (14)

Substituting pi [cf. (10)] in the above two equations, yields:
∥∥pi − [pSi

(k) − p̂T (k + 1|k)]
∥∥ ≤ ri (15)

‖pi‖ ≥ ρi (16)

where the feasible region of pi is inside a circle of radius

ri centered at pSi
(k)− p̂T (k + 1|k), and outside a circle of

radius ρi centered at the origin [0, 0]T. Note that the estimate

p̂T (k + 1|k) [cf. (3)] is shared among all sensors, and can

be treated as a constant at time-step k + 1. Hence, once

pi, i = 1, . . . , M , is determined, the location of sensor-i at

time-step k + 1, pSi
(k + 1), i = 1, . . . , M , can be obtained

through (10).

The problem we address in this work is that of determining

the sensors’ optimal motion strategy, i.e., the set C(k +1) =
{pi, i = 1, . . . , M}, that minimizes the trace of the target’s

position estimate covariance matrix, under the constraints

specified in (15)-(16). To proceed, we exploit the fact that R
is a diagonal matrix, and substitute (7)-(9) in (12) to obtain

the following optimization problem:

• OPTIMIZATION PROBLEM 1 (Π1)

min.
p1,...,pM

tr

(
(
Pk+1|k,11

)−1 +

M∑

i=1

1

σ2
di

pip
T
i

p
T
i
pi

+

M∑

i=1

1

σ2
θi

Jpip
T
i JT

(pT
i
pi)2

)−1

s.t.
∥∥pi −

[
pSi

(k) − p̂T (k + 1|k)
] ∥∥ ≤ ri, (17)

‖pi‖ ≥ ρi, i = 1, . . . , M

In what follows, we will consider, without loss of general-

ity, the case Pk+1|k,11 being a diagonal matrix. If Pk+1|k,11

is non-diagonal, we can always apply a coordinate transfor-

mation (cf. Lemma 2), to transform it into a diagonal one.
Lemma 2: Assume Pk+1|k,11 ≻ 02×2 is non-diagonal.

The eigen-decomposition of P−1
k+1|k,11 = C(ϕ0)ΛC(−ϕ0),

and Λ = diag(λ1, λ2), λ1 ≥ λ2 > 0. Then,

tr(Pk+1|k+1,11) = tr

(
Λ+

M∑

i=1

1

σ2
di

sis
T
i

s
T
i si

+

M∑

i=1

1

σ2
θi

Jsis
T
i JT

(sT
i si)2

)−1

(18)

where si = C(−ϕ0)pi, i = 1, . . . , M .

Proof: Substituting P−1
k+1|k,11 = C(ϕ0)ΛC(−ϕ0) and

pi = C(ϕ0)si in (17), employing the equality C(−ϕ0)J =
JC(−ϕ0) which holds since both are 2 × 2 rotational

matrices, and noting that the trace operation is invariant to

similarity transformations results in (18).

Note also that the similarity transformation does not

change the norm of a vector; thus, constraint (15) is equiv-

alent to ‖si − ci‖ ≤ ri, with ci = C (−ϕ0)
[
pSi

(k) −
p̂T (k + 1|k)

]
, and constraint (16) is equivalent to ‖si‖ ≥

ρi. Therefore, from now on, we will mainly focus on the

following equivalent optimization problem:

• OPTIMIZATION PROBLEM 2 (Π2)

min.
s1,...,sM

tr

(
Λ +

M∑

i=1

1

σ2
di

sis
T
i

sT
i si

+

M∑

i=1

1

σ2
θi

Jsis
T
i JT

(sT
i si)2

)−1

(19)

s.t. ‖si − ci‖
2
≤ r2

i , (20)

‖si‖
2
≥ ρ2

i , i = 1, . . . , M (21)

Once the optimal solution {si, i = 1, . . . , M} is obtained,

the best position of the i-th sensor at time-step k+1, pSi
(k+

1), can be calculated through pi = C(ϕ0)si and (10).

Remark 1: The optimization problem Π2 is a nonlin-

ear programming problem since both the objective func-

tion [cf. (19)] and constraints [cf. (20)-(21)] are nonlinear

functions with respect to the optimization variable s =
[sT

1 , . . . , sT
M ]T. Moreover, Π2 (and equivalently, Π1) is not

a convex programming since the feasible set defined by

constraint (21) is not convex.

IV. PROBLEM SOLUTION

As mentioned in the previous section, the problem of opti-

mal trajectory generation for multiple sensors with mobility

constraints that track a moving target using distance and

bearing measurements is not convex in general. Hence, find-

ing the global optimal solution for the original optimization

problem, or for its equivalent formulation (cf. Π1 ⇔ Π2),

becomes challenging. Ideally, the optimal solution can be

determined if one discretizes the feasible set of all sensors

[cf. (20)-(21)] and performs an exhaustive search. This ap-

proach, however, has computational complexity exponential

in the number of sensors, which is of limited practical use

given realistic processing constraints.

In order to design algorithms that can operate in real

time, appropriate relaxations of the original optimization

problem become necessary. In what follows, we first present

an analytic solution for the single-sensor case (cf. Section IV-

A) and based on that we propose a Gauss-Seidel relaxation
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Fig. 2. Geometric illustration of Lemma 3. The global optimal solution
resides only in a portion of the boundary of the feasible set Ω̄, which is
denoted as Θ and depicted by the red-colored curve ADB.

(GSR) to solve the general problem of multiple sensors (cf.

Section IV-B). The GSR algorithm has computational com-

plexity linear in the number of sensors, which ensures real-

time implementations even for a large number of sensors.

Furthermore, as shown in Section V, GSR is able to achieve

tracking accuracy indistinguishable of that of exhaustive

search.

A. Single-sensor Target Tracking: Analytic-form Solution

For M = 1, the optimization problem described by (19)-

(21) is simplified to:2

• OPTIMIZATION PROBLEM 3 (Π3)

min.
s

f0(s) = tr

(
Λ +

1

σ2
d

ssT

sTs
+

1

σ2
θ

JssTJT

(sTs)2

)−1

(22)

s.t. ‖s− c‖
2
≤ r2, (23)

‖s‖
2
≥ ρ2 (24)

In order to solve Π3, we proceed as follows: We first

calculate all critical points (i.e., those points that satisfy the

Karush-Kuhn-Tucker (KKT) necessary conditions) analyti-

cally and evaluate their objective values accordingly. Then,

as global optimal solution for Π3 we select the critical point

whose objective value is the smallest.

To proceed, we first construct the Lagrange function:

L(s, µ, ν) = f0(s) +
µ

2

(
‖s− c‖

2
− r2

)
+

ν

2

(
ρ2 − ‖s‖

2
)

Based on the KKT necessary conditions [14, Ch. 3], the

critical points s∗, µ∗, and ν∗ must satisfy all of the following

relations:

∇f0(s
∗) + µ∗ (s∗ − c) − ν∗s∗ = 02×1 (25)

µ∗ ≥ 0, µ∗
(
‖s∗ − c‖

2
− r2

)
= 0 (26)

ν∗ ≥ 0, ν∗
(
ρ2 − ‖s∗‖2

)
= 0 (27)

The following lemma establishes the fact that the global

optimal solution for Π3 is always on the boundary of the

feasible set, defined by (23)-(24), i.e., s∗ satisfies either

‖s∗ − c‖ = r or ‖s∗‖ = ρ.

2To simplify notation, we drop the indices of s1, σd1
, σθ1

, c1, r1, ρ1.

Lemma 3: Assume Ω̄ = Ω ∪ ∂Ω is a compact and con-

nected set3 in 2D, and the origin [0, 0]T /∈ Ω̄. For any s ∈ Ω,

the line segment connecting s and the origin will inevitably

intersect ∂Ω at one or multiple points, and s‡ ∈ ∂Ω denotes

the one closest to [0, 0]T (cf. Fig. 2). Then f0(s
‡) ≤ f0(s).

Proof: Based on the construction of s‡, we have: s‡ =
ǫs, with ǫ ∈ (0, 1), hence we conclude:

(s‡)(s‡)T

(s‡)T(s‡)
=

ss
T

s
T
s

,
J(s‡)(s‡)TJT

(
(s‡)T(s‡)

)2 =
1

ǫ2
Jss

TJT

(sT
s)2

�
Jss

TJT

(sT
s)2

⇒

(
Λ +

1

σ2
d

(s‡)(s‡)T

(s‡)T(s‡)
+

1

σ2
θ

J(s‡)(s‡)TJT

(
(s‡)T(s‡)

)2

)−1

�

(
Λ +

1

σ2
d

ss
T

s
T
s

+
1

σ2
θ

Jss
TJT

(sT
s)2

)−1

Therefore, f0(s
‡) ≤ f0(s).

Lemma 3 establishes the fact that the global optimal

solution for Π3, when optimizing over the feasible set Ω̄ (cf.

Fig. 2), is always attained on ∂Ω. Moreover, by applying the

same argument as before (cf. Fig. 2), it can be easily shown

that f0(s
‡) ≤ f0(s̆

‡). Therefore, the global optimal solution

s∗ resides only in the portion (the curve ADB) of ∂Ω facing

the origin, denoted as Θ (cf. Fig. 2).

As shown in Figs. 3(a)–3(c), depending on the parameters

c, r, and ρ, there exist three cases we need to consider for

the feasible set Ω̄ of Π3, described by the constraints (23)-

(24). In what follows, we present the corresponding solutions

satisfying the KKT conditions (25)-(27) for each of these

three cases analytically. For clarity, we employ the following

notation: s∗ =
[
x y
]T

, and c =
[
c1 c2

]T
. Furthermore, we

set r = min (vmaxδt, ‖c‖) ≤ ‖c‖.

1) Case-I, ρ ≤ ‖c‖ − r: As shown in Fig. 3(a), the only

active constraint for Case-I is the maximum speed constraint

[cf. (23)]. Based on Lemma 3 and setting v = vmax, the

optimal solution s∗ must reside on the red-colored arc ADB.

Since the collision avoidance constraint (24) is inactive, its

corresponding Lagrange multiplier is ν∗ = 0, and (25)-(27)

are simplified to:

∇f0(s
∗) + µ∗ (s∗ − c) = 02×1 (28)

‖s∗ − c‖
2
− r2 = 0 (29)

Clearly, (29) is a 2nd order polynomial equation in the

variables x and y, i.e.,

0 = f2(x, y) = (x − c1)
2 + (y − c2)

2 − r2 (30)

Since we aim at transforming (28) into a polynomial

equation only containing x and y, we eliminate µ∗ by

multiplying both sides of (28) with (s∗ − c)
T

C
(

π
2

)
:

(s∗ − c)
T

C
(π

2

)
∇f0(s

∗) = 0 (31)

After rearranging terms in (31), we obtain the following
8th order polynomial equation in x and y:

0 = f1(x, y) = β3xy∆3 + (α8x + α7y + β2)xy∆2
(32)

+(α6x
3 + α5x

2
y + α4xy

2 + α3y
3 + β1xy)∆ + (α2x + α1y)xy

where ∆ := x2 + y2, and the parameters αi, i = 1, . . . , 8,

3Ω stands for the open set consisting of all interior points of Ω̄, while
∂Ω and Ω̄ represent its boundary and closure, respectively.
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Fig. 3. Feasible set Ω̄ of s. (a) Case-I: ρ ≤ ‖c‖ − r. (b) Case-II: ρ ≥
√

‖c‖2 − r2. (c) Case-III: ‖c‖ − r < ρ <
√

‖c‖2 − r2. In all three cases, the
global optimal solution resides in a subset of the boundary of Ω̄, which is denoted as Θ and depicted by the red-colored curve ADB.

and βi, i = 1, 2, 3, are known coefficients expressed in terms

of λ1, λ2, c1, c2, σ
2
d, σ2

θ , and r. Due to space limitations, the

interested reader can refer to [13] for more details.

In order to obtain all the critical points of Π3 in Case-I, we

need to solve the two polynomial equations f2(x, y) = 0 and

f1(x, y) = 0 analytically [cf. (30) and (32)]. By employing

the Sylvester resultant [15, Ch. 3], we are able to eliminate

variable y from (30) and (32), and obtain the following 10th

order univariate polynomial in variable x:

0 = f3(x) =

10∑

j=0

γjx
j (33)

where γj , j = 0, . . . , 10, are known coefficients expressed

in terms of λ1, λ2, c1, c2, σ
2
d, σ2

θ , and r [13].

The roots of f3 are the eigenvalues of the corresponding

10 × 10 companion matrix [1], [13]. Although there are

10 solutions for x, we only need to consider the real

eigenvalues of the companion matrix. Once x is determined,

y is computed from (30), and the critical point [x, y]T is

added into the set Ξ̄1, which has at most 20 elements.

The final step is to evaluate the objective function f0(s)
[cf. (22)] at all the critical points in Ξ̄1 and select the

one with the smallest objective value as the global optimal

solution for Π3.

2) Case-II, ρ ≥
√
‖c‖2 − r2: As shown in Fig. 3(b) and

based on Lemma 3, the only active constraint for Case-II

is the collision avoidance constraint [cf. (24)]. Since the

maximum speed constraint (23) is inactive, its corresponding

Lagrange multiplier µ∗ = 0, and (25)-(27) are simplified to:

∇f0(s
∗) − ν∗s∗ = 02×1 (34)

‖s∗‖
2
− ρ2 = 0 (35)

Clearly, (35) is a 2nd order bivariate polynomial equation,

i.e.,

0 = f5(x, y) = x2 + y2 − ρ2 (36)

Applying the same technique as in Case-I to eliminate ν∗

in (34), yields:

0 = f4(x, y) = xy (37)

It is easy to verify that the four real solutions satisfy-

ing (36) and (37) are
{
[±ρ 0]T, [0 ± ρ]T

}
. However, not

all these critical points necessarily belong to the feasible

region Ω̄, or equivalently, reside in the arc ADB, which is

defined by (35) and inside the disk characterized by (23) [cf.

Fig 3(b)]. Hence, the set Ξ2 containing all the feasible critical

points can possibly have zero, and up to four elements.

In particular, for the plot shown in Fig. 3(b), Ξ2 = ∅.

Note, however, that since the curve ADB is an arc of

the circle defined by (35), it is also necessary to consider

the objective value attained at the two boundary points A
and B [cf. Fig. 3(b)]. Thus, the set Ξ2 is augmented into

Ξ̄2 = Ξ2 ∪ {A, B}, which contains at least two, and up to

six elements. The global optimal solution for Π3 in Case-II

is selected as s∗ ∈ Ξ̄2 the one with the smallest objective

value f0(s
∗).

3) Case-III, ρ ∈ (‖c‖ − r,
√
‖c‖2 − r2): As shown in

Fig. 3(c) and based on Lemma 3, the optimal solution

s∗ ∈ Ω̄ must reside in the red-colored curve ADB, which is

composed of three segments, i.e., Θ = Θ1 ∪Θ2 ∪Θ3. Here,

Θ1 and Θ2 are due to the maximum speed constraint (23),

and Θ3 is because of the collision avoidance constraint (24).

To obtain the critical points in Case-III, we proceed as fol-

lows: We first ignore the collision avoidance constraint (24)

and calculate the set Ξ̄1 of all critical points of Π3 under

the maximum speed constraint (23), following the process

outlined in Case-I. Then, we apply the method outlined in

Case-II to compute the optimal solution s† of Π3, while

confining the feasible set to Θ3 only. Since Θ1 and Θ2 are

two arcs of the circle defined by (29), it is also necessary

to consider the objective value attained at the two boundary

points A and B [cf. Fig. 3(c)]. Based on the above strategy,

the set of all critical points in Case-III, denoted as Ξ̄3,

satisfies Ξ̄3 ⊆ Ξ̄, where Ξ̄ = Ξ̄1 ∪ {s†, A, B}, which is a

finite set with cardinality at most 23.

The final step is to evaluate the objective function f0(s) at

all the critical points in Ξ̄3, and select the s∗ with the smallest

objective value f0(s
∗) as the global optimal solution for Π3.

B. Multiple-sensor Target Tracking: Gauss-Seidel Relax-

ation

Motivated by the simplicity of the analytic-form solution

for the case of one sensor (cf. Section IV-A), a straightfor-

ward approach to finding a minimum of the optimization

problem Π2 is to iteratively minimize its objective function
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[cf. (19)] for each optimization variable separately, i.e., [16,

Ch. 3]:

• OPTIMIZATION PROBLEM 4 (Π4)

min.
s
(ℓ+1)
i

tr



(
P

(ℓ+1)
i

)−1

+
1

σ2
di

(
s
(ℓ+1)
i

) (
s
(ℓ+1)
i

)T

(
s
(ℓ+1)
i

)T (
s
(ℓ+1)
i

)

+
1

σ2
θi

J
(
s
(ℓ+1)
i

) (
s
(ℓ+1)
i

)T

JT

((
s
(ℓ+1)
i

)T (
s
(ℓ+1)
i

))2




−1

(38)

s.t.
∥∥∥s(ℓ+1)

i − ci

∥∥∥ ≤ ri and
∥∥∥s(ℓ+1)

i

∥∥∥ ≥ ρi

where s
(ℓ+1)
i is the sought new optimal value of si at iteration

ℓ + 1, and P
(ℓ+1)
i is defined as:

(
P

(ℓ+1)
i

)−1

= Λ +

M∑

j=i+1




1

σ2
dj

(
s
(ℓ)
j

)(
s
(ℓ)
j

)T

(
s
(ℓ)
j

)T(
s
(ℓ)
j

) +
1

σ2
θj

J
(
s
(ℓ)
j

)(
s
(ℓ)
j

)T

JT

((
s
(ℓ)
j

)T(
s
(ℓ)
j

))2


 +

i−1∑

j=1




1

σ2
dj

(
s
(ℓ+1)
j

)(
s
(ℓ+1)
j

)T

(
s
(ℓ+1)
j

)T(
s
(ℓ+1)
j

) +
1

σ2
θj

J
(
s
(ℓ+1)
j

)(
s
(ℓ+1)
j

)T

JT

((
s
(ℓ+1)
j

)T(
s
(ℓ+1)
j

))2




where s
(ℓ+1)
j , j = 1, . . . , i − 1, and s

(ℓ)
j , j = i + 1, . . . , M ,

are the remaining optimization variables, considered fixed

during this step, computed sequentially during the previous

iterations.

Note that the matrix P
(ℓ+1)
i is positive definite, and in gen-

eral, non-diagonal. However, based on Lemma 2, through a

similarity transformation, the optimization method employed

in the single-sensor case (cf. Section IV-A) can be readily

applied to solve Π4. Moreover, the optimization process in

the Gauss-Seidel relaxation (GSR) algorithm is carried out

only for one variable (i.e., si) at every step. Thus, the GSR

process has computational complexity only linear in the

number of sensors. Furthermore, it is easily implemented, has

low memory requirements and, as demonstrated in Section V,

it achieves the same level of positioning accuracy as the

exhaustive search approach.

V. SIMULATION RESULTS

In order to evaluate the presented constrained optimal

motion strategy, Gauss-Seidel Relaxation (GSR), we have

conducted extensive simulation experiments and compared

the performance of GSR to the following methods:4

• Grid-Based Exhaustive Search (GBES). In this case,

we discretize the feasible set of all sensors and perform an

exhaustive search over all possible combinations of these

to find the one that minimizes the trace of the covariance

matrix for the target’s position estimates. Ideally, the GBES

should return the global optimal solution and it could be

used as a benchmark for evaluating the GSR, if the grid size

4Due to space limitations we only describe here the results for the case of
a team with 3 heterogeneous sensors. Further studies are presented in [13].

is sufficiently small. However, this is difficult to guarantee

in practice since its computational complexity and memory

requirements are exponential in the number of sensors.

Hence implementing the GBES becomes prohibitive when

the number of sensors, M , increases and/or when the size of

the grid cells decreases.

• Random Motion (RM). This is a modification of an

intuitive strategy that would require the sensors to move

towards the target. In this case, however, and in order to

ensure that the sensors do not converge to the same point,

we require that at every time step sensor-i selects its heading

direction with uniform probability towards points within the

curve ADB shown in Figs. 3(a)–3(c).

1) Simulation Setup: For the purposes of this simulation,

we adopt a zero-acceleration target motion model

ẋT (t) = F xT (t) + G w(t) (39)

where

F =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 , G =




0 0
0 0
1 0
0 1


 , xT (t) =




xT (t)
yT (t)
ẋT (t)
ẏT (t)


 ,

and w(t) = [wx(t) wy(t)]
T

is a zero-mean white Gaussian

noise vector with covariance E
[
w(t)wT(τ)

]
= qI2δ(t−τ),

q = 10, and δ(t−τ) is the Dirac delta. In our implementation,

we discretize the continuous-time system model [cf. (39)]

with time step δt = 0.1 sec.

The initial true state of the target is xT (0) = [0, 0,−8, 6]T.

The initial estimate for the target’s state is x̂T (0) =
[2,−2, 0, 0]T. This can be obtained by processing the first

measurements from the sensors at time-step 0. At the begin-

ning of the experiment, the sensors are randomly distributed

within a circle of radius 5 m, which is at a distance of about

20 m from the target’s initial position. The maximum speed

for each sensor is set to 10 m/s, i.e., the largest distance that a

sensor can travel during any time step is 1 m. The minimum

distance between the target and sensors is set to ρ = 2 m.

The duration of the simulations is 5 sec (i.e., 50 time steps).

At every time step, we employ the methods described (i.e.,

GBES, GSR, and RM) to calculate the next sensing location

of each sensor. Throughout the simulations, we set the GBES

cell size to π/200; i.e., we discretize the curve ADB [cf.

Figs. 3(a)–3(c)] in segments of length π/200 m.

Finally, the measurement noise covariance matrix for the

three sensors considered is set to Ri = diag(σ2
di

, σ2
θi

), with

σ2
d1

= 2 m2, σ2
d2

= σ2
d3

= 4 m2, σ2
θ1

= 0.25 rad2, and

σ2
θ2

= σ2
θ3

= 0.5 rad2.

2) Target Tracking with 3 Sensors (Heterogeneous team):

Fig.s 4(a)–4(c) depict the actual and estimated trajectories

of the target, along with the trajectories of the three sensors,

when employing as motion strategy GBES, GSR, and RM,

respectively. As evident, the accuracy of the target’s position

estimates for GSR is significantly better than that of RM

and almost identical to that of GBES. Furthermore, the EKF

estimates from the GSR and GBES are consistent.

Interestingly, in this case the heterogeneous sensor team

splits into two groups. Sensor-1 (the most accurate one with
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Fig. 4. [3-Sensors case] Trajectories of the three sensors, and the actual and estimated trajectories of the target, when employing as motion strategy
(a) GBES, (b) GSR, and (c) RM. The ellipses denote the 3σ bounds for the target’s position uncertainty at the corresponding time steps.

measurement noise variances σ2
d1

= 2 m2, σ2
θ1

= 0.25 rad2)

follows the target from the right, while sensors 2 and 3

form a separate cluster approaching the target from the

left while moving very close to each other. The reason for

this is the following: As sensors 2 and 3 measure their

distance and bearing to the target from approximately the

same location at every time step, their four independent

measurements become equivalent, in terms of accuracy, to

two with variances
1

σ2
d2,3

≃
1

σ2
d2

+
1

σ2
d3

=
1

2
, or σ2

d2,3
≃ 2

1

σ2
θ2,3

≃
1

σ2
θ2

+
1

σ2
θ3

= 4, or σ2
θ2,3

≃ 0.25

Hence, this problem becomes equivalent to that of 2 sensors

with equal distance and bearing noise variances [13], with

the difference that in this case the “second” sensor is realized

by requiring sensors 2 and 3 to move close to each other.

VI. CONCLUSIONS

In this paper, we address the problem of determining

optimal trajectories for a team of heterogeneous sensors

(robots) that track a moving target using distance and

bearing measurements. The optimality criterion used is the

minimization of the trace of the target’s position covariance

matrix. In our formulation, we have accounted for the exis-

tence of prior information and considered motion constraints

on the robots (maximum speed and minimum distance to

the target). We have shown that this non-linear constrained

optimization problem is non-convex, in general, and have

derived the optimal solution for the single-robot case in

analytical form. Moreover, and in order to provide real-time

solutions, we have introduced an iterative algorithm, Gauss-

Seidel relaxation (GSR), for generating optimal trajectories

for a team of robots whose computational and memory

requirements are significantly lower compared to those of

a grid-based exhaustive search (GBES) method (linear vs.

exponential in the number of robots). Simulation studies

demonstrate that the GSR achieves the same level of tracking

accuracy as GBES, and significantly better when compared to

the case when the robots move randomly towards the target.

In our future work, we plan to extend our current approach

and address the cases when the robots’ poses are uncertain

and when multiple targets are present. Finally, we intend to

consider additional constraints both on the visibility and the

motion of the robots due to obstacles in their surroundings.
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