
Dynamic Coalition Formation Under Uncertainty

Daylond J. Hooper, Gilbert L. Peterson, and Brett J. Borghetti

Department of Electrical and Computer Engineering

Air Force Institute of Technology

Wright-Patterson AFB, OH 45433

Email: {daylond.hooper, gilbert.peterson, brett.borghetti}@afit.edu

Abstract— Coalition formation algorithms are generally not
applicable to real-world robotic collectives since they lack
mechanisms to handle uncertainty. Those mechanisms that do
address uncertainty either deflect it by soliciting information
from others or apply reinforcement learning to select an agent
type from within a set. This paper presents a coalition formation
mechanism that directly addresses uncertainty while allowing
the agent types to fall outside of a known set. The agent
types are captured through a novel agent modeling technique
that handles uncertainty through a belief-based evaluation
mechanism. This technique allows for uncertainty in environ-
mental data, agent type, coalition value, and agent cost. An
investigation of both the effects of adding agents on processing
time and of model quality on the convergence rate of initial
agent models (and thereby coalition quality) is provided. This
approach handles uncertainty on a larger scale than previous
work and provides a mechanism readily applied to a dynamic
collective of real-world robots.

I. INTRODUCTION

Task allocation mechanisms in cooperative robotic systems

tend to make one of two assumptions: 1) tasks require only

a single agent [1], or 2) the number of agents required for

a task are known a priori [2]. The application of dynamic

coalition formation to task allocation permits removal of

these assumptions and allows for greater flexibility in the

system’s execution and assignment of tasks. Additionally,

it enables the system to better respond to changes in its

composition (i.e. the number and types of robots in the

system). Many artificial intelligence and game theory re-

searchers have performed work related to coalition formation

[3], [4]. Their research has created stable allocation schemes

and mechanisms for forming coalitions. Unfortunately, one

largely unaddressed area in coalition formation research

is that of uncertainty [5]. This limits the applicability of

coalition formation to real-world robotic systems, since many

aspects of the environment are poorly defined. One way to

bridge this representational gap is to use stochastic repre-

sentations for the coalition formation related components.

The robotic systems that contribute to uncertainty are the

robot (or agent) type, individual quality (or inversely, agent

cost), coalition value, and sensor noise. This paper improves

upon the uncertainty captured in previous coalition formation

mechanisms by:

This research was sponsored by AFRL Lab Task 06SN02COR. The views
expressed in this article are those of the authors and do not reflect the official
policy or position of the United States Air Force, Department of Defense
or the U.S. Government.

• Incorporating both game theory and distributed artifi-

cial intelligence work to provide a coalition formation

mechanism with stability.

• Explicitly capturing the uncertainty in agent type, agent

cost, and coalition value through a unique agent model

and evaluation mechanism.

• Providing an algorithm that solves for profitable and

stable potential coalitions for a given task in a decentral-

ized manner. The agents then form the most profitable

stable coalition.

This paper also provides the results of applying the mech-

anism to a simulated robot collective with variations in the

agents’ model accuracy and the collective size.

II. UNCERTAINTY IN COALITION FORMATION

Coalition formation processes are traditionally performed

with assumed knowledge of agent types, agent costs, coali-

tion value, and the coalition action (or task). The usefulness

of coalition formation is therefore constrained to well-defined

environments. In real-world robotic systems, the environment

is often poorly defined, preventing application of coalition

formation to the system. Capturing the uncertainty, however,

improves the applicability of coalition formation to real

world systems. Three types of uncertainty exist: agent type,

agent cost, and coalition value.

Agent type describes an agent’s hardware construction,

configuration, and general capabilities. The agent type is

constant for each agent, though other agents might not know

the agent type for a specific agent. Furthermore, the agent

type may fall outside of the agent types that another agent

can represent accurately. This creates difficulty in evaluating

the quality of a potential coalition, since the agent types

affect the agent costs.

Agent cost is the expense incurred by an agent while

executing a task. The agent cost directly affects an agent’s

quality within a coalition. Agent cost is not constant for a

given task type, and may be affected by distance, energy

investment, or the types of the other agents. Agent cost

also dictates the division of payoff upon completion of a

task. Inaccurate state representations and poorly represented

agent types create uncertainty in agent cost, which makes

evaluating the quality of the coalition difficult.

Coalition value is the third source of uncertainty. The

coalition value describes a coalition’s suitability for a task.

If the agent types in a coalition are unequal, individual

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4799

Fig. 1. AND/OR graph showing dependencies in coalition formation
processes. The darker boxes are sources of uncertainty. The arrows indicate
the direction of the dependency. Dashed lines indicate temporal values, fed
in at the beginning or end of the formation cycle. The quality value input
and execution result feedback are unique to the procedure presented in this
paper.

quality dictates the coalition value. Coalition value is directly

affected by the agent costs within the coalition. The agent

costs are used to determine coalition value, which in turn is

used to determine payoff.

Both agent cost and coalition value uncertainty are largely

unaddressed, since most work assumes transferable utility

(TU) is present [6]–[8]. TU exists where there is a common

currency used to make side payments within a coalition [9].

If an agent is not contributing according to expectations,

other agents transfer a payment to the poor agent. This

increases the agent’s quality, improving the coalition and

improving stability. This is impractical for many situations

since the currency may not be transferable, giving nontrans-

ferable utility (NTU). A real-world mobile robotic collective

would not have TU. In fact, the assumption of TU has been

called “exceedingly restrictive–for many purposes it renders

n-person theory next to useless” [10]. An NTU coalition

is often less stable than one with TU. In NTU coalitions,

the characterization of each individual agent’s quality is of

crucial importance, since poor characterization causes a poor

estimate of contribution.

If the quality of agent type estimates are poor, they inhibit

the quality of the agent cost and coalition value estimates.

Agent type estimates and state representations are applied

to determine agent cost. The agent costs (and perhaps state,

depending on approach) are applied to determine coalition

value. The coalition value, together with agent cost, is used to

determine individual payoff estimates. The individual payoff

estimates reflect an expected quality of an agent, relative

to other agents, within a coalition. This individual payoff

is used to determine individual profit, which an agent uses

to evaluate a coalition. These dependencies are shown in

Figure 1. With uncertainty in agent type, agent cost and

coalition value are affected. Even if the agent types are fully

known, the state representation (which is by nature uncertain

in robotic collectives) creates uncertainty in agent cost and

coalition value.

III. RELATED WORK

There are three primary stability evaluation methods in

game theory: the kernel [11], the core [12], and the Shapley

value [13]. Each of these have different knowledge that they

require in order to evaluate the coalition stability. The kernel

is only concerned with coalition value, and the core and

Shapley value focus on agent quality. If full knowledge of the

information required by each stability concept is present, the

uncertainties in the other sources are irrelevant. Conversely,

full knowledge of the other two sources of uncertainty

provides only minimal insight into the information they

require. An aspect of the three sources of uncertainty is that

knowledge of one does not necessarily imply knowledge of

the others.

Chalkiadikis and Boutilier [5] incorporate agent type un-

certainty to determine the Bayesian core. Their approach

applies reinforcement learning to select the appropriate agent

type from a set of candidates, allowing them to then deter-

mine agent cost and coalition cost to develop a coalition.

Unfortunately, the agent type and agent cost are not as

closely related in real-world applications as their approach

implies. Failing to know the cost of even one agent limits

knowledge of the coalition value, in turn making the compu-

tation more difficult since that agent’s influence is unknown

[14]. Furthermore, their application of reinforcement learning

to select the agent type from a known set limits the types of

agents that can be in a collective. If the true agent type falls

outside the known set, the characterization may be erroneous

and the mechanism may form poor coalitions.

Shehory and Krauss [6] provide a mechanism that does

not explicitly require a priori information about the agent

types, but solicits this information from the other agents

during a coalition formation process. Their work assumes

transferable utility, infeasible for many real-world robotic

systems. Shehory and Krauss apply an algorithm to solve

for all possible coalitions and perform a greedy selection

of the preferred coalitions in order to determine the best

coalition structuring. The resulting coalition structure is not

guaranteed optimal due to the greedy selection strategy.

Once the agent type information is solicited, there is no

further uncertainty in agent type so the uncertainty is not

incorporated into the calculation directly. Their approach

generates poor coalitions if an agent cannot represent another

agent’s type appropriately.

Some work handles uncertainty by deflecting it. Soh and

Tsatsoulis [7] provide a representation that allows for agent

type and cost uncertainty with some agents, but requires

adequate a priori knowledge of the agents in a neighborhood,

reducing the complexity of the calculation to the well-

understood neighborhood. There is not, however, uncertainty

associated with the agents in the neighborhood, thus the

coalition formation process is free from uncertainty. The full

knowledge of the other agents in a neighborhood limits the

applicability of this mechanism to a more uncertain collec-

tive. Vig and Adams [8] use the algorithm from Shehory

and Krauss [6] in a multi-robot setting to form coalitions.

4800

The uncertainty in their approach is limited to sensor noise

and communication failure, which creates uncertainty in

the robot’s internal state estimate. However, the types and

capabilities are assumed known a priori. This may be a

valid assumption for static robotic collectives, but does not

apply in collectives that allow for the addition of unknown

robot types. Unfortunately, none of these approaches directly

handle all three sources. The closest to date has been Chalki-

adakis and Boutilier [5], which directly addressed uncertainty

in agent type yet assumed knowledge of agent cost and

coalition value. We extend Chalkiadakis and Boutilier’s [5]

work by generating agent types for the other agents through

evaluation of an internal model.

A quality-based approach to allocating tasks to multiple

robots involves the use of auction methods. Much work has

been performed in auction methods to address efficiency and

optimality [1], [2]. Unfortunately, auction methods make a

single critical assumption: the number of robots required for

a task are known a priori. Thus, the application of auction

methods directly to coalition formation is limited to static

coalition sizes.

IV. THE COALITION FORMATION PROCEDURE

On the notification of a new task, each agent begins the

procedure with the determination and broadcast of its quality

value for the issued task. An agent’s overall quality value

defines its individual capability for execution of a task. This

quality value is calculated by evaluating the quality of each

ability across the set of its abilities, an ability set. The quality

value is broadcast to all members of the collective so they

can individually process the task allocation. This coalition

formation mechanism takes advantage of the quality values

to gain insight into the broadcasting robot’s abilities and form

improved coalitions. However, since the quality for agent i,

yi, is based on a cost estimate and is limited by the abilities

a receiving robot can represent, which may not be the same

as the broadcaster, the quality values over the abilities are

captured with uncertainty.

Let N = {1, 2, 3..., n} be the set of agents in a collective.

The ith coalition formed in this collective is Si ⊆ N . The

coalition structure is the set of all coalitions formed CS =
{S1, S2, ..., Sg}, where g is the total number of coalitions

formed. Intuitively, S1 ∪S2 ∪ ...∪Sg = N . An agent can be

a member of multiple coalitions at once, so Sa∩Sb ⊆ Sa∪∅.

The tasks assigned the collective are T = {T1, T2, ..., Tp}.

Each coalition Si ∈ CS has an associated task Tj ∈ T .

Note that i = j or i 6= j is irrelevant, since the sequencing

of the coalitions in S and the tasks in T are arbitrary. Each

task Tj may have a sequence of subtasks (which do not

decompose), defined as 〈t1,j , t2,j , ..., tr,j〉. Each task also has

an associated payoff Uj . The task cost Cj is equal to the

coalition cost xSi

Tj
, which is derived from the agent cost in

this approach. A task Tj is a tuple, 〈Uj , t1,j , t2,j , ..., tr,j〉.
The cost for the task is not included in the tuple since the

cost is dependent upon the coalition assigned to the task.

An agent type for agent i is represented by Ai =
〈ai

1, a
i
2, a

i
3, ..., a

i
p〉, where each ai

k is an ability. This is the

true agent type, represented internally by agent i. Another

agent j that can characterize n abilities represents agent i

as A
j
i = 〈aij

1 , a
ij
2 , a

ij
3 , ..., aij

n 〉. This characterization allows

each agent to model the other agent types through ability

sets. This representation allows the agents to represent the

abilities they understand. The set of abilities agent j uses

to define agent i might not accurately represent agent i. In

other words, Ai and A
j
i might not be subsets of each other.

Define each aij
p , p ∈ {1, 2, ..., n} as a Gaussian distribution.

When a task is provided, the agents determine an ability

set {aij
t1, a

ij
t2, a

ij
t3, ..., a

ij
tp}, p ≤ n that represents the abilities

that j expects i to use to execute task T . This representation

includes itself, so reasoning about the potential coalitions

is more straightforward. Each ability aij
m is composed of

a quality qij
m ∈ (0, 1] and the relationship between these

abilities are assumed known, so that the covariance matrix

for them can be defined. As an agent completes tasks in

coalitions, updates on the quality and covariance values are

performed through a Kalman Filter update. The observation

model H is defined as a 1 × n matrix with the positions

of the unused abilities set to 0 and the used abilities evenly

dividing the weight, i.e., if three abilities are used, each has

a value in the corresponding position of the H matrix of 1
3 .

The propagation of the Kalman Filter is merely a carryover

from the previous update.

The agent cost for agent i is ci = f(Tk, Ai). The

cost is determined by calculating the costs associated with

each subtask 〈t1,k, t2,k, ..., tr,k〉. This is based on an agent’s

subjective understanding of the environment and estimates of

its resource expense related to a task. This gives an estimated

cost for each subtask, 〈c(t1,k), c(t2,k), ..., c(tr,k)〉. Since a

plan with abilities needed for each subtask is assumed

available through a planning mechanism within the control

architecture, the cost ci is determined using

ci =
∑

tb,j∈Tk

c(tb,k)

q
ij
1

+
c(tb,k)

q
ij
2

+ ... +
c(tb,k)

q
ij
p

This shows that each ability scales the estimated cost for

the task, generating task cost. In other words, the quality

of the abilities contributing to a task affect the cost of

executing the task. A very low-quality ability drives the

cost up significantly. The ability-centric costs
c(tb,k)

q
ij
1

, etc. are

added to each other for each subtask, creating a subtask cost,

which is sent along with an estimated quality. The subtask

costs are summed to create a total cost, ci. More accurately,

this total cost is c
j
i , or the total cost that agent j believes

agent i will incur. The costs can be learned over time if the

domain is not well known, or generated ahead of time if it

is. Since the agents are to be real-world robots, it is assumed

that the domain is not well known and the costs are learned

over time.

The coalition cost CS for coalition Si is the sum of the

agent costs in the coalition, which is based upon the agent

types:

CS =
∑

k∈Si

ck =
∑

k∈Si

f(Tj , Ak).

4801

This cost is applied to the coalition formation mechanism for

generation of a profit vector PS = {p1, p2, ..., pm} of a given

coalition where pj = PS ·
1

ci
j

∑
r∈S

1

ci
r

= Uk−CS ·
1

ci
j

∑
r∈S

1

ci
r

.

The sum of the profit vector in relationship to the payoff

of the task is the coalition value. The coalition value is not

calculated explicitly, as it is implied through this relationship.

The coalition formation decision procedure is broken

into two roles: proposer and responder. These roles are

concurrently executed in each agent. The proposer generates

coalitions based upon the agent’s subjective view and sug-

gests them to other agents, also making them available to

the responder. The responder receives a suggested coalition

and determines the quality of the proposal given the agent’s

subjective view of the potential coalition. Upon receipt of a

proposed coalition, the agent no longer needs to propose that

coalition to the other agents, so the responder role reduces

the workload of the proposer by removing the coalition

from the generated set. Because agent type is uncertain, the

agents negotiate coalitions since full information needed for

the generation of coalitions is not available. The proposer’s

procedure is shown in Algorithm 1.

Algorithm 1 Proposer(Task T)

1: Determine and broadcast quality and subtask costs.

2: Receive quality yj∀j from other robots. Update beliefs.

3: for each S ∈ N where i ∈ S do

4: generate required abilities Aj for each agent j.

5: determine CS =
∑

j∈S ci
j .

6: calculate pj = UT − CS · 1
ci

j

∑
r∈S

1

ci
r

∀j ∈ S ⇒ PS .

7: if pi current < pi singleton then

8: break.

9: end if

10: for each j 6= i ∈ S do

11: send S, PS to j.

12: if response = negative then

13: break.

14: end if

15: end for

16: save S in PS (the set of acceptable coalitions).

17: end for

18: while a coalition is not formed and PS 6= ∅ do

19: select from PS the Sm maximizing pi.

20: issue Sm to its members of Sm for final approval.

21: if approved then

22: announce S to collective and exit.

23: else

24: remove S from PS.

25: end if

26: end while

The proposer procedure is three-staged: the first stage

calculates the anticipated benefit of each coalition for this

agent. If the coalition is better than the coalition of just

itself (pi singleton) then in the second stage, all of the

agents in the potential coalition are proposed the coalition

with associated profit vector (lines 10-17). Once all mutually

Algorithm 2 Responder(message)

1: if message type is final approval with S, PS then

2: if i ∈ V where pS
i < pV

i then

3: respond with negative

4: else

5: respond with positive, notify proposer of V

6: end if

7: else

8: receive S, PS

9: Generate required abilities set ∀j ∈ S

10: Generate CS =
∑

j∈S ci
j .

11: Determine pi
j = UT − CS · 1

ci
j

∑
r∈S

1

ci
r

⇒ P i
S .

12: Evaluate pi ∈ PS and pi
i ∈ P i

S : y = |1 − pi
i

pi
|.

13: if y ≤ q then

14: respond with positive

15: else

16: respond with negative

17: end if

18: end if

acceptable coalitions are produced, in the third stage (lines

21-26), the best coalition generated is sent to the other agents

for final approval. If approved, the agent begins execution on

the task with the formed coalition.

The responder handles messages from the proposer. It

evaluates the message type, then proceeds according to the

type. If the message type is for final approval, the proposer

evaluates the request in terms of any currently approved

coalitions (lines 2-6). If it is a proposal, it generates its

own expected profit vector P i
S (lines 8-11) then compares

it to the offered profit (line 13) to determine whether the

proposal is acceptable. The parameter q in line 13 is user

defined, and dictates the degree to which the models must

agree before accepting a coalition. A reasonable value is

0.3, which requires that a coalition proposal must contain

a profit for agent i which reflects i’s expected profit within

30%. Smaller values for q require greater agreement in the

models.

The procedures presented above do not appear to address

total quality directly. The quality is addressed during the

generation of the abilities in line 4 of the proposer’s proce-

dure. The value of each ability affects the quality of each

agent. This affects the profit of the coalition, so the quality

is captured by the procedure. The procedure favors smaller

coalitions since the payoff is static for the task and the

profit is divided among the performing coalition. This may

often lead to singleton coalitions unless the ability sets are

designed appropriately. A system designer may choose to

build a more complicated model where an agent’s quality is

affected by both the task type and the number of agents

in a proposal. This requires an expansion of the quality

value generation and evaluation, but leads to a much more

sophisticated system which could favor coalitions up to a

given size or of at least a given size.

4802

V. RESULTS

A simulation was developed with multiple agents and a

simulated task to move an item. The agents are broken into

three types. Each agent type has ability sets representing solo

execution and group execution of a task, though only the

group execution quality is sent. The quality is determined

from the values for each ability type within an agent, i.e.

two agents of identical type have identical quality for group

execution in this simulation. Type 1 is an agent which is

good at the task and improves little if in a group, i.e. the

difference between ability qualities in the solo and group

abilities is low. Type 2 is an agent which is somewhat

good at the task by itself, but improves significantly if in

a group. Type 3 is an agent which is poor at the task

and improves significantly if in a group. Each agent type

possesses at least two abilities that the other agents do

not. Agents of type 2 and 3 tend to propose coalitions,

whereas agents of type 1 tend to decline coalitions since

their profit is not increased by joining a group. The effects of

different quantities of each agent type and the quality of each

agent’s internal model of the other agents are investigated.

The factors of interest are the computation time and the

number of communication messages sent. The simulation

is designed such that communication does occasionally fail

(i.e., communication messages may be blocked or lost) and

multiple agents may issue proposals to each other at the same

time.

The testing is broken into two parts: perfect models and

imperfect models. The effects of varying the quantity and

type of agents on the computation time are tracked in the

perfect model testing. The imperfect model testing evaluates

convergence rates: the quantity of tasks needed for the

models to converge sufficiently to form coalitions.

A. Perfect Model Testing

With perfect models, the agents can evaluate and propose

potential coalitions to any other agent, confident that the

other agents will accept if the other agents cannot receive a

better payoff alone. The effects of a specific type of agent on

the message quantity and processing time may be significant,

depending upon the types of the other agents in the collective.

For example, a 12 member collective composed solely of

agents of type 1 on a standard task completes rapidly since

no agents issue proposals. However, changing this setup to

a 12 member collective containing 4 agents of type 1 takes

an average of 4,821 seconds to complete. The configurations

selected for testing contain a split between the agent types

in order to examine the worst case scenario for processing

time. The quantity of each agent type for each run is shown in

Table I. Each agent has two values for each ability: solo and

group. The solo value gives the quality if an agent chooses to

work alone, and the group value if the agent chooses to work

in a group. This approach favors two-member coalitions,

though it does not prevent larger coalitions in the case of

poor models or communication failures.

Fig. 2 indicates the time taken for each run. The dots are

realized run times and the line indicates the trend. Note that

TABLE I

THE RUN NUMBERS WITH THE QUANTITY OF EACH AGENT TYPE. EACH

RUN WAS EXECUTED 10 TIMES.

Run Type 1 Type 2 Type 3 Total

1 2 2 2 6

2 3 2 2 7

3 2 3 2 7

4 2 2 2 7

5 4 2 2 8

6 2 4 2 8

7 2 2 4 8

8 5 2 2 9

9 2 5 2 9

10 2 2 5 9

11 4 4 4 12

the plot is semi-logarithmic, reflecting the 2n effects on the

growth rate when an agent is added. The runtime effects are

not significantly affected by the agent types, though this is

due to the mixture of types in the collective.

5 6 7 8 9 10 11 12 13
10

1

10
2

10
3

10
4

Agent Quantity

T
im

e
 f

o
r

ru
n

Fig. 2. Semi-logarithmic plot showing the effect on runtime of adding an
agent. The realized values for each quantity of agents is shown relative to a
line indicating the trend. Each agent has perfect models of all other agents.

B. Imperfect Model Testing

The convergence rate when the models are imperfect

depends greatly upon the initial quality of an agent’s models

relative to the true configuration of the other agents. If the

models are of poor quality, the agents may have to process

a task multiple times prior to being able to form a coalition,

since their models improve when the utilities are sent each

time a task is presented. Each agent’s unique abilities are

not represented by the agents of any other type. Thus, this

testing incorporates not only improvement of the models,

but also the effects of not properly representing the other

agents. The models were tested on four configurations: the

first configuration has each agent assuming that all the other

agents are identical to itself. The second configuration has

each model consisting of skills identical to the modeling

agent and ability values initially set to 0.5. The third config-

uration assumes all the agents except for the modeling agent

are poor at the task, with each ability set to 0.01. The final

configuration assumes all the agents except for the modeling

agent are excellent at the task, with each ability quality set

4803

to 1.0. A six-agent collective with two of each agent type

is used for these tests. For each run, a task is re-evaluated

five times. One run at each configuration is sufficient to

evaluate the quality of the model convergence, since the

convergence rate in the developed simulation is only based

upon the broadcast quality and the model’s initial quality,

not on environmental effects or the coalition formed. In real-

world scenarios, another opportunity for learning would be

through performing a postmortem evaluation of the task,

which would cause the convergence rate to become partially

dependent upon the formed coalition.

Since agents only agree to form coalitions if their internal

model agrees (within 30%) with the issued proposal, the first

exposure to the task under these conditions does not form a

coalition successfully, except when each agent assumes the

others are identical to itself or are highly capable. The models

converge to at least some coalitions agreed upon within three

runs, regardless of the initial model quality. After five runs,

the models are similar enough to each other for a given task

that the proposing agents begin to issue proposals that better

reflect the true cost and payoff. The selection mechanism

within each agent is then better able to distinguish the quality

of coalitions. Fig. 3 shows the number of iterations required

to form a coalition. More accurate initial models converge

faster, but even very poor initial models generate acceptable

coalitions after eight iterations. More complex domains with

widely varying task types may cause the convergence to take

more iterations, but convergence occurs regardless of initial

model quality.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Initial Ability Quality Assumption

N
u

m
b

e
r

o
f

R
e

e
v

a
lu

a
ti

o
n

s
 R

e
q

u
ir

e
d

Fig. 3. The number of iterations required to form coalitions at varying
initial model qualities.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a new coalition formation mechanism

that directly allows for uncertainty within a collective. This

approach is built upon a modeling and evaluation procedure

that allows for model convergence over time and dynamic

allocation of agents to a task. This procedure takes no

longer than previous approaches [6], yet incorporates the

environmental and agent type uncertainty when generating

coalitions. This can be very useful in real-world autonomous

mobile robotic systems, since it allows for introduction of

new, previously unknown robot types into an existing system.

This coalition formation mechanism has stability based upon

the strong Bayesian core developed by Chalkiadakis and

Boutilier. The algorithm solves for profitable and stable po-

tential coalitions for a given task in a decentralized manner.

The results of applying the mechanism to a simulated robot

collective with variations in the agents’ model accuracy and

the collective size were provided. This paper showed that the

models converge with repeated formation attempts, allowing

for more accurate coalitions over time. The mechanism scales

similarly to other coalition formation algorithms, yet enables

the formation of coalitions when an agent type falls outside

of a known set. This approach is well-suited to applications

where turnover rates of robots are high yet lifespan is long. It

also provides the ability of more general collectives to form

coalitions in more diverse environments with agents or robots

requiring minimal a priori knowledge about each other.

Future work includes the application of the algorithm

to a real-world robot collective performing intelligence,

surveillance, and reconnaissance, and the analysis of the

effects of quality functions and parameters on the collective’s

performance.

REFERENCES

[1] M. B. Dias and A. T. Stentz, “A free market architecture for distributed
control of a multirobot system,” in 6th International Conference on

Intelligent Autonomous Systems (IAS-6), July 2000, pp. 115–122.
[2] B. Gerkey and M. Mataric, “Multi-robot task allocation: analyzing the

complexity and optimality of key architectures,” in IEEE International

Conference on Robotics and Automation, 2003. ICRA ’03., vol. 3, Sept.
2003, pp. 3862–3868 vol.3.

[3] G. Chalkiadakis and C. Boutilier, “Coalitional bargaining with agent
type uncertainty,” in Proceedings of IJCAI-07, Hyderabad, India, 2007,
pp. 1227–1232.

[4] M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cam-
bridge, Massachusetts: The MIT Press, 1994.

[5] G. Chalkiadakis and C. Boutilier, “Bayesian reinforcement learning for
coalition formation under uncertainty,” in AAMAS ’04: Proceedings of

the Third International Joint Conference on Autonomous Agents and

Multiagent Systems. Washington, DC, USA: IEEE Computer Society,
2004, pp. 1090–1097.

[6] O. Shehory and S. Kraus, “Methods for task allocation via agent
coalition formation,” Artificial Intelligence, vol. 101, no. 1-2, pp. 165–
200, May 1998.

[7] L.-K. Soh and C. Tsatsoulis, “Utility-based multiagent coalition
formation with incomplete information and time constraints,” IEEE

International Conference on Systems, Man and Cybernetics, 2003,
vol. 2, pp. 1481–1486 vol.2, Oct. 2003.

[8] L. Vig and J. Adams, “Multi-robot coalition formation,” IEEE Trans-

actions on Robotics, vol. 22, no. 4, pp. 637–649, Aug. 2006.
[9] J. C. Gomez, “Generalizing the extended core to games with nontrans-

ferable utility,” Tech. Rep., November 2002, university of Minnesota,
Department of Economics.

[10] R. D. Luce and H. Raiffa, Games and Decisions: Introduction and

Critical Survey. Dover, 1989, reprint. Originally published:Wiley,
1957.

[11] M. Davis and M. Maschler, “The kernel of a cooperative game,” Naval

Research Logistics Quarterly, vol. 12, no. 3, pp. 223–259, 1965.
[12] D. B. Gillies, Contributions to the Theory of Games. Princeton

University Press, 1959, vol. IV, ch. Solutions to general non-zero-sum
games, pp. 47–85.

[13] E. Winter, “Chapter 53: The shapley value,” in Handbook of Game

Theory with Economic Applications, R. Aumann and S. Hart, Eds.
Elsevier, 2002, vol. Volume 3, pp. 2025–2054.

[14] M. Allen and S. Zilberstein, “Agent influence as a predictor of dif-
ficulty for decentralized problem-solving,” in AAAI 2007, Vancouver,
BC, Canada, July 22-26 2007, pp. 688–693.

4804

