
Abstract—Current fully autonomous robots are unable to 
navigate effectively in visually complex environments due to 
limitations in sensing and cognition. Full teleoperation using 
current interfaces is difficult and the operator often makes 
navigation mistakes due to lack of operating environment 
information and a limited field of view. We present a novel 
method for combining the sensing and cognition of a robot with 
that of a human. Our collaborative approach is different from 
most in that we address bi-directional considerations. It 
provides the human a mechanism to supplement the robot’s 
capabilities in a new and unique way and provides novel forms 
of feedback from the robot to enhance the human’s 
understanding of the current state of the system and its 
intentions. 
 

Index Terms—Mobile Robots, Navigation, Cognition, 
Complex Environments 

I. INTRODUCTION 
Robots are currently unable to autonomously operate in 

visually complex environments due to limitations in sensing 
and cognition. Once outside the structured laboratory 
environment, the current sensors provide inadequate 
information for successful autonomous operation. Even the 
best 3D range finders can miss critical pieces of information 
and place a large computational burden on the system. 
However, if a perfect sensor did exist, the lack of cognitive 
ability to interpret the sensory information would still be a 
major barrier to navigation. Object recognition is still in its 
infancy and scene interpretation is still a far off dream. 
Therefore, to date, the vast majority of robots deployed in 
urban environments have been fully teleoperated (e.g. Talon 
and Packbot), placing a large burden on the human operators 
who are often hindered by poor interfaces [1].  

Consistent with much of the recent work being done in 
this area [2-6], we believe that with a good system design 
and an effective user interface, a human-robot team 
navigation system can be faster, more accurate, and more 
efficient than a purely teleoperated system or a purely 
autonomous system. In this paper, we describe the design 
goals for a human-robot team navigation system, methods 
for achieving those goals, and the implementation of such a 
system. Section II provides a brief review of other work 
related to the scope of this project. In Section III, we discuss 
the design goals and methods for a human-robot team 
navigation system. In Section IV, we present our 

implementation of such a system. The paper concludes with 
a discussion of the uses, benefits, and limitations of our 
approach, and directions for future work.  

A. Navigation Challenges for Purely Autonomous 
Systems 
Despite the advances made in autonomous navigation, 

navigating in visually complex environments remains a 
challenge. In such environments, there are many instances of 
Turing Test style navigation problems, which seem to 
require human-level cognition to solve.  

Figure 1 shows just a few examples of scenes that are 
simple for humans to interpret, but would thwart today’s 
robotics systems. On the left is an automatic sliding glass 
door adjacent to glass windows. To a human familiar with 
sliding doors, the proper way to enter the building is 
obvious. This knowledge would be difficult to include in an 
autonomous system and the shadows and reflections make 
this a daunting image recognition problem. The image on 
the right is a fence with a narrow gate that is covered in 
vines. Discriminating between fixed and moveable 
obstructions such as the vines is another challenge out of 
reach of today’s navigation systems.  

Like typical Artificial Intelligence systems, we could add 
specific rules for these and other cases but would soon find 
that there are too many special cases to account for, and that 
no matter how many special rules we add to our system, we 
would soon encounter novel situations. 

 
Fig. 1.  Typical scenes that are trivial for a human to interpret, but 
challenging for an autonomous system. On the left, an automatic 
glass sliding door. On the right, a narrow gate with vines. 

 
In addition, in a hostile environment, it would be very 

easy for adversaries to add “Navigation Captchas” to the 
environment to prevent movement of machines while not 
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hindering access to humans. These could include signs that 
are difficult for machines to interpret, as well as obstructions 
that can easily be moved, but that a machine might not 
deduce as being movable (such as beads in a doorway). 

No matter what advances are made in autonomous 
navigation, we believe that a Human-Robot Team 
Navigation system that combines human and robot 
capabilities will be more effective than either a purely 
autonomous or purely teleoperated system.  

II. RELATED WORK 
 Over the past several years, extensive work has been 

done in the field of robot navigation. Advances in this 
technology have grown rapidly, producing many diverse 
systems. However, most systems deployed in complex urban 
environments are still teleoperated, such as the Talon [7] and 
the Packbot [8]. While teleoperation provides greater control 
over a robot, it also places a heavy burden on the operator, 
who often loses situational awareness and has difficulties 
navigating in cluttered urban environments [1]. Alternate to 
teleoperated systems are autonomous control systems such 
as those used on robots entered into the DARPA Grand 
Challenge [9].  Our research focuses on an improved 
navigation system that incorporates some of the best aspects 
of both teleoperated and autonomous systems. 

There have been several approaches that provide 
improved information about the robot’s environment to the 
human operator. Sugimoto and colleagues developed the 
Time Follower’s Vision [10]. In this system, a delayed video 
stream and virtual robot avatar are used to give the operator 
the ability to operate the robot from a third person’s view. 
Using this view, it is easy to acquire situational awareness of 
the robot and be very precise in movements. Our system 
incorporates a similar feature, but also allows for the user to 
place multiple views around a room from any point that the 
robot has previously been and view the robot from many 
different angles as shown in Figure 7. We also allow for the 
robot to navigate behind objects and be occluded by them 
due to the 3D mapping of the environment. 

There have also been approaches that provide a 
mechanism for the human to provide information to the 
robot. For example, in Chronis and Skubic’s Hand-Drawn 
Maps for Robot Navigation System [11], the user creates 2D 
maps for the robot to use. Our system enhances that 
approach by allowing the operator to create 3D maps 
consisting of virtual objects for greater environmental 
control. Instead of relying on the robot’s interpretation of 
the environment, we rely on the operators spatial reasoning 
skills to extract 3D information from two dimensional 
images. Using this system, the operator can more precisely 
control what the robot knows about the environment and 
even inform the robot about information that no other 
autonomous system could detect. Fong’s collaborative 

control poses questions to the user when it has trouble with 
perception or cognition [12]. However, it does not provide a 
method to interject unsolicited information into the robot’s 
sense-plan-act sequence.   

Recently, systems have been appearing that allow a user 
to interact with the system’s autonomous processes. Google 
Maps has incorporated one such feature in their online 
mapping system. This feature not only allows for routes to 
be presented to the user, but also allows for the user to 
manipulate those routes by dragging control points on the 
path that was generated. Our system has a similar feature. 
Instead of fully relying on the robot to generate a path, we 
allow the user to adjust this path to avoid sensitive areas or 
take a different route entirely. Also much like Google Earth, 
we provide the capabilities to allow the operator to open up 
many different viewports. These viewports can contain real 
time video stream overlaid with virtual information, virtual 
environments that the operator can fly around in, top down 
views for enhanced navigation, and rewind views for 
external robot perspectives.  

A main focus of our approach is to be highly 
collaborative, providing bi-directional information 
exchange. The human receives enhanced information 
through the interface that includes a grid overlay and a 
mixed reality robot overlay providing a three person view. 
Additionally the human can get a preview of intentions in 
this same display.  The robot receives information from the 
human that supplements or enhances its capabilities. An 
added advantage of this approach is that the human gets 
feedback through observation of the real environment 
(actual video) on how well the system is working. If 
deviations between the virtual elements and the real 
elements occur, they are obvious to the human and indicate a 
need to adjust the robot’s model of the world.  This feature 
is very helpful in predicting the robot’s competence. 

III. DESIGN OF A HUMAN-ROBOT TEAM NAVIGATION 
SYSTEM 

In this Section, we describe the design goals for a 
Human-Robot Team Navigation System, and the methods 
for achieving those goals. 

A. Design Goals for a Human-Robot Team Navigation 
System  
The main goal of a Human-Robot Team Navigation 

System is to be more effective and efficient than a system 
that uses human or machine cognition only, by utilizing and 
integrating the capabilities of both. 

Some of the sub-goals that can help achieve this goal are: 
• Quickly and continuously provide situational 

awareness to the human operator. 
• Provide awareness of autonomous processes to the 

human operator to minimize automation surprise. 
• Utilize the best aspects of currently available fully 

autonomous systems. Allow these autonomous 
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subsystems to operate despite their limitations, 
knowing that their results can be filtered by a human. 

• Allow a human to input goals more quickly than 
through teleoperation, knowing that the robot will be 
safe due to the capabilities of the underlying 
autonomous system. 

• Provide tools and interfaces that place a minimal 
burden on the human operator. 

• Enhance trust of the system by providing appropriate 
alerts and requiring human confirmation at 
appropriate decision points. 

B. Methods for Achieving an Effective Human-Robot 
Team Navigation System 
In this Section we, describe some methods that are useful 

for an effective Human-Robot Team Navigation System. In 
Section IV, we describe the implementation of a system that 
incorporates these methods. 

 
1) Mixed Reality Displays and Virtual Viewports 

By using mixed reality displays, we can superimpose real-
time imagery with virtual processed imagery to give the 
operator a sense of the data, goals, and intentions of the 
system, improving situational awareness. We can provide 
various virtual viewports to the operator, such as an 
overhead view and views to the various sides of the robot. 
Of course, without a real sensor placed overhead, that view 
will only be able to display virtual objects. However, any 
view from a real sensor will be able to overlay both virtual 
and real imagery from that sensor. In fact, the sensor could 
be on a different robot [13], or could even be recorded from 
a different vantage point at a different time, as described in 
the “Rewind” Section below. 
 Of course, it will be very important for the human to be 
able to easily differentiate between the real information and 
the virtual information in the mixed reality displays. As we 
develop future systems it will be interesting to see if there 
are any psychological problems that arise that make such 
displays confusing and/or disconcerting. 
 

2) Human-Assisted Image Processing and Scene 
Interpretation 

 Ideally, the human would use as natural a user interface as 
possible, perhaps even describing a scene using natural 
language. The user could label objects, mark their 
boundaries, describe their properties, etc. In the simplest 
case, the operator could simply determine what areas are 
keep-out regions and what areas are passable. For example, 
consider the image in Figure 2. A human can easily see the 
books on the shelves, the immovable pillar, and the 
moveable table and chairs. A user could label this room as a 
library, label some of the objects, and indicate to the system 
that there is likely a free path around the left side of the 
pillar as it is highly probable that the pillar has a square 
cross section and does not extrude all the way to the wall. 
An automated system might not be able to make that 

deduction without first exploring to gather more information 
to the left side of the pillar.    
 A very simple interface for allowing human processing 
and interpretation is to allow the human to place keep-out 
regions in the scene, using a mixed-reality display. For 
example, in Figure 2, a human could place a keep out region 
along the bookshelf, a square upward extrusion at the pillar, 
and a box over the table and chairs. This is the approach we 
take in the system we implemented, described in Section III. 
 

3) Play-Forward 
A “Play-Forward” feature would allow one to observe the 

intention of a robot by displaying the expected action of an 
ongoing or upcoming plan. The user could then terminate or 
modify the plan if desired, or continue work on something 
else with the confidence that the robot will perform as 
expected without having to continuously monitor the robot. 
This feature can greatly enhance the level of trust of the 
system by reducing automation surprises. 

 

 
Fig. 2.  Example image showing a library with table and chairs and 
a pillar. A human can quickly identify the objects in the scene, 
distinguish between the movable and immovable objects, and 
determine that there is likely a path to the left of the pillar. 

 
As the example in Figure 3 illustrates, one could use 

graphical overlays on a camera image and an overhead view 
to show the expected path of a humanoid robot around an 
object and down a corridor. Figure 3a shows the path 
(green), the specific footsteps (dark blue) and a virtual 
representation of the robot. The robot’s path could be 
animated so that the user could watch the robot “walk” 
through the environment. This approach would be similar 
for a wheeled vehicle except without the footsteps. With 
spatial information from objects or keep-out regions in the 
environment, the robot could be occluded as appropriate to 
convey passing behind objects. Similar information can be 
presented from alternate views, such as an overhead view as 
in Figure 3b. 
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Fig. 3.  Example of Play-Forward: a) mixed reality image b) virtual 
2D overhead view. 

 
4) Manual Adjustment of Automatically Generated 
Sensor Processing or Plans 

Due to limitations in autonomous navigation, a fully 
autonomous system can often suffer from sensor processing 
or planning mistakes. Rather than completely bypassing the 
autonomous system, and relying on pure teleoperation of the 
robot, a more efficient method might be to let the system do 
the best it can and then have a human manually adjust the 
results of the autonomous system.  
 These adjustments could be applied directly to the output 
of the system, for example, by moving waypoints on a plan. 
Alternatively, they could be applied to the inputs. For 
example, a keep-out region could be added to an area to 
force the autonomous system to re-plan a route around the 
keep-out region. They could be applied after the 
autonomous system has finished doing the best that it can, or 
they could be part of a continuous interaction between the 
system and the human. 

Play-Forward of a plan would allow the operator to see 
potential errors or misinterpretations prior to execution. The 
operator could then interact with the plan in various ways. 
One interaction would be to increase the standoff range for 
obstacles. For example, if the path passes too close to 
obstacles, the user may simply increase the desired standoff 
range and the path will be automatically updated, as shown 
in Figure 4.   

 

   
Fig. 4.  Example of standoff adjustment to increase the distance 
that the robot stays away from the obstacles. 
 

A second method is to “grab and drag” portions of the 
plan to modify it. This would be appropriate when the 
standoff range is fine, but there is a particularly sensitive 
object you would like to give more room to or a direction 
you would prefer to favor. The path generated by the system 
has handles that allow the user to grab and manipulate the 
path. Once grabbed, the user is presented with the allowable 

range of dragging. As the user drags, the plan is recalculated 
and redisplayed. In addition, the user can add additional 
keep-out or stay-in regions to the 3D model to cause the 
plan to change.  

 

 
Fig. 5.  The view from the robot after various objects have been 
marked off by the operator and a path has been planned through 
them by the robot. The colored cubes represent the waypoints the 
robot has generated. 

 
Figure 5 shows a view from our robot after the operator 

has marked off the obstacles critical to the robot’s 
navigation. The robot has planned a path through those 
obstacles and has presented the operator with the path. In 
this figure, there are colored cubes connected by a green line 
on the ground. These colored cubes are waypoints that the 
robot has generated for navigating through the boxes. To 
change the robot’s generated path, the operator may drag 
these waypoints around to change the robots path or add 
additional keep out regions and have the robot re-plan.     
 

5) Rewind and Viewports from Recorded Imagery 
A “Rewind” feature can be used to help reacquire 

situational awareness and avoid errors. Such a feature could 
allow the user to see a short replay of the movement prior to 
the current location using graphical overlays and actual 
imagery that was recorded as the robot moved to its current 
location. The user could also “zoom out” a short distance, 
providing a different viewpoint. This would help to rapidly 
situate the user and help reduce the problems associated with 
context switching and limited field of view that are typical 
in teleoperation interfaces. 

This rewind feature can be achieved by saving a brief 
history of images and objects and display a virtual 
representation of the robot from the viewpoint of its 
previously recorded data. This will allow the user to “see” 
their immediate surroundings better. For example, Figure 6a 
shows a view from our robot’s camera at its current position. 
This view shows a doorway that can be difficult to enter 
using a robot with a limited field of view. To make the 
process of navigating through a doorway easier, an operator 
can set up a rewind view at the robot’s current location. 
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Figure 6b shows the rewind view from the original location 
of the robot after key obstacles have been marked off. Using 
this rewind view, and a virtual representation of the robot, 
the operator has a view from behind the robot and was easily 
able to navigate the robot through the doorway without 
colliding with any obstacles.  

 

  
Fig. 6. Example of Rewind feature: a) Robot’s view showing a 
doorway that has not been marked off by the operator. b) Rewind 
view with the doorway marked off and the robot, shown virtually, 
beyond the doorway. 

 
In current systems based on typical teleoperation 

interfaces, the operator is burdened with maintaining a 
detailed cognitive map of the environment, while providing 
control for the robot. A Rewind capability would allow the 
user to replay a short history and provide viewpoints similar 
to those shown in Figure 7. Here you get a glimpse of the 
robot situated in its environment from multiple viewports 
and can see an obstacle that is outside the robot’s view in its 
current position.   
 

 
Fig. 7.  Multiple mixed reality viewports showing external 
perspective and the virtual robot. 
 

This idea can be generalized to include mixed reality 
viewports from any previously recorded source at different 
locations and times. For example, upon entering a room, the 
robot could move side to side, looking at the room from 

different perspectives. Then, as the robot navigated through 
the room, various viewports could be provided to show the 
view of the robot from the entrance of the room.  

Of course, in order to effectively mix old imagery with 
new data, correspondence between data sources must be 
maintained, and the environment must not change 
significantly. Depending on how dynamic the environment 
is, viewports from older recordings could indicate the 
staleness of their data and/or disappear as they become too 
old. 

IV. IMPLEMENTATION OF A HUMAN-ROBOT TEAM 
NAVIGATION SYSTEM USING A WHEELED ROBOT, DEAD 

RECKONING, AND SINGLE CAMERA 
In this Section we describe our first implementation of a 

Human-Robot Team Navigation system that achieves many 
of our design goals. In this system, we use a very basic robot 
system, shown in Figure 8. This system consists of a Pioneer 
3AT wheeled robot from Mobile Robots, equipped with a 
compass, a Sony PTZ camera with pan and tilt, and a SICK 
Laser. The robot has adequate dead reckoning so that we can 
maintain good correspondence between the virtual and real 
objects in our mixed reality displays. With this simple 
platform we are able to demonstrate many features of 
Human-Robot Team Navigation.   

 

 
Fig. 8.  Platform used for our first implementation of a Human-
Robot Team Navigation System. The robot is a Pioneer 3AT from 
Mobile Robots, equipped with a pan-tilt camera and a laser range 
sensor. 

 
A. Interface Development for Single Camera 
We developed a novel interface that makes use of single 

camera images. A simple camera is still a tremendous 
untapped resource for robots. Image interpretation is very 
difficult for fully autonomous systems, which is why laser 
range finders have recently been a more favored sensor. 
However, a human can extract significant information from 
a single camera image, including inferring 3D information, 
guided by experience with urban environments. Rather than 
simply displaying the image to an operator for teleoperation, 
we use some creative techniques to allow the operator to 
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provide information to the robot and vice versa. 
Figure 9 shows two views from the user interface. On the 

left is a mixed-reality camera view, and on the right is a 
virtual overhead view. The main camera view displays what 
the robot sees, along with the information the robot knows 
about the environment. The virtual overhead view displays 
the location of known objects and the robot’s location in the 
world. The main camera view is also what the human 
operator uses to mark off areas of interest to the robot. We 
see that the user has marked off a box in the middle of the 
room by placing a virtual keep-out region around the box. 
After an object is marked off through simple mouse 
commands, the object is added to the virtual world and seen 
in the virtual overhead view. Using this overhead view, an 
operator can easily navigate the robot around obstacles, even 
if the obstacle is not in the field of view of the camera.   

Given a single camera image, the cognitive capabilities of 
a human can be used to determine things such as what 
surfaces are horizontal and vertical, what is most likely 
located in an occluded area, what objects are moveable, 
where doors are and how they are opened, what objects are 
safe to step on, what objects can be bumped into and which 
must be avoided, and what signs say and what they mean. 
We exploit these cognitive capabilities first by creating a 
simple 3D model of the environment that consists mainly of 
keep-out and stay-in regions represented by simple 
geometric shapes. We then automatically plan in this model 
and allow the user to interact with the system to improve the 
planning process. 

 

 
Fig. 9.  a) A screen shot of the user interface showing a box in a 
room that has been marked off by the human operator. b) The 
interface showing the overhead view and the camera view swapped 
for easy navigation. The overhead shows the location of the box in 
relation to the robot after the robot has driven to it.  

 
There are three main aspects to the interface design: 1) 

building a simple 3D model of the world, 2) projecting robot 
intentions using the 3D model, and 3) using historical 
information to improve the operator’s situational awareness. 

Using knowledge about the camera’s location and 
orientation and identifying orthogonal surfaces, the user can 
assist the robot in mapping out its 3D environment using 
only a camera. The user can specify if a point in the view is 
on the ground. The user can also specify if a point is 
vertically above a given point. In these cases, the system can 

determine the 3D coordinates of the location signified by the 
user while only using a 2D image. 

 
Fig. 10.  Side view diagram for calculating distance from camera to 
ground objects on the y-axis. 
 
 In Figure 10, y’ is the actual location of an object in the 
environment and y is its corresponding location in the static 
image. The pixel height and width of the image is known. 
The height of the camera, H, and the angle that the camera is 
tilted, tθ , is also known. Knowing the exact height and 
rotation of a camera in an environment, one can calculate the 
distance to any floor point in a static image. With this, if you 
know the location of y in the image you can find the location 
y’ in the environment. 

 
To find angle aθ , the angle in the isosceles triangle that is 

created with the image and the camera, we use the camera’s 
horizontal field of view that is represented by FoVθ ,   

2
FoV

a
θπθ −

=       (1) 

Using the field of view, FoVθ , and the angle that the 

camera is tilted, tθ , we are able to calculate bθ , the angle 
from the camera to the point that the image plane intersects 
with the ground. tθ  is negative if the camera is angled 
down.  

t
FoV

b θ
θπθ +⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

22
     (2) 

Now that we have bθ , we can use the height of the 
camera, H, to find the direct distance from the camera to the 
bottom of the image, S, 

( )b

HS
θcos

=       (3) 

Using S and the field of view, we can find the distance 
from the camera to the center of the image, M, 

SM FoV ⎟
⎠
⎞

⎜
⎝
⎛=

2
cos

θ
     (4) 
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Using these two distances, S and M, we can find the 
height of the image, L,  

 ( )222 MSL −=      (5) 
We use the pixel location of the object, y, the height of 

the image in pixels, hi , and the actual height of the image, 
L, to calculate the distance from the bottom of the image to 
the location of the object in the image ay ,  

( )
h

a i
yLy =       (6) 

We can then calculate id , the direct distance to the object 
in the image from the camera location. 

( )aaai SySyd θcos222 −+=    (7) 

Once we have id , we can calculate the angle from the 

bottom of the image to the object location in the image, yθ . 

( )[ ]
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

aa
y d

y θθ sinarcsin     (8) 

Using the height of the camera, H, we can calculate 'yd , 

the distance on the floor from the camera’s location to the 
object location along the y-axis,  

( )Hd yby θθ += tan'      (9) 

d is the horizontal distance to the object in the image 
from the camera location that we will use to calculate the x 
distance of the object from the image. 

( ) iyb dd θθ += sin      (10) 

In Figure 11, x’ is the actual location of an object in the 
environment and x is its corresponding location in the static 
image. The angle the camera is rotated, pθ , and the pixel 

location, x, are known. With this, if you know the location 
of x in the image, you can find the location x’ in the 
environment. 

We use the width of the image in pixels, wi , the height of 

the image in pixels, hi , along with L, the height of the image 
in meters, to calculate w, the width of the image in meters. 

L
i
i

w
h

w=                                  (11) 

With w we can calculate ax , the x length in meters from 
the center of the image to the location of the object in the 
image. 

w
a i

xwx =                   (12) 

 

 
Fig. 11.  Top view diagram for calculating distance from camera to 
ground objects on the x-axis. 

      
We can then calculate 'xd , the distance in meters on the 

floor from the camera to the object along the x-axis.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −=

d
dwxd y

ax
'

' 2
    (13) 

 
To find x’ and y’, the actual location of the object, we 

rotate the location 'xd  and 'yd  by the angle the camera is 

rotated around the z axis, 
( ) ( )pypx ddx θθ sincos' '' +=    (14) 

( ) ( )pypx ddy θθ cossin' '' +−=    (15) 

 
As the objects are identified and mapped out by the user, 

they are color coded for easy visibility and to confirm for 
the user what the robot “sees.” The user is also presented a 
2D map based on the information generated by our 
algorithm. To keep the interface simple, the user only needs 
to identify relevant objects in the world. In our cluttered 
image in Figure 12, the user only needs to identify the 
partitions defining the exit and the chair that is likely to be 
an obstacle on the way to the exit. The color coding makes 
for clearly defined objects for the user. 

 

  
Fig. 12.  Marked up image and map generated from markup. 
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In addition to implementing the system on the real robot, 
we also test the system in a purely simulated environment, in 
which the locations of all obstacles are perfectly known. 
This is useful for quick development and allows for 
verifying the correctness of our algorithms. 

V. CONCLUSION 
Despite advances made in autonomous navigation, 

navigating in visually complex environments remains a 
challenge. In such environments, there are many types of 
navigation problems that require human-level cognition to 
solve. Navigation mistakes are also common in fully 
teleoperated systems, due to the operator’s lack of operating 
environment information and limited field of view. A 
Human-Robot Team Navigation system that combines 
human and robot capabilities will be more effective than 
either a purely autonomous or purely teleoperated system. 

In this paper, we presented a novel method for combining 
the sensing and cognition of a robot with that of a human in 
a way that will both increase the speed and accuracy of 
navigating a mobile robot in a complex urban environment, 
while lessening the burden placed on a human operator by 
conventional teleoperated systems. We have described the 
design and development of a Human-Robot Team 
Navigation System. The system integrates several methods 
to achieve effective navigation, including mixed-reality 
displays, virtual viewports, human-assisted scene 
interpretation, and manual adjustment of automatically 
generated plans. The system also implements a Play-
Forward feature, which allows the operator to observe the 
intention of a robot by displaying the expected action of an 
ongoing or upcoming plan, and a Rewind feature, which 
allows the operator to see a short replay of prior movement 
using graphical overlays and actual recorded imagery as the 
robot moved to its current location. 

The combination of these methods and features enables 
the system to perform more accurately and effectively than a 
purely autonomous or a purely teleoperated system. The 
system also incorporates a novel graphical user interface that 
provides flexibility in determining the best course of actions 
for successful navigation. In addition, the design 
methodology facilitates use of the Human-Robot Team 
Navigation System in more complex, urban environments.  

Future work includes  
• incorporating the laser range finder and other 

sensors, 
• including more advanced autonomy, such as a 

SLAM system and developing interfaces for the 
user to interact with it,  

• developing different types of displays and interfaces 
for interacting with the system, 

• expanding the system to robots requiring 3D 
navigation, such as humanoids that can step over 

obstacles, 
•  and performing evaluations to validate the 

improvements in speed and accuracy of navigating 
a mobile robot in a complex urban environment.  
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