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Abstract— We study task-allocation problems where cooper-
ative robots need to perform tasks simultaneously. We develop
a distributed negotiation procedure that allows robots to find
all task exchanges that reduce the team cost of a given task
allocation, without robots having to know how other robots
compute their robot costs. Finally, we demonstrate empirically
that our negotiation procedure can substantially reduce the
team costs of task allocations resulting from existing task-
allocation procedures, including sequential single-item auctions.

I. INTRODUCTION

Task allocation is one of the most important coordination

problems for robot teams [4]. We study task allocation where

robots collaborate to minimize the team cost rather than their

own robot costs. Most research on task allocation considers

only simple tasks, which can be performed by single robots

[3] [5] [9]. However, one of the main advantages of robot

teams is that they can perform tasks that single robots

cannot. We therefore consider also complex tasks, which

need to be performed by several robots simultaneously [10]

[12]. For instance, several robots need to move heavy rocks

together, and several fire engines need to extinguish large

fires together. Our motivating problem is multi-robot routing,

where the tasks are to visit targets in the plane, as shown in

Figure 1. The terrain, the locations of all robots and the

locations of all targets are known. One needs to determine

which targets each robot should visit and when it should

visit them so that the team cost (such as the amount of

energy or the task-completion time) is as small as possible.

Multi-robot routing is a standard task for robot teams, for

example, as part of de-mining, search-and-rescue and taking

rock probes on the moon. Multi-robot routing with simple

tasks is a standard test domain for robot coordination with

auctions [2] [9]. Multi-robot routing with complex tasks is

more difficult. First, it is difficult to determine which robots

should perform a complex task because each complex task

has to be assigned to more than one robot. Second, it is

difficult to determine when a group of robots should perform

a complex task because this requires the robots to solve

complex scheduling problems.

We use reaction functions to characterize the robot costs

of a given robot for performing a given complex task

at any possible time. Reaction functions have been used

previously to allow a central planner to determine a task

Fig. 1. Multi-Robot Routing Problem

allocation with a small team cost [11]. We, on the other

hand, use reaction functions to allow robots to reduce the

team cost of a given task allocation by exchanging tasks.

Our initial investigation concentrates on disjoint coalitions,

where every robot can perform at most one complex task [6]

[8]. We proceed as follows: We first review the concepts and

properties of reaction functions proposed in the literature. We

then develop a distributed negotiation procedure (without a

central planner) that allows robots to find all task exchanges

that reduce the team cost of a given task allocation. Our

negotiation procedure has the advantage that each robot

needs to know the reaction functions of the other robots

only for the complex targets assigned to them and that

no robot needs to know how the reaction functions of the

other robots are computed, including how their robot costs

are computed. Finally, we demonstrate empirically that our

negotiation procedure can substantially reduce the team costs

of task allocations resulting from existing task-allocation

procedures, including sequential single-item auctions [9].

II. FORMALIZATION OF MULTI-ROBOT ROUTING

We now formalize multi-robot routing: The finite set of

robots is A. The finite set of targets is X . The number of

robots that need to visit a target x ∈ X simultaneously is
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d(x). A target x ∈ X is simple if d(x) = 1 and complex

otherwise. We distinguish these two kinds of targets because

a robot can freely determine when to visit simple targets

but needs to agree with other robots when to visit complex

targets. Each robot in the group of d(x) robots that need

to visit complex target x at some visit time 0 ≤ t < ∞
has a commitment, written as x ← t. An allocation of

robot r consists of a pair (Xr, Cr), where Xr is the set

of simple targets assigned to it and Cr is a set that is

either empty or contains the commitment for one complex

target. A robot r is eligible iff Cr is empty. The robot cost

crobot
r (Xr, Cr) of robot r is the minimal sum of travel and

wait time that it needs to visit all of the targets assigned to

it, where it can freely determine when to visit each simple

target in Xr subject to the restriction that it has to visit its

complex target (if any) at the agreed-on visit time recorded

in Cr. (The robot cost is infinity in case the robot cannot

satisfy this restriction.) Our objective is to find a solution

with a small team cost, where a solution requires each

target x ∈ X to be assigned to exactly d(x) robots, each

complex target to be assigned a visit time, and each robot

to be assigned at most one complex target. In this paper,

we consider two ways of defining the team cost. The team

cost is
∑

r∈A crobot
r (Xr, Cr) (roughly proportional to the

energy needed by the robots for waiting and moving) for

the MiniSum team objective and maxr∈A crobot
r (Xr, Cr)

(the task-completion time) for the MiniMax team objective.

We use cteam as a special operator for either the sum or

max operator, depending on the team objective, and write

the team cost as cteam
r∈A crobot

r (Xr, Cr) to make our notation

independent of the team objective.

III. REACTION FUNCTIONS

To determine the optimal visit time for complex target

x (that minimizes the team cost), each eligible robot r

computes its reaction function

Fx
r (t) := crobot

r (Xr, {x← t})

to characterize its robot costs for visiting complex target x

at any possible visit time t in addition to all simple targets

in Xr at the optimal visit times. The optimal visit time of

complex target x for a given group Px of eligible robots with

given assigned simple targets then is

arg min
0≤t<∞

cteam
r∈Px

Fx
r (t).

A. Approximation

The computation and communication of reaction functions

is time-intensive. For example, each robot r has to solve a

difficult scheduling problem for each visit time t of complex

target x to determine its reaction function Fx
r (t) because it

needs to determine the optimal order in which to visit all

targets assigned to it. The computation and communication

of reaction functions can be made less time-intensive by ap-

proximating them. We discretize them into a constant number

of line segments, where each line segment is either linear

with slope one (modeling that the robot waits at a complex

target for other robots to visit the target simultaneously) or

constant at infinity (modeling that the robot cannot visit the

complex target at the given visit time), as follows:

• Determine a time interval (s, e] during which robot r

can visit complex target x and divide it evenly into k

time intervals (si, ei] for a given parameter k.

• Determine the minimal robot cost of robot r for visiting

complex target x in time interval (si, ei] without waiting

as well as all simple targets assigned to it at the optimal

visit times1 for each 0 ≤ i < k. Assume that robot r

visits complex target x at visit time ti ∈ (si, ei] for

a minimal robot cost of ci. Then define the following

function that calculates the robot cost if all targets are

visited in the given order and the robot waits t− ti time

units at the complex target for other robots to visit the

target simultaneously:

Fx
r,i(t) :=

{

∞ if 0 ≤ t < ti
ci + t− ti if ti ≤ t.

• Determine the approximate reaction function as the

minimum of the functions Fx
r,i for all 0 ≤ i < k since

each function expresses the robot cost if robot r visits

its targets in a particular order:

Fx
r (t) := min

0≤i≤k
Fx

r,i(t).

Let T (Px, x) be the set of times that correspond to the

beginnings of all linear segments with slope one of the

approximate reaction functions Fx
r (t) for all robots r ∈ Px,

where Px is the group of robots that are assigned complex

target x. Then, it holds that

min
0≤t<∞

cteam
r∈Px

Fx
r (t) = min

t∈T (Px,x)
cteam
r∈Px

Fx
r (t)

[11], which makes it easy to calculate the optimal visit time

of complex target x for a given group Px of eligible robots. In

the following, all reaction functions are approximated unless

mentioned otherwise.

B. Target Allocation with Reaction Functions

The simple targets need to be allocated before the complex

ones because robots can manipulate the order in which

they visit their assigned simple targets to accommodate the

complex ones. We use two ways of assigning the simple

targets to robots.

• Random Allocation: Random allocation assigns each

simple target randomly to some robot.

• SSI Auctions: Sequential single-item auctions [9] as-

sign simple targets to robots in rounds. During each

round, one additional simple target is assigned to some

1This problem is a special case of the NP-hard traveling salesperson
problem with time windows [1] and can be solved approximately with a
version of the Or-opt heuristic [7].
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robot so that the team cost after assigning that simple

target increases the least (hill-climbing).

Afterwards, we assign the complex targets to robots in

rounds until all complex targets are assigned to robots.

During each round, one additional complex target is assigned

to some robot. Let Xr be the set of simple targets assigned

to robot r. Each eligible robot r then computes its reaction

function Fx
r (t) for each complex target x and submits

Vx
r (t) :=

{

Fx
r (t)− crobot

r (Xr, ∅) for MiniSum

Fx
r (t) for MiniMax

to a central planner. Let P (n) be the set of all groups of n

eligible robots and Xc the set of unassigned complex targets.

The central planner determines

(Px, x, t) := arg min
Px∈P (d(x)),x∈Xc,0≤t<∞

cteam
r∈Px

Vx
r (t)

and assigns the commitment x ← t to each robot r ∈ Px,

which terminates the current round [11].

IV. NEGOTIATION WITH REACTION FUNCTIONS

Given a solution of a multi-robot routing problem, we

exchange targets between two robots so that the team cost

of the solution is reduced. We consider two types of target

exchanges.

• Complex target exchanges: A complex target exchange

(r, r′, x, x′) describes that robot r gives its complex

target x to robot r′ and robot r′ gives its complex target

x′ to robot r. One of the complex targets can be empty

but not both. The number of possible complex target

exchanges is bounded by |A|2−|A| since each robot is

assigned at most one complex target.

• Simple target exchanges: A simple target exchange

(r, r′,X,X ′) describes that robot r gives its simple

targets X ⊆ Xr to robot r′ and robot r′ gives its simple

targets X ′ ⊆ Xr′ to robot r. One of the sets of simple

targets can be empty but not both. The number of simple

target exchanges can be exponential in the number of

simple targets. We therefore impose the restriction that

max(|X|, |X ′|) ≤ K for a given constant K ≥ 0, the

exchange parameter.

The gain gain(S) of a target exchange S is the decrease

in team cost that results from performing the target exchange.

A target exchange is profitable iff its gain is positive.

A. Negotiation Procedure

We now develop a distributed negotiation procedure that

allows robots to find all profitable target exchanges. Our

negotiation procedure has the advantage that each robot

needs to know the reaction functions of the other robots only

for the complex targets assigned to them and that no robot

needs to know how the reaction functions of the other robots

are computed, including how their robot costs are computed.

The negotiation procedure consists of three steps.

• Initialization Step: Each robot broadcasts the necessary

information, including its assigned simple targets, its

assigned complex target and its reaction function for

its complex target (if any), its robot cost and its index

number. The purpose of the index numbers is to order

all robots completely.

• Computation Step: In the first substep, each robot

acts as a proposer. It considers each possible target

exchange that it can be involved in and, iff the target

exchange is potentially profitable, proposes it to the

other robot involved in it. In the second substep, each

robot acts as a manager. It calculates the gain for each

target exchange that it receives and stores it iff it is

profitable. After the computation step, each profitable

target exchange has been stored by at least one robot.

• Decision Step: Each robot broadcasts its target ex-

change with the highest gain. The robots then perform

the broadcast target exchange with the highest gain.

Ties are broken in favor of the target exchange that

involves the robot with the smallest index number. After

the decision step, the robots have performed a target

exchange with the overall highest gain.

In the following, let index(r) be the index number of each

robot r, (Xr, Cr) its current allocation and xr the complex

target assigned to it. The complex target can be empty. Let

Px be the group of robots that are assigned complex target x.

Finally, let cr be the robot cost of robot r and c := cteam
r̃∈A cr̃

the team cost of the current solution.

B. Complex Target Exchanges

We first consider complex target exchanges and describe

the procedures executed by each robot in the computation

step as proposer and manager.

1. Proposer Procedure

If proposer robot r is assigned no complex target, then it

does nothing. Otherwise, it executes the following procedure

for each robot r′.

Case 1: If robot r′ is assigned a complex target xr′ that is

not assigned to robot r, then robot r considers the complex

target exchange S := (r, r′, xr, xr′). Let A′ := A \ (Pxr
∪

Px
r
′
). Let P ′

x
r
′
:= Px

r
′
\ {r′} ∪ {r} be the group of robots

that are assigned complex target xr′ after the complex target

exchange. Robot r calculates its net loss netloss(S, r) of

the complex target exchange as















min
0≤t<∞

∑

r̃∈P ′

x
r
′

F
x

r
′

r̃ (t)−
∑

r̃∈P ′

x
r
′

cr̃ for MiniSum

max(max
r̃∈A′

cr̃, min
0≤t<∞

max
r̃∈P ′

x
r
′

F
x

r
′

r̃ (t))− c for MiniMax.

Case 2: If robot r′ is assigned no complex target, then robot

r considers the complex target exchange S := (r, r′, xr, ∅).
Let A′ := A \ (Pxr

∪ {r′}). Robot r calculates its net loss

netloss(S, r) of the complex target exchange as

{

crobot
r (Xr, ∅)− cr for MiniSum

max(max
r̃∈A′

cr̃, c
robot
r (Xr, ∅))− c for MiniMax.
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If its net loss of the complex target exchange is negative, then

robot r proposes it to robot r′ by sending it the information

〈S, netloss(S, r)〉.

2. Manager Procedure

If manager robot r′ receives a proposal for a complex

target exchange S := (r, r′, xr, xr′), then let A′ := A \
(Pxr

∪Px
r
′
) if robot r′ is assigned a complex target xr′ and

A′ := A \ (Pxr
∪ {r′}) if robot r′ is assigned no complex

target. Let P ′
xr

:= Pxr
\ {r} ∪ {r′} be the group of robots

that are assigned complex target xr after the complex target

exchange. Robot r′ calculates its net loss netloss(S, r′) of

the complex target exchange as











min
0≤t<∞

∑

r̃∈P ′

xr

Fxr

r̃ (t)−
∑

r̃∈P ′

xr

cr̃ for MiniSum

max(max
r̃∈A′

cr̃, min
0≤t<∞

max
r̃∈P ′

xr

Fxr

r̃ (t))− c for MiniMax.

It is easy to show that

gain(S) = −cteam(netloss(S, r), netloss(S, r′)).

Proposition 1: Each profitable complex target exchange is

stored by at least one robot.

C. Simple Target Exchanges

We now consider simple target exchanges and describe the

procedures executed by each robot in the computation step

as proposer and manager.

1. Proposer Procedure

Proposer robot r considers the simple target exchange

S := (r, r′,X,X ′) for each robot r′ with r 6= r′, X ⊆ Xr,

X ′ ⊆ Xr′ , X ∩X ′ = ∅ and 0 < max(|X|, |X ′|) ≤ K. Let

X ′
r = Xr \ X ∪ X ′ be the set of simple targets assigned

to robot r after the simple target exchange. Robot r then

executes the following procedure.

Case 1: If robot r is assigned no complex target, then let

A′ := A \ ({r} ∪ Px
r
′
) if robot r′ is assigned a complex

target xr′ and A′ := A \ ({r, r′}) if robot r′ is assigned no

complex target. Robot r calculates its net loss netloss(S, r)
of the simple target exchange as

{

crobot
r (X ′

r, ∅)− cr for MiniSum

max(max
r̃∈A′

cr̃, c
robot
r (X ′

r, ∅))− c for MiniMax. (1)

If the net loss of the simple target exchange is negative, then

robot r proposes it to robot r′ by sending it the information

〈S, netloss(S, r)〉.

Case 2: If robot r is assigned a complex target xr that is

not assigned to robot r′, then robot r recomputes its reaction

function for its complex target as

F ′xr

r (t) := crobot
r (X ′

r, xr ← t). (2)

This recomputation is necessary since the reaction functions

of a robot depend on the simple targets assigned to it and can

thus change after simple target exchanges. Define F ′xr

r̃ (t) :=
Fxr

r̃ (t) for all robots r̃ ∈ Pxr
\{r}. Let A′ := A\(Pxr

∪Px
r
′
)

if robot r′ is assigned a complex target xr′ and A′ := A \
(Pxr

∪{r′}) if robot r′ is assigned no complex target. Robot

r calculates its net loss netloss(S, r) of the simple target

exchange as











min
0≤t<∞

∑

r̃∈Pxr

F ′xr

r̃ (t)−
∑

r̃∈Pxr

cr̃ for MiniSum

max(max
r̃∈A′

cr̃, min
0≤t<∞

max
r̃∈Pxr

F ′xr

r̃ (t))− c for MiniMax.
(3)

If the net loss of the simple target exchange is negative, then

robot r proposes it to robot r′ by sending it the information

〈S, netloss(S, r)〉.
Case 3: If robot r is assigned the same complex target as

robot r′ but has a smaller index number than robot r′, then

robot r recomputes its reaction function for complex target

xr with Formula (2) and proposes the simple target exchange

to robot r′ by sending it the information 〈S,F ′xr

r (t)〉.

2. Manager Procedure

If manager robot r′ receives a proposal for a simple target

exchange S := (r, r′,X,X ′), then let X ′
r′ = Xr′ \X ′ ∪X

be the set of simple targets of robot r′ after the simple target

exchange. Robot r then executes the following procedure.

Case 1: If robot r′ is assigned no complex target, then it

calculates its net loss netloss(S, r′) of the simple target

exchange with Formula (1). It easy easy to show that

gain(S) = −cteam(netloss(S, r), netloss(S, r′)).

Case 2: If robot r′ is assigned a complex target xr′ that is

not assigned to robot r, then robot r′ recomputes its reaction

function F ′xr
′

r (t) for complex target xr with Formula (2) and

then its net loss netloss(S, r′) of the simple target exchange

with Formula (3). It is easy to show that

gain(S) = −cteam(netloss(S, r), netloss(S, r′)).

Case 3: If robot r′ is assigned the same complex target

as robot r, then robot r′ recomputes its reaction function

F ′xr

r′ (t) for complex target xr′ = xr with Formula (2).

Define F ′xr

r̃ (t) := Fxr

r̃ (t) for all robots r̃ ∈ Pxr
\ {r, r′}.

Let A′ := A \ Pxr
. It is easy to show that gain(S) equals

the value calculated with Formula (3).

Proposition 2: Each profitable simple target exchange for

exchange parameter K is stored by at least one robot.

V. EXPERIMENTAL RESULTS

We now evaluate the benefits of our negotiation procedure

for multi-robot routing problems on known four-neighbor

planar grids of size 51× 51 with square cells that are either
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Robots Simple Complex Initial K = 0 K = 1 K = 2

Targets Targets Cost Cost Cost Reduction Cost Cost Reduction Cost Cost Reduction

MiniSum Team Objective - Initial Solutions Generated with Random Allocation

4 8 2 566.1 546.0 3.55% 355.7 37.17% 342.2 39.55%

4 18 2 740.6 721.9 2.52% 469.3 36.63% 439.9 40.60%

4 28 2 901.6 882.7 2.10% 552.2 38.75% 511.2 43.30%

6 7 3 618.9 576.3 6.88% 390.8 36.86% 384.5 37.87%

6 17 3 924.5 888.5 3.89% 520.6 43.69% 485.6 47.47%

6 27 3 1150.2 1116.9 2.90% 618.1 46.26% 570.8 50.37%

8 6 4 634.5 585.9 7.66% 428.0 32.55% 423.6 33.24%

8 16 4 1041.2 988.8 5.03% 560.2 46.20% 527.1 49.38%

8 26 4 1352.7 1305.3 3.50% 663.8 50.93% 607.2 55.11%

10 5 5 624.7 579.6 7.22% 443.7 28.97% 439.8 29.60%

10 15 5 1106.8 1044.4 5.64% 590.8 46.62% 563.5 49.09%

10 25 5 1414.6 1345.6 4.88% 695.6 50.83% 654.6 53.73%

MiniSum Team Objective - Initial Solutions Generated with SSI Auctions

4 8 2 362.4 346.3 4.44% 332.0 8.39% 327.6 9.60%

4 18 2 452.7 437.9 3.27% 418.3 7.60% 412.6 8.86%

4 28 2 519.0 500.3 3.60% 478.2 7.86% N/A N/A

6 7 3 399.7 378.9 5.20% 366.8 8.23% 364.8 8.73%

6 17 3 501.5 470.7 6.14% 445.8 11.11% 440.4 12.18%

6 27 3 571.3 532.5 6.79% 504.7 11.66% 498.5 12.74%

8 6 4 435.5 414.8 4.75% 401.6 7.78% 399.5 8.27%

8 16 4 534.4 502.9 5.89% 484.0 9.43% 478.9 10.39%

8 26 4 602.5 563.8 6.42% 537.5 10.79% 529.9 12.05%

10 5 5 459.6 435.6 5.22% 428.4 6.79% 427.5 6.98%

10 15 5 550.1 514.9 6.40% 497.5 9.56% 493.0 10.38%

10 25 5 627.4 586.5 6.52% 562.8 10.30% 554.4 11.64%

MiniMax Team Objective - Initial Solutions Generated with Random Allocation

4 8 2 199.4 180.1 9.68% 120.3 39.67% 116.0 41.83%

4 18 2 238.6 220.9 7.42% 147.0 38.39% 140.9 40.95%

4 28 2 275.7 259.1 6.02% 174.1 36.85% 159.1 42.29%

6 7 3 203.1 171.8 15.41% 96.1 52.68% 94.8 53.32%

6 17 3 233.8 207.9 11.08% 128.9 44.87% 121.2 48.16%

6 27 3 251.6 226.2 10.10% 151.9 39.63% 142.4 43.40%

8 6 4 170.7 137.8 19.27% 85.9 49.68% 83.9 50.85%

8 16 4 226.5 194.7 14.04% 117.0 48.34% 112.6 50.29%

8 26 4 253.4 221.8 12.47% 139.4 44.99% 128.1 49.45%

10 5 5 152.4 120.6 20.87% 76.5 49.80% 76.6 49.74%

10 15 5 216.1 184.6 14.58% 107.9 50.07% 105.3 51.27%

10 25 5 244.7 210.2 14.10% 132.7 45.77% 126.1 48.47%

MiniMax Team Objective - Initial Solutions Generated with SSI Auctions

4 8 2 128.0 117.5 8.20% 110.6 13.59% 109.2 14.69%

4 18 2 155.9 142.0 8.92% 130.8 16.10% 127.6 18.15%

4 28 2 173.0 158.7 8.27% 146.0 15.61% 143.4 17.11%

6 7 3 107.8 90.7 15.86% 85.4 20.78% 84.8 21.34%

6 17 3 126.4 108.6 14.08% 100.6 20.41% 99.2 21.52%

6 27 3 141.3 120.6 14.65% 111.5 21.09% 110.0 22.15%

8 6 4 100.9 79.2 21.51% 76.3 24.38% 76.2 24.48%

8 16 4 117.7 95.9 18.52% 90.5 23.11% 89.1 24.30%

8 26 4 128.3 104.0 18.94% 96.0 25.18% 94.6 26.27%

10 5 5 93.2 69.0 25.97% 67.0 28.11% 67.0 28.11%

10 15 5 110.5 85.0 23.08% 80.2 27.42% 79.3 28.24%

10 25 5 118.3 92.0 22.23% 84.9 28.23% 84.0 28.99%

TABLE I

EXPERIMENTAL RESULTS (N/A MEANS THAT THE RUNTIME THRESHOLD WAS EXCEEDED)
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blocked or unblocked. The grids resemble office environ-

ments with randomly closed doors, as shown in Figure 1.

All complex targets need to be assigned to groups of two

robots. Their number is always half the number of robots,

so that every robot visits exactly one complex target. We

iteratively apply our negotiation procedure until it no longer

reduces the team cost of the current solution. We vary the

number of robots from 4, 6, 8, to 10, the number of (simple

and complex) targets from 10, 20 to 30, and the exchange

parameter K from 0, 1 to 2. For each scenario, we average

over 100 samples with randomly chosen cells for the robots

and targets. Each robot needs to solve a version of the

NP-hard traveling salesperson problem with time windows

to calculate its robot cost. We use a version of the Or-

opt heuristic [7] in our experiments to approximate this

calculation. Table I tabulates the team costs of the initial

solutions (“Initial Cost”) generated as described in Section

“Target Allocation with Reaction Functions” as well as the

team costs (“Cost”) and the cost reductions over the initial

solutions in percent (“Cost Reduction”). The data show that

our negotiation procedure can reduce the team costs of the

initial solutions significantly. For example, it reduces the

team costs of the initial solutions generated with Random

Allocation by as much as 55 percent for the MiniSum team

objective and 53 percent for the MiniMax team objective. It

reduces the team costs of the initial solutions generated with

SSI Auctions by as much as 12 percent for the MiniSum team

objective and 29 percent for the MiniMax team objective.

VI. CONCLUSIONS

We studied task-allocation problems where cooperative

robots need to perform tasks simultaneously. We developed

a distributed negotiation procedure that allows robots to

find all task exchanges that reduce the team cost of a

given task allocation, and demonstrated empirically that our

negotiation procedure can substantially reduce the team costs

of task allocations resulting from existing task-allocation

procedures, including sequential single-item auctions. It is

future work to extend our results from disjoint coalitions,

where every robot can perform at most one complex task, to

overlapping coalitions, where some robots can perform more

than one task.
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