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Abstract— This paper presents a decentralized coordination
algorithm that allows a team of sensor-enabled robots to nav-
igate a region containing non-convex obstacles and take mea-
surements within the region that contain the highest probability
of having “good” information first. This approach is motivated
by scenarios where prior knowledge of the search space is
known or when time constraints are present that limit the
amount of area that can be searched by a robot team. Practical
applications include search and rescue, target detection, and
hazardous contaminations. Our cooperative control algorithm
combines Voronoi partitioning, a global optimization technique,

and a modified navigation function to prioritize sensor detec-
tion. The issues we address such as non-convex obstacles as well
as global search are not extensively addressed in the current
literature. Simulation results of the control algorithm are given
and validate the prioritized sensing behavior as well as the
collision avoidance property.

I. INTRODUCTION

Robotic motion planning is a well-addressed issue in

autonomous systems, [1]. However a growing number of

applications such as spatial distribution mapping, dynamic

sensing coverage, and dynamic target detection, have moti-

vated navigation and control algorithms for teams of goal-

oriented mobile sensor networks. When considering con-

trol and coordination algorithms of reconfigurable sensor

networks one must join the coordination/navigation of the

robots with the sensing cost or desired configurations of

the sensor network. In problems involving reconfigurable

sensor networks, a primary goal is to reconfigure the sensor

network in such a way that the time taken to reconfigure

is minimized or the sensing coverage is maximized. This

has useful applications in target detection and surveillance

as well as spatial distribution mapping, among many others.

In general, approaches to reconfigurable sensor networks

use gradient type algorithms to reconfigure the network for

sensing optimality [2]. Using a gradient type approach has

been shown to be successful when the underlying density

function is static and the environment is free of obsta-

cles. These local gradient type approaches which address

sensing coverage problems cannot however, address certain

types of reconfigurable sensor network problems. One very

interesting problem, which we consider here, is that of

biasing certain regions of the area-of-interest to be searched

because of prior knowledge or because an underlying time
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constraint that prohibits an exhaustive search of the area,

i.e., emergency situations, search and rescue. Gradient type

approaches may fail to send the robots to places that have the

highest likelihood of containing the most useful information

in the time allotted because of the local nature of the gradient

technique. Also the probability of certain regions containing

useful information will be changing as the robots search

the area, which makes the underlying density function in

this scenario dynamic. The problem here becomes, how to

coordinate the sensor-enabled robot team in such a way

that areas within the region that have the most probability

of containing “good” information are searched first. The

label “good” here may mean a target of interest, hazardous

material, a group of people to be rescued, etc., depending

on the particular application the robot team is tasked with.

Because of prior knowledge, or due to time constraints, the

robots should search the most likely areas of finding “good”

information first and continue until enough information is

gathered or the time constraint is met. The scenario stated

here is quite different from other sensor network problems

because the reconfigurable sensor network is not trying to

achieve optimal sensing coverage over the area-of-interest

nor exhaustively search the space, rather the robot team

is trying to search the most probable places of containing

“good” information first because the search is biased by prior

knowledge or because of a time constraint may greatly limit

the robot team’s ability to search the entire area of interest.

Some motivating and practical applications include search

and rescue operations [3], target detection [4], and hazardous

contaminations [5] to name a few. In these scenarios, regions

within a given area that are most likely to contain humans,

enemy targets, or hazardous material, should be searched

first while regions with less probability of containing these

features are searched later.

The contribution of this paper is a decentralized coordina-

tion algorithm for a team of sensor-enabled robots (reconfig-

urable sensor network) that allows a team to navigate from

an initial configuration within a region containing general

shaped obstacles, to areas within the region with the highest

probability of containing “good” information first, while

less probable areas are searched later. Our solution to this

problem is based upon Voronoi partitions, a global optimiza-

tion technique [6], and a modified navigation function [7].

Voronoi partitioning allocates different regions within the

area of interest among the robots. These partitions utilize

robots to search different areas in parallel, which speeds

up the detection process. The global optimization algorithm

then computes goal points within the Voronoi partitions and
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the modified navigation function guarantees collision free

motion to the desired goal points.

II. PROBLEM FORMULATION

Consider a team of n kinematic agents each equipped

with a sensor having a sensing radius R, each tasked with

starting from some initial configuration and navigating to

visit regions within the area which contain the highest

probability of detection first, while avoiding collisions with

other robots and obstacles within the environment. Let the

probability of detection (POD) map reflect the probability of

detecting a target over the area to be searched. Define β, to

be a parameter that reflects the reduction in the probability

of detection map for points inside each robots sensing radius.

Consider the area-of-interest Q ⊂ R
2, with boundary ∂Q, to

be a simple convex polygon. Let us denote the POD map as

M(q), where q ∈ Q. Q is populated with No fixed, general

shaped polygonal obstacles Cobs = {O1, . . . , ONo
} ⊂ Q.

Define Qfree = Q \ Cobs, as the set of points free of

obstacles. Here we assume that Cobs is known a priori by

all the robot team members. Each agent pi is assumed to be

holonomic with dynamics:

ṗi = ui, i = 1, · · · , n (1)

where ui ∈ R
2 is the control input of agent i.

A. Voronoi Partitions

We partition the area between the available mobile robotic

platforms using Voronoi partitions in which the centroid of

each Voronoi cell is taken to be the position of a single

mobile robot. Thus, a certain region within this area (namely

the corresponding Voronoi cell) is allocated to each robot

for searching. This is performed on an iterative basis, so the

Voronoi partitions are dynamic in nature.

Using Voronoi partitions, the area to be mapped can be

broken up dynamically among the robot team members based

on their current locations. Also by construction, Voronoi

partitioning can be implemented in a decentralized fashion.

Our area to be searched, Q, is assumed to be a simple

convex polygon in R
2 including its interior. Let P be a set

of n distinct points {p1, . . . , pn} that reside in the interior

of Q. Define the Voronoi Partition of the convex polygon Q,

generated by P to be the set of all points in Q such that all

points in the region Vi(P ) are closer to pi than any other

point in Q,

Vi(P ) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ , ∀pj ∈ P} .

Let us now define the set Di = Vi ∩Qfree. Di represents

the set of all points in Vi that are not occupied by an obstacle.

Notice that to define the boundaries of each Voronoi cell,

robot i at position pi only needs to know the boundary of

Q, and the positions of its nearest neighbors. A neighbor of

robot i (in the sequel identified with its position pi) is any

other robot pj , such that the Voronoi cells of pi and pj share

a common edge.

Dividing up the area to be explored in this way, keeps us

from assigning robots to specific regions which may not be

implementable in a decentralized fashion [8]. Using dynamic

Voronoi partitions each robot can compute its partition with

only knowledge of its neighbors’ locations. Thus, using

Voronoi partitioning facilitates decentralized control designs.

Another advantage to using Voronoi partitions is in the case

where there is a robot or sensor failure. Because the Voronoi

partitions are made dynamically, the team can adjust their

Voronoi partition configuration taking into account their new

neighbors excluding the failed robot. This procedure insures

that all regions in the area will be covered by a corresponding

robot.

B. Global Optimization

There exists a number of algorithms that can solve the

global optimization problem for a general (non-convex)

function such as a branch and bound technique, evolutionary

algorithms, and randomized algorithm methods [6]. How-

ever, because our motivation for this research is focused

on a decentralized control algorithm, many of these global

optimization techniques are not applicable because of com-

putation power needed or because of the on-line nature of the

control algorithm. Also another key point to note is that the

probability of detection map is being updated at each new

iteration. As regions are searched by the robots, the POD

map is decreased in those regions within the sensing radius.

This could possibly make the POD map vary greatly from

one point that has been searched to an adjacent point that

has not been searched by the robot. This limits our ability to

make any claims as to certain properties the map (function

to be optimized) will exhibit, e.g., Lipschitz continuity or if

one can compute lower bounds for feasible regions, which

are needed for branch and bound techniques. Also, evolu-

tionary algorithms cannot strictly guarantee convergence to

a global optimum. As a result of the limitations imposed

by the decentralized, on-line design of our algorithm, we

propose the use of a randomized algorithm [6] to compute

an approximate solution to the global optimization problem.

A randomized algorithm does not make any assumptions on

the function to be optimized or the feasible set of possible

solutions and can be efficiently computed. For our scenario,

a function evaluation in practice boils down to looking up

values in the “probability of detection” map. Here we will

state the general Monte Carlo method used in our approach.

Let the objective function g(x), x ∈ A ⊂ R
n and the

set A be measurable where g∗(x) is the global maximum of

g(x). To approximate the global maximum g∗(x),

• Generate X1, . . . , XN independent identically dis-

tributed (i.i.d.) samples from a p.d.f. f(x) such that

f(x) > 0.

• Find Yk = g(Xk), k = 1, . . . , N.

• Estimate g∗ by g̃∗ = max(Y1, · · · , YN ).

It is known that in general there does not exist a stopping

condition for an achieved accuracy g̃∗ − g∗ < ǫ for the

approximate maximum to the global optimization problem

[9]. However one can look for stopping conditions to the

global optimization problem in statistical terms.
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The probability of sampling at least one point inside the

region of attraction of the global maximum when taking N

sample points from A is given by

Pr = 1 − (1 − α1)
N , (2)

where α1 is the probability of sampling a point in the region

of attraction in one trial. By choosing a lower bound on α1

and a required “accuracy” level Pr, the number of function

evaluations N needed to achieve a g̃∗ within the accuracy

level can be calculated [9].

C. Navigation Function

A navigation function is an artificial potential function

with a unique minimum located at a goal point whose domain

of attraction includes the entire domain excluding the points

covered by obstacles. The construction of such a navigation

function was first shown by Rimon and Koditschek [10], and

slight variations have since made their way into the literature

[11], [12]. A recent approach to navigation functions has

combined robot navigation and communication constraints

[13]. One drawback to these particular constructions of

navigation functions is that they are difficult to compute in

general and also do not easily lend themselves to general

shaped obstacles. To overcome this limitation we consider

the construction of a navigation function from [7] , which

relaxes the requirements on the navigation function, primar-

ily that the gradient of the navigation function need only be

piecewise continuous and that the navigation function at the

boundaries need not be uniformly maximum. The construc-

tion of a navigation function in this way still guarantees one

unique minima at the goal point.

Navigation functions involving multiple robots generally

have each robot consider all other robots to be moving

obstacles [11]. In our approach however, we partition the area

among the robot team members, then each robot creates its

own navigation function based on its Voronoi partition Vi,

the known obstacles in the area Cobs, and the goal point

calculated from the global optimization algorithm. In this

way each robot does not need to consider other robots as

obstacles, since by construction the Voronoi partition Vi

is unique to robot pi. Our approach has the advantage of

eliminating the need to keep track or “predict” where these

“dynamic” obstacles are or will be in the future.

Alternative planning methods for addressing obstacle

avoidance are based on cell decomposition approaches. Cell

decomposition is a well-known obstacle avoidance method

that decomposes the obstacle-free robot configuration space

into a finite collection of non-overlapping convex polygons,

known as cells, within which a robot path is easily generated.

Although it is computationally intensive, its advantage over

other robot path-planning approaches, such as roadmap or

potential field methods, is that, under proper assumptions,

cell decomposition is resolution complete. Exact cell de-

composition is guaranteed to find a free path, whenever

one exists, and otherwise to return failure. Its disadvantages

are that it is computationally intensive in high-dimensional

configuration spaces (e.g., robot manipulators), and that

it does not typically allow the user to incorporate other

motion constraints, such as, nonholonomic dynamics, or

sensing/communication constraints. Also, it is not directly

applicable to cooperative networks, in which the path of one

robot is influenced by that of the other agents in the network.

III. METHODOLOGY

In this section we present our multi-vehicle coordina-

tion algorithm. The algorithm combines Voronoi partitions,

which divide the area to be searched among the robot team

members, a Monte Carlo optimization technique, which is

used to calculate goal points that correspond to points inside

the Voronoi partitions that have the highest probability of

containing “good” information, and a modified navigation

function that steers the robots from their current positions

to their respective goal points while avoiding collisions with

the environment.

A. Modified Navigation Function

A navigation function, f(p, gp, d) which is a function of

p, the robots current position, the goal point gp, and points

inside the Voronoi partition not occupied by obstacles d ∈ D,

can be created by the following procedure [7].

• Make a graph out of the rectangular mesh of the obstacle

grid map, with vertices at the corners of each square

and edges along the square edges. Remove vertices and

edges that are in the interior of obstacles.

• One of the vertices is chosen as the goal point, deter-

mined from the global optimization algorithm.

• Solve the shortest-path problem in the graph. Mark each

vertex with the corresponding path length, and let this

length be the value of f(·) at the vertex.

• Divide the squares into triangles by drawing a diagonal

through the corner with the highest f(·) value.

• In the interior of each resulting triangle, let f(·) be a

linear interpolation between f(·) at the three vertices.

Note that the shortest-path problem in the graph can

be solved with polynomial time algorithms [14]. Also the

shortest-path problem to create this navigation function is

solved for a 4-neighborhood grid, i.e., L1 distance.

B. Control Algorithm

From design, the control algorithm is decentralized and

executed in parallel on all robots. The general scheme is

outlined below.

1) (Voronoi region) For i = 1, · · · , n determine the

Voronoi partition Vi in Q.

2) (Global optimization) Apply the general Monte Carlo

optimization method over the set Di to determine an

approximate maximum g̃∗ in Di of M(q).
3) (Check feasibility) Determine if g̃∗ is reachable by

solving the shortest-path problem from the graph that

creates the navigation function. If the point is reachable

set the goal point gpi = g̃i
∗. If g̃i

∗ is not reachable then

go to Step 2 and determine

g̃i
∗ = max(Y1, . . . , YN−1)
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where we exclude g̃i
∗ that was calculated from the

previous optimization.

4) (Navigation function) Create a navigation function,

fi(pi, qpi, d) in Di with gpi set as the goal point.

5) (Control actuation) Let ui = ṗi and apply the control

ui =







−k∇fi(·) if |ui| < umax

− k∇fi(·)
‖k∇fi(·)‖

· umax otherwise

(3)

where k = |pi − gpi| the distance of the robots current

position pi to the goal point gpi.

6) (Local map update) For all points that are inside the

sensing radius R, update the M as,

M(pi) = βM(pi).

7) (Global map update) Robot i communicates with

its neighbors and exchanges its current position. All

robots update their local maps with all other robots

local maps to create a synchronized global map.

8) (Termination) Check if t ≥ Tsearch if true, stop. Else

goto Step 1. Tsearch is taken to be the time allowed

for the search.

In step 3 we check the feasibility of the goal point obtained

from the optimization algorithm. This is done because there

may exist configurations of obstacles in the Voronoi partition

that cause points in Vi to be unreachable by the robots. If

the goal point obtained from the optimization algorithm is

unreachable, that point is disregarded and the next best point

is taken. It is key to note that there will always exist a

feasible goal point for all the robots because in the most

improbable case the goal point would be the current robot

position. Notice that this case does not however cause robots

to become “stuck,” since at each iteration of the algorithm

the Voronoi regions are updated based on the new positions

of the robots at the subsequent optimization is done over

the new Voronoi partitions. Also notice that in step 7 we

assume that all robots can synchronize their local maps

to create a global map. This may seem like somewhat of

a limitation on the ability of the control algorithm to be

implemented in a decentralized fashion, however it has been

shown that this can be done using only one-hop neighbors in

the communication network [15]. Although partitioning the

search space among the robot team members does place a

constraint on the optimal solution, it’s usefulness is seen in

the fact that it keeps multiple robots from visiting adjacent

points near the global optimum which may be searched by

a single robot as well as insuring collision avoidance among

the robots. The partitioning also facilitates a more expansive

search in the initial stages of the algorithm.

C. Properties of Control Algorithm

Proposition 1: (Safety) The control algorithm outlined

above guarantees collision avoidance with the environment

as well as with other robot team members.

Proof: Notice that by construction, for any robot

configuration P = {p1, . . . , pn} the accompanying Voronoi

partitions V1, . . . , Vn are disjoint. Also by construction the

navigation function, fi(·) is defined over only Di = Vi ∩
Qfree for all n robots. Therefore any robot i starting inside

Di and following the control described in (3) will stay

inside Di. This guarantees no inter-robot collisions will

occur. Obstacle avoidance within Di comes directly from

the construction of the navigation function and the control

law described in equation (3).

It is also key to note that convergence to the goal point is

also guaranteed using a navigation function and the control

law (negated gradient) in equation (3), [10]. This is true since

by construction the navigation function fi(·) contains only

one minimum at the goal point. A well known result from

calculus guarantees that following the negative gradient of a

function containing a single minimum will converge to the

unique minimum.

IV. SIMULATION RESULTS

To illustrate our coordination algorithm we choose a

region consisting of a 30×30 grid with two general shaped

obstacles. For this simulation we use four robots with initial

positions clustered near the center of the region. In Fig-

ure 1 we see the initial probability of detection (POD) map

which reflects regions in the area that may contain “good”

information. We take the parameter β = 0.2, which reflects

the reduction in the probability of detection map for points

that lie within each robots sensing radius. The search time

Tsearch is taken to be 75 iterations of the control algorithm.

The velocity of the robots are constrained to umax = 1 and

each robots sensing radius is set to R = 1cell. For the

optimization we take N = 390 function evaluations based

on an accuracy level of 98% and a lower bound α1 = 0.01.

After the time threshold of 35 iterations is met, we see

the reduction in the POD map, Figure 1 (bottom figure). We

notice that the map has been reduced significantly. Figure 1

(bottom figure) also illustrates why a Monte Carlo type

method is useful to compute the global maxima for each

Voronoi region. Notice the very “jagged” nature of the map

after it has been reduced.

Figure 2 shows the trajectories of the robots for a single

iteration of the algorithm. Notice how the robots navigate

only inside their corresponding Voronoi partitions and avoid

collisions with obstacles in the environment.

Plots of the navigation functions, their contours, and

corresponding robot trajectories created for one iteration of

the simulation are shown in Figures 3 - 6. Notice how

the contours change around the obstacles to insure colli-

sion avoidance, also note that there exist only one unique

minimum in each Voronoi region. For the calculations of

the Voronoi partitions we enlisted the help of the Multi

Parametric Toolbox [16].

V. CONCLUSIONS

This paper presented a decentralized control algorithm

for a team of sensor-enabled robots to navigate within a

region containing general shaped obstacles to areas within

the region that contain the highest probability of having
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Fig. 1. The top figure shows the probability of detection map M(q) which
reflects the likelihood of detecting “good” information in the region. The
bottom figure shows the probability of detection map after 35 iterations
of the control algorithm. Notice that the probability of detection has been
reduced significantly.

“good” information first. The control algorithm guarantees

collision avoidance with the environment and other robots.

Our approach has the advantage of eliminating the need to

keep track or “predict” where “dynamic” obstacles (other

robots) are or will be in the future in the computation of

the navigation function. Another advantage of the control

algorithm over other techniques in reconfigurable sensor

networks is enabling the robot team to search areas with the

highest probability of containing “good” information first,

thus prioritizing the search to areas that are believed to have

a better chance of containing useful information The problem

addressed in this paper also creates a way to prioritize robot

searches without having to explicitly task certain robots with

a list of goal points to reach. Instead a probability map can

be created and then relayed to the robot team who then

handles the task assignment. This type of search technique

has very practical applications in search and rescue missions,

target detection, and hazardous contaminations to name a

few. Simulations verified the prioritized sensing behavior as
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Fig. 2. The robot’s trajectories from an initial configurations to the
respective goal points for a single iteration of the algorithm. The black lines
represent the Voronoi partitioning of the group. The green circle denotes the
robots initial positions and the goal points are denoted with a red star. Notice
how the robot goes around the obstacle to avoid a collision while not leaving
their respective Voronoi partitions.

−15
−10

−5
0

5
10

15

−15
−10

−5
0

5
10

15
0

10

20

30

40

Robot Trajectory

Obstacle

Goal Point

Fig. 3. The plot of the navigation function, it’s contours, and the trajectory
for the first robot in the lower left hand corner of the region. The entire
obstacle in the lower left hand corner intersects the first robot’s Voronoi
partition.

well as the collision avoidance properties.

Future work will entail implementing the decentralized

control algorithm on a team of four Pioneer 3-AT robots

at the MARHES laboratory located at the University of New

Mexico [17]. Other applications of the decentralized control

algorithm will look at integrating robot team members with

different sensing modalities i.e., heterogenous robot teams,

as well as different sensing footprints similar to [18].
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