
A Discrete Grid Abstraction for Formation Control
in the Presence of Obstacles

Damjan Miklic, Stjepan Bogdan, Rafael Fierro, and Sanjin Nestic

Abstract— In this paper we present a formation recon-
figuration methodology designed for controlling groups of
autonomous agents in environments densely populated with
obstacles. Our approach is based on abstracting the group of
agents by a discrete rectangular grid. Agent and obstacle posi-
tions are mapped onto the formation grid. Then, collision free
formation transition trajectories are computed using discrete
event scheduling techniques that have been well-established
in the manufacturing systems domain. The main contribution
of this paper is a unified formation control framework that
explicitly takes obstacles into account. Using discrete event
system analysis tools we show that our approach guarantees
convergence to the desired formation while avoiding obstacles
and inter-agent collisions.

I. INTRODUCTION

The productivity of a group of units working together in a
coordinated manner surpasses the sum of individual produc-
tivities when working on the same task alone. Employing a
group of autonomous robots to perform certain tasks offers
advantages that reach beyond greater speed of execution and
robustness to unit failures. A coordinated team of robots can
accomplish tasks that could not be handled by a single unit,
such as large object manipulation, distributed exploration and
sensing or even coordinated negotiation of obstacles.

The enhanced capabilities of multi-agent systems do not
come without a price and the control problems related to
such systems exhibit a new dimension of complexity. The
fundamental issues of system stability, convergence to the
desired state and robustness must be considered. High system
dimensionality, complex interactions, inherent parallelism
and uncertainties make analysis and control synthesis a
challenging task that has been attracting significant attention
in the research community for over a decade, [1] - [2]. A lot

The work of D. Miklic at the University of New Mexico was supported by
the U.S. Bureau of Educational and Cultural Affairs through the Fulbright
Program.

The work of S. Bogdan is supported by the Ministry of Science, Education
and Sports of the Republic of Croatia, grant #036-0363078-3016 ”Task
Planning & Scheduling in Robotic and Autonomous Systems”.

The work of R. Fierro is supported by NSF grants ECCS CAREER
#0811347, IIS #0812338, CNS #0709329, and by DOE University Research
Program in Robotics (URPR).

When this work was done, D. Miklic was a visiting researcher
at the Electrical and Computer Engineering Department, Univer-
sity of New Mexico, Albuquerque, NM 87131-0001, USA. (e-mail:
damjan.miklic@fer.hr)

S. Bogdan and S.Nestic are with the Faculty of Electrical Engineering
and Computing, University of Zagreb, 10000 Zagreb, Croatia. (e-mail:
stjepan.bogdan,sanjin.nestic@fer.hr)

R. Fierro is with the MARHES Lab, Electrical & Computer Engineering
Department, University of New Mexico, Albuquerque, NM 87131-0001,
USA (e-mail: rfierro@ece.unm.edu)

of research efforts have been focused on defining and ana-
lyzing system stability in the context of multi-agent systems
[3], [4], [5]. Authors in [5] present a method of ensuring
provable stability of decentralized switching systems that
can be applied to a wide variety of simple control laws,
such as nearest neighbor and target tracking rules. Of the
above mentioned research results, only [4] explicitly takes
into account obstacles in the environment.

In addition to the general problem of stability, several
problems specific to multi agent systems have been formu-
lated and analyzed, such as flocking, consensus, coverage
and pattern formation (also referred to as formation control).
In this work we consider formation control with obstacle
and inter-agent collision avoidance. The variety of different
approaches that have been proposed for addressing formation
control can roughly be divided into two groups: navigation
functions [6], [7] and graph-theoretical approaches such
as [2], [8]. Modern navigation function approaches have
the advantage of being decentralized and having provable
stability properties. However, they tend to have a higher
number of parameters that need to be hand-tuned for a
specific application and can suffer from the local minima
problem. The navigation function approach generally of-
fers a framework for dealing with obstacles, but there are
few results that take them into account explicitly. Graph-
theoretical approaches offer another natural way of modeling
interactions in multi-agent systems. For example, authors in
[8] have developed a method for automatic generation of
control programs for accurate achievement and maintaining
of geometric formations in a deadlock-free manner using so-
called ”embedded graph grammars”. However, they do not
consider obstacles in the environment, nor do they deal with
group motion planning.

In this paper, we propose a formation controller that guar-
antees collision-free convergence to the desired formation
in the presence of obstacles in the environment and takes
group navigation into account. We make use of the concept
of abstraction [9] by introducing a discrete rectangular grid
as a formation abstraction. This enables us to decouple the
formation control problem and consider group motion and
formation reconfiguration separately. Obstacles are mapped
onto the formation grid and taken into account explicitly
when planning transition trajectories. A big advantage of
the proposed approach is that it provides us with a frame-
work that explicitly considers the effect of obstacles on
the formation transition system. This method guarantees
collision-free transitions between formations, while ensuring
that deviations from the desired formation are not greater

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3750

than absolutely necessary to avoid obstacles.
The paper is organized as follows. In Section II we

introduce the specific formation problem that we are dealing
with and state it in a mathematically formal way. In Section
III we describe the grid-based formation abstraction and the
discrete-event reconfiguration algorithm. A way to deal with
obstacles within the formation grid is presented in Section
IV. In Section V we present a formal analysis of the proposed
algorithms. Some illustrative simulation results are presented
in Section VI. Concluding remarks are given in Section VII.

II. PROBLEM STATEMENT

The general problem we are interested in solving can be
summarized as follows. We would like to design a controller
capable of driving a group of agents {an} through an
environment populated with obstacles, while maintaining a
desired formation as closely as possible. For a group of
N agents we define a formation by their positions on a
(2N + 1) × (2N + 1) grid G. By maintaining formation
”as closely as possible”, we mean that the only situation in
which agents are allowed to leave their designated position
within the formation is to avoid a collision with an obstacle
or another agent. As soon as the designated position is not
under threat of collision, the agent should reclaim it. To
tackle the problem described above, we have split it in two
subproblems. On the higher level, we deal with driving the
center cell of G (xg, yg) through the environment, towards a
goal point (xq, yq), without colliding with obstacles. On the
formation control level, our goal is to maintain the desired
agent positions on G, switching to other formations only to
avoid collisions with obstacles that appear on the grid as it is
moving through the environment. In this paper, we focus on
the second part of the problem which we write down more
formally below.

From the point of view of the lower level formation
controller, a formation of N agents is described by a binary
(2N+1)×(2N+1) formation matrix F. The entry F(i, j) =
1 denotes that cell (i, j) is occupied by an agent. The state of
each agent is described by its coordinates on the formation
grid, an = [i j]T . Grid coordinates correspond to standard
matrix notation i.e., relative to the upper-left corner of the
grid. Similarly, we define a binary obstacle matrix O where
O(i, j) = 1 denotes an occupied cell.

Problem 1: Given initial and desired formation matrices
F(s) and F(t) and an obstacle matrix O, find a sequence of
states (an(k)) for each agent an, that will ensure a collision-
free and deadlock-free transition between formations.
In the above problem statement, by collision-free we mean
that at any time step k, a cell can be occupied only by one
agent or am(k) 6= an(k) ∀m, n = 1, . . . , N . Furthermore,
agents may only occupy cells that are free of obstacles,
O (an(k)) = 0 ∀n, k. The deadlock-free requirement implies
that the agents will achieve the desired formation in a finite
number of steps.

When considering a potential solution to Problem 1, we
assume that all agent actions are coordinated by a central
controller which has full information of agent states and

obstacle configuration. This assumption is in line with several
potential application scenarios, like the UGV group coordi-
nation by an UAV [10]. On the other hand, the proposed
coordination methodology can be decentralized by using
inter-agent communication and a consensus algorithm like
the one described in [11].

III. THE DISCRETE GRID FORMATION
ABSTRACTION

As stated in the previous section, a formation of agents is
described by their positions on a virtual discrete grid G. From
the point of view of the formation coordination algorithm,
the multi-agent system is discretized in time and in space.
Space discretization means that each agent can only occupy
one cell at a particular time. Time discretization implies that
state changes occur only at discrete time steps. Furthermore,
agent motion within one time step is restricted to the four
neighboring cells. We first consider the transition from an
initial formation F (s) to a desired formation F (t) on an
obstacle-free grid. In the next section, we show how this
approach can be extended to take obstacles into account.

The formation transition algorithm can be broken down
into the following steps:

1) Target assignment
2) Path allocation
3) Trajectory scheduling
In the first step, we assign a target position in the final

formation to each individual agent. We then assign a path to
each agent, consisting of the cells connecting its initial and
final positions on the grid. Finally, we implement a trajectory
scheduling policy to ensure a collision-free transition. In the
remainder of the section, we explain each of these steps in
more detail.

A. Target assignment and path allocation

The target assignment step consists of creating initial/final
position pairs. It is performed in an optimal way, by mini-
mizing the total distance between initial and final positions
using the Kuhn-Munkres [12] algorithm. On an obstacle-free
grid distances can be computed simply by using the L1 norm,

d(a, t) = |i− k|+ |j − l| , (1)

where a = [i j]T and t = [k l]T are initial and target
positions respectively. In the presence of obstacles, feasible
paths from all initial positions to all targets need to be
determined first and their lengths are used as distances.

Path allocation consists of allocating the shortest feasible
path between each of the assigned initial/final position pairs.
Because the assignment procedure does not necessarily have
a unique solution, at this point we can perform path bal-
ancing. All of the assigned paths are compared and if agent
an crosses any cell assigned to agent am and has a longer
total path, their goal points are swapped. This operation does
not change the total distance traveled by all agents. It is
performed to ensure that agents never cross a goal cell that
has already been occupied, as this would lead to deadlock.
Once occupied, goal cells cannot be released by an agent, due

3751

to the no preemption requirement of the trajectory scheduling
algorithm. Balancing the paths also tends to reduce the total
time required for a formation transition.

B. Trajectory scheduling

Once each agent has been allocated a path, a dispatch-
ing strategy must be implemented in order to ensure inter
agent collision avoidance. To deal with this problem in a
structured manner, we model the multi-agent system on the
formation grid as a discrete event system and introduce
a formal description using the matrix model described in
[13]. Adopting the terminology from manufacturing control
systems, we model grid cells as system resources and cell
occupations as jobs. According to this formalism, the path
Pn = (pn(k)) = ((i(k), j(k)) |k = 1, . . . , |Pn|) assigned to
agent an requires the resource set Rn =

(
ri(k)j(k)

)
and

represents the job sequence J n =
(
vn

i(k)j(k)

)
. The complete

job set for a formation transition consists of all the job
sets assigned to individual agents, J =

(
J 1, . . . ,JN

)
. The

complete resource set is a union of all the resources required
by all the agents, R =

⋃N
n=1Rn ⊂ G. As more than

one agent might require a particular resource (cell) during
formation change, |R| ≤ |J |. Rules describing formation
transition behavior can be written as follows:

IF cell (i(k − 1), j(k − 1)) is occupied

AND cell (i(k), j(k)) is free AND ud
k = 1 (2)

THEN move to (i(k), j(k))
AND release (i(k − 1), j(k − 1)),

where k = 2, . . . , |Pn|. Each agent’s path contributes |Pn|−1
transition rules.

Looking at the rules (2) we can see that the preconditions
part of the IF-clause (between IF and THEN) consists of
one job that needs to be completed and one resource that
needs to be available in order for the next job to be started.
We assign a boolean variable xi(k) to the precondition
part of every formation transition rule, xi(k) = 1 iff the
precondition is satisfied at time step k. Then the logical state
vector is defined as the column vector x(k) = [xi(k)] , i =
1, . . . ,

∑N
n=1 (|Pn| − 1).

The resource idle vector rc(k) = [rc
i (k)] , i = 1, . . . , |R|

has one boolean element for every resource in the resource
set R, and rc

i (k) = 1 iff the i-th resource ri is idle (the cor-
responding cell is not occupied) at time step k and rc

i (k) = 0
otherwise. Similarly, the job completed vector vc(k) =
[vc

i (k)] , i = 1, . . . , |J | has one boolean element for every
job in the job set J , and vc

i (k) = 1 iff the i-th job vi has just
been completed (the corresponding cell is occupied) at time
step k and vc

i (k) = 0 otherwise. These two vectors constitute

the system state vector m(k) =
[
(vc(k))T (rc(k))T

]T
. Any

given value of the system state vector uniquely determines an
agent formation on the formation grid. Occupied grid cells
correspond to vc

i = 1 entries of the job completed vector.
Adopting the above conventions, we can derive the matrix

model of the multi-agent formation transition system. The

matrix model consists of four system matrices. The job-
sequencing matrix Fv and job-start matrix Sv relate the
logical state vector x to the job set J . The resource require-
ments matrix Fr and the resource release matrix Sr relate
the logical state vector to the resource set R. The details
of the procedure for deriving system matrices given J , R
and x are described in [13]. The only difference specific
to our formation control problem is the fact that the input
and output matrix are empty, as we are not considering the
scenario of agents entering or leaving the formation at this
point. We can write down the system matrices in a more
compact form as the activity completion matrix F = [Fv Fr]
and the activity start matrix S =

[
ST

v ST
r

]T
.

Matrices F and S provide a model of the formation
transition system. In this model a conflict situation can
occur when two agents are requiring the same cell for
their next move. In order to prevent inter-agent collisions,
we need to implement a conflict resolution strategy. We
associate a boolean control variable ud

k with every potentially
conflicting rule, as shown in (2). The vector ud =

[
ud

k

]
containing all control variables is called the dispatching
vector. Our conflict resolution strategy can be completely
described by two binary matrices. The dispatching matrix
Fd defines how the dispatching vector affects the transition
rules. The dispatching vector release matrix Sd defines how
the dispatching vector is updated based on the logical system
state.

For our formation transition problem, we are using the
so-called p-invariant control structure with a last buffer first
served (LBFS) strategy. This is an approach that has been
well-established in the area of manufacturing systems control
[14]. In our case, this means we are ensuring that an agent is
allowed to enter a shared grid cell only after all agents with
longer remaining paths have already passed through that cell.
In order to be able to determine path distances from a shared
cell to all target cells, we introduce the rule distance matrix
Dx where Dx(i, j) represents the ”distance” from rule xj to
rule xi. If the rules are part of the same path and xi ≥ xj ,
then their distance is equal to the number of rules between
them. Otherwise, their distance is defined as −1. Algorithm
1 outlines how matrices Sd, Fd and the initial value of the
dispatching vector ud(0) can be computed from Fr and path
length information.

Now we can write down the rules for updating the logical
and system state vectors at each time step k as follows:

x(k) = F M m(k − 1)∇Fd M ud(k − 1) (3)

m(k) = m(k − 1) +
[
S− FT

]
x(k) (4)

ud(k) = ud(k − 1) +
[
Sd − FT

d

]
x(k). (5)

The symbols ∇ and M denote matrix addition and multi-
plication respectively, in and/or algebra. These operations
are performed like standard matrix operations, but replacing
element-wise multiplication by logical AND and addition
by OR. The overline symbol denotes element-wise logical
negation. We can determine the agent formation at time step
k by reading cell occupations directly from the system state

3752

Algorithm 1: ControlMatrices
Input: Fr, plen ={|Pn| : n = 1, . . . , N}
Output: Fd, Sd, ud(0)

Compute the rule distance matrix Dx from path length1

vector plen
foreach column fj of Fr where

∑
i fij > 1 do2

Create dispatching matrix component Fd,j from fj3

foreach column dk of Dx · Fd,j do4

Find distance from ud(k) to last rule on the5

path, dx
u(k)=max(dk)

end6

Set ud0,j = 1 where max(dx
u) and 0 otherwise7

Sort dx
u descending and permute columns of ud0,j8

and Fd,j accordingly
Compute Sd,j by shifting the last row of FT

d,j to the9

top
end10

Concatenate Fd:=[Fd,j], Sd:=
[
ST

d,j

]T
, ud0:=

[
uT

d0,j

]T
11

vector m.

IV. FORMATION TRANSITIONS IN THE
PRESENCE OF OBSTACLES

We take obstacles into account in our grid-based formation
abstraction by representing them as occupied grid cells. As
the group of agents is moving through an obstacle populated
environment, from the point of view of the grid abstraction
obstacles are sweeping through the formation grid. Obstacle
motion is discretized both in space with grid cell size w
and in time with time step l. We are assuming that within
one time step an obstacle-occupied cell cannot move further
than to one of its eight neighboring cells. Furthermore, we
are assuming that we can predict obstacle motion at least
one time step in advance i.e., at time step l we know the
obstacle configurations O(l) and O(l + 1). Finally, in order
to be able to avoid obstacles while maintaining the formation
grid, we assume that each agent can traverse at least N + 1
cells within one obstacle time step l.

Given O(l) and O(l + 1), the current and next obstacle
configuration matrix respectively, our evasion strategy con-
sists of the following steps:

1) Determine the movement direction for each obstacle
2) Generate new formation target positions in the

obstacle-free space
3) Find collision-free paths to the new target positions
4) Apply the formation transition strategy described in the

previous section to avoid collisions
In the rest of the section we explain each of the above steps
and give a simple illustrative example.

A. Obstacle segmentation and movement direction

In order to enable efficient obstacle avoidance, we need
to determine the movement direction of the obstacles. As
matrices O(l) and O(l +1) can contain several independent

obstacles, we must first perform obstacle segmentation and
consider each obstacle separately. The segmentation result is
a set of Pl isolated regions Oseg(l) = {Op(l)|p = 1, . . . , Pl}
each represented by its own binary (2N + 1) × (2N + 1)
matrix Op(l) = [oij,p]. For each obstacle, we compute its
”center of mass” coordinates using the equations

ic,p =

∑
i,j i · oij,p∑

i,j oij,p
, jc,p =

∑
i,j j · oij,p∑

i,j oij,p
, (6)

where i, j = 1, . . . , (2N + 1). Having computed the centers
of mass for each obstacle in O(l)and O(l + 1) respectively,
we can perform obstacle matching and compute movement
gradients for each obstacle. The number of obstacles Pl and
Pl+1 does not necessarily have to be the same, as obstacles
can appear and disappear from cells on grid edges within one
time step. To match obstacles, we use the Euclidean distance
between their centers of mass (in integer grid coordinates)

dp,q =
√

(ic,p(l)− ic,q(l + 1))2 + (jc,p(l)− jc,q(l + 1))2.
(7)

If the distance is smaller than a predefined threshold ε, dp,q <
ε, we consider Oq(l + 1) to be a match for Op(l). We are
using a threshold value of ε = 1.5, because the maximal
expected obstacle movement is one diagonal grid cell.

To obtain information on obstacle motion within the
current time step we compute the quantized gradients of the
mass center along the rows and columns,

M i = sgn(ic,p(l + 1)− ic,p(l))
M j = sgn(jc,p(l + 1)− jc,p(l)). (8)

For new obstacles, Oseg(l+1)\Oseg(l) we assume diagonal
motion i.e., M i = ±1 and M j = ±1. We are not interested
in deducing the direction of motion for obstacles leaving the
grid, Oseg(l)\Oseg(l+1), as it does not affect the avoidance
strategy.

B. Obstacle-free reference positions and path planning

Once we have determined directions of motion for all
obstacles, we can generate new reference positions for agents
whose current positions are in danger of colliding with
oncoming obstacles. Algorithm 2 outlines the procedure for
generating the evasion formation Fe. The algorithm finds
evasion positions by searching in all possible directions of
motion, preferring those lying perpendicular to obstacle mo-
tion and towards grid center. The function Match performs
obstacle matching and gradient computation as described
previously. The function FindFree searches for the first
obstacle-free cell lying perpendicular to obstacle motion. The
search is performed first towards the center of the grid, then
towards the nearest edge, and finally towards the far edge of
the grid.

After computing the evasion formation Fe, we must find
feasible paths between agent positions in F and Fe, taking
into account the obstacle set O(l). To do this, we construct
a connectedness graph of the formation grid, where nodes
represent obstacle-free cells and edges connect neighboring
cells. We then use BFS (Breadth-first search) to find shortest

3753

Algorithm 2: EvasionFormation
Input: F,O(l),O(l + 1)
Output: Fe

Fe := F1

Oall := O(l) & O(l + 1)2

Oseg(l) := Segmentation(O(l))3

Oseg(l + 1) := Segmentation(O(l + 1))4

{Oseg(l),Oseg(l + 1), M i, M j} := Match(Oseg(l),5

Oseg(l + 1))
foreach Op in Oseg(l + 1) do6

Fc := F & (Op(l + 1) | Op(l))7

foreach fc,ij = 1 do8

Fe(i, j) := 09

(i, j) := FindFree(i,j,Oall,M ip, M jp, Fe)10

Fe(i, j) := 111

end12

end13

feasible paths from every starting position in F to every
target position in Fe. Path lengths are used as inputs to the
target assignment procedure described in the previous sec-
tion. From this point onward, the formation reconfiguration
procedure is the same as described in Section III except that
BFS shortest feasible paths are used instead of L1 shortest
paths.

V. CONVERGENCE ANALYSIS

We now turn our attention to the convergence properties of
the described formation control algorithm. We want to show
that for arbitrary initial and target formations, the transition
will always be feasible i.e., the agents will reach the target
formation in a finite number of steps.

A. Path allocation properties

We first establish the properties of the allocated transition
paths, as these are fundamental to the convergence of the
scheduling algorithm.

Lemma 1: Any path Pn generated by the algorithm de-
scribed in Section III has the property

pn(k) 6= pn(j) if k 6= j. (9)
In other words, each cell is assigned at most once to an
agent’s path, there is no backtracking or loops.

Proof: Up to the path balancing step, property (9) is
obvious for both the free-space and the obstacle case. In the
free-space case, we assign to each agent the direct shortest
path to its target, which surely does not visit any cell twice.
Similarly, in the case with obstacles, we find the shortest
feasible path using the BFS algorithm which again does
not contain duplicate cells. We can show by contradiction
that this property is preserved after path balancing. We first
note that due to the Kuhn-Munkres assignment the total
path length |P| =

∑N
n=1 |Pn| is minimal for the given

formation matrices. We also note that path balancing does
not change the total path length. Let us now assume that

after the balancing step (9) is not true i.e., ∃ k 6= j such that
pn(k) = pn(j). In this case, we can write the path down as

Pn = (pn(1), . . . , pn(k − 1), pn(k), pn(k + 1), . . . ,)
∪ (pn(j − 1), pn(k), pn(j + 1), . . . , pn(|Pn|)) .

However this implies that there exists a shorter path P ′
n

between pn(1) and pn(|Pn|) obtained by removing all the
cells between the first occurrence of pn(k) and pn(j + 1)
from Pn. Then by simply replacing Pnwith P ′

n in P we
would obtain a set of paths with shorter total length, which
is in contradiction with the minimal path requirement.

Lemma 2: Given two paths Pn and Pm obtained by
the proposed algorithm, such that pn(km) = pm(jn) then
pn(k > km) 6= pm(j < jn) and conversely pm(j > jn) 6=
pn(k < km).
In other words, there are no paths that form a ”head-on”
situation.

Proof: Again, by contradiction, suppose there exist

Pn = (. . . , pn(k − 1), pn(k), pn(k + 1), . . .) ,

Pm = (. . . , pm(j − 1), pm(j), pm(j + 1), . . .)

such that pn(k) = pm(j) and pn(k− 1) = pm(j +1). Then,
by swapping paths starting from pn(k) we would get the
path

Pn = (. . . , pm(j + 1), pn(k), pn(j + 1), . . .)

passing through the same cell twice, which is in contradiction
with Lemma 1.

B. Trajectory scheduling properties

We can now state our main convergence theorem which
guarantees that every feasible formation transition will com-
plete in finite time.

Theorem 1: Given the formation control strategy de-
scribed in Sections III and IV, a transition between arbitrary
formations will be completed in a finite number of steps,
provided there exist at least one feasible (obstacle-free) path
between all initial and target position pairs.

Proof: At this point, we just provide a sketch of the
proof, as the full proof requires a significant amount of
background in discrete-event system theory and would not
fit within the format of the paper. Due to the no preemption
requirement of the matrix-based transition controller, dead-
lock could potentially occur if pm(k) = pn(|Pn|) (pm(k)
is an’s goal point) and an reaches it before am has passed
through it. It follows from Lemmas 1 and 2 that this is in
fact the only situation when deadlock can occur. However,
this is exactly the situation that our p-invariant LBFS control
strategy prevents, because it ensures that an agent can occupy
a shared cell only after all agents with longer remaining paths
have already passed through it.

VI. SIMULATION RESULTS

In order to illustrate the described formation control algo-
rithm, we present two examples that are encountered in group
agent motion. In the first example, shown in Fig. 1, a group

3754

of five agents is passing through a narrow corridor. In the
second example shown in Fig. 2, an obstacle is approaching
the agent group diagonally from the left. This corresponds
to a situation where the agent group is rotating clockwise
(group heading is denoted in the figures by the solid red
line). In both examples, the agents are initially forming a
V-shaped formation and required to restore this formation as
soon as the obstacle configuration allows it. Current obstacle
position O(l) is denoted by black squares while gray squares
denote the predicted position O(l + 1).

(a) l = 1, k = 0 (b) l = 2, k = 5

(c) l = 6, k = 2 (d) l = 15, k = 4

Fig. 1: Five agents in V-formation, squeezing through a
narrow corridor.

VII. CONCLUSIONS AND FUTURE WORK
We have presented a formation control framework based

on a discrete grid abstraction of the multi agent system.
Using discrete event system scheduling techniques, our con-
troller generates collision-free formation transition trajec-
tories in the presence of obstacles. Analytical results and
simulations show that transitions between arbitrary forma-
tions occur in a collision-free and deadlock-free manner.
A significant advantage of our approach is the fact that it
treats formation specifications and obstacles within an unified
framework. Currently, we are implemented the grid-based
formation algorithm described herein on a multi-vehicle
experimental testbed.

REFERENCES

[1] T. Balch and R. Arkin, “Behavior-based formation control for multi-
robot teams,” Robotics and Automation, IEEE Transactions on, vol. 14,
no. 6, pp. 926–939, Dec 1998.

[2] J. Hendrickx, B. Fidan, C. Yu, B. Anderson, and V. Blondel, “Forma-
tion reorganization by primitive operations on directed graphs,” IEEE
Transactions on Automatic Control, vol. 53, no. 4, pp. 968–979, May
2008.

(a) l = 5, k = 1 (b) l = 8, k = 2

(c) l = 9, k = 3 (d) l = 13, k = 1

Fig. 2: Five agents in V-formation, evading a diagonally
moving obstacle.

[3] H. Tanner, G. Pappas, and V. Kumar, “Leader-to-formation stability,”
Robotics and Automation, IEEE Transactions on, vol. 20, no. 3, pp.
443–455, June 2004.

[4] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algo-
rithms and theory,” Automatic Control, IEEE Transactions on, vol. 51,
no. 3, pp. 401–420, March 2006.

[5] B. Shucker, T. Murphey, and J. Bennett, “Switching rules for decentral-
ized control with simple control laws,” American Control Conference,
2007. ACC ’07, pp. 1485–1492, July 2007.

[6] H. Tanner and A. Kumar, “Formation Stabilization of Multiple Agents
Using Decentralized Navigation Functions,” in Robotics: Science And
Systems I. MIT Press, 2005, p. 49.

[7] D. Dimarogonas, S. Loizou, K. Kyriakopoulos, and M. Zavlanos, “A
feedback stabilization and collision avoidance scheme for multiple
independent non-point agents,” Automatica, vol. 42, no. 2, pp. 229–
243, Feb. 2006.

[8] B. Smith, M. Egerstedt, and A. Howard, “Automatic deployment
and formation control of decentralized multi-agent networks,” IEEE
International Conference on Robotics and Automation, 2008. ICRA
2008., pp. 134–139, May 2008.

[9] C. Belta and V. Kumar, “Abstraction and control for groups of robots,”
IEEE Transactions on Robotics and Automation, vol. 20, no. 5, pp.
865–875, Oct. 2004.

[10] N. Michael, J. Fink, and V. Kumar, “Controlling ensembles of robots
via a supervisory aerial robot,” Advanced Robotics, vol. 22, no. 12,
pp. 1361–1377, 2008.

[11] N. Michael, M. Zavlanos, V. Kumar, and G. Pappas, “Distributed
multi-robot task assignment and formation control,” Robotics and
Automation, 2008. ICRA 2008. IEEE International Conference on, pp.
128–133, May 2008.

[12] J. Munkres, “Algorithms for the assignment and transportation
problems,” Journal of the Society for Industrial and Applied
Mathematics, vol. 5, no. 1, pp. 32–38, 1957. [Online]. Available:
http://link.aip.org/link/?SMM/5/32/1

[13] S. Bogdan, F. L. Lewis, Z. Kovacic, and J. José Mireles, Manufactur-
ing Systems Control Design: A Matrix-based Approach (Advances in
Industrial Control). New York: Springer-Verlag, 2006.

[14] A. Gurel, S. Bogdan, and F. L. Lewis, “Matrix approach to deadlock-
free dispatching in multi-class finite buffer flowlines,” IEEE Transac-
tions on Automatic Control, vol. 45, no. 11, pp. 2086–2090, 2000.

3755

