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Abstract— Outdoor camera networks are becoming ubiqui-
tous in critical urban areas of large cities around the world.
Although current applications of camera networks are mostly
limited to video surveillance, recent research projects are
exploiting advances on outdoor robotics technology to develop
systems that put together networks of cameras and mobile
robots in people assisting tasks. Such systems require the cre-
ation of robot navigation systems in urban areas with a precise
calibration of the distributed camera network. Despite camera
calibration has been an extensively studied topic, the calibration
(intrinsic and extrinsic) of large outdoor camera networks with
no overlapping view fields, and likely to suffer frequent recali-
bration, poses novel challenges in the development of practical
methods for user-assisted calibration that minimize intervention
times and maximize precision. In this paper we propose the
utilization of Laser Range Finder (LRF) data covering the
area of the camera network to support the calibration process
and develop a semi-automated methodology allowing quick and
precise calibration of large camera networks. The proposed
methods have been tested in a real urban environment and
have been applied to create direct mappings (homographies)
between image coordinates and world points in the ground
plane (walking areas) to support person and robot detection
and localization algorithms.

I. INTRODUCTION

Many urban areas and public buildings around the world

have currently large camera networks. Applications have

been focused mainly in security and surveillance but new

trends in robotics are extending their usage to support the

operation of mobile robotic devices in urban areas [1].

The camera network serves as a mean to detect, localize

and map environmental information in a globally coherent

frame of reference. Persons, robots and other targets must

be localized in a unique coordinate system even though they

are observed by distant cameras. This is a complex problem

since camera networks have few or no overlapping fields of

view. Additionally, being an outdoor system, it is constantly

susceptible to weather conditions, such as rain and wind,

and thus it is expected to have slight but visible positioning
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Fig. 1. Results of the proposed calibration system. The top row shows
a graphical user interface to select planar regions and the registration of
the laser range data on an image view. The bottom row shows recovered
orthographic views of the ground plane. The chess pattern shown is not used
for calibration, serves just to visually evaluate the quality of the ground-
plane rectifying homography.

changes from time to time. The calibration methodology

must therefore encompass simple self-adjusting mechanisms.

Recently, the development of powerful laser sensors com-

bined with Simultaneous Location and Mapping (SLAM)

methodologies [2], [3] allow the possibility to have available

high precision Laser Range Finder (LRF) data registered

over large areas. These large outdoor LRF datasets have

started recently to be acquired also for the purpose of

creating robot navigation systems in urban areas. The LRF

data is acquired over the complete area of the network

and, in particular, contains the areas corresponding to the

fields of view of the cameras. This paper exploits this novel

technologies proposing a methodology for calibrating an

outdoor distributed camera network using LRF data.

The paper contributes in the use of LRF as external

information to aid the calibration procedure of the distributed

camera network. Whenever cameras have no overlapping

view fields it is not possible to estimate the relative position

between cameras unless external data is used to refer the

camera calibration parameters to a global reference frame.

Since calibration inevitably requires some user intervention,

in large camera networks this can be a very tedious procedure

if one does not develop practical and semiautomated methods

that facilitate and speed up user input.

The idea of the approach is the following: in a first stage,

the LRF map is registered to an aerial view of the site
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Fig. 2. An aerial view of our experimental site, the Barcelona Robot Lab
(top), and the distribution of cameras in the network (bottom).

and the user sets up the position and nominal calibration

parameters of the cameras in the network. This allows user

selection of an initial camera field of view onto the LRF

area of interest likely to be observed by each camera. In a

second stage, lines extracted from the LRF area of interest

are represented in the nominally calibrated camera coordinate

system and are reprojected to the real-time cameras’ acquired

images. This allows the user to perceive the calibration

errors and input information to a non-linear optimization

procedure that refines both intrinsic and extrinsic calibration

parameters. The optimization process matches 3D lines to

image lines. The 3D lines are extracted by intersecting planes

on the segmented LRF set. A novel approach to 3D range

segmentation based on local variation is used [4]. To show

the applicability of the calibration results, homographies of

the walking areas are computed.

This work is associated with the European project Ubiq-

uitous Networked Robotics in Urban Settings (URUS), that

puts together networks of cameras and mobile robots in

people assisting tasks. Fig. 2 shows an aerial view of our

application scenario, the Barcelona Robot Lab. installed at

the UPC Campus Nord, as well as a floor plan of the outdoor

camera network.

The paper is organized as follows. First, related work

in the calibration of camera networks is presented. Then,

our method to extract 3D lines from available range data

sets is explained, and the proposed method to refine the

calibration parameters by matching these features with the

same features on images is shown. Experiments on a real

urban environment are depicted, and finally, conclusions and

future work are discussed.

II. RELATED WORK

Different techniques have been proposed to calibrate cam-

eras. Some require using patterns, either planar [5] or non-

planar [6], with known metric structure. However, for large

outdoor camera networks, calibration patterns of reasonable

sizes often project on images with very small resolution,

mainly because the cameras are located at a considerable

height with respect to the floor; consequently making pattern

segmentation difficult. In addition, a pattern-based indepen-

dent calibration of each camera would require a secondary

process to relate all camera coordinate systems to a global

reference frame, but establishing this relation with small to

null overlapping fields of view is nearly impossible. For

planar scenarios, a Direct Linear Transformation (DLT) [7]

suffices to estimate image to plane homographies [8]. Un-

fortunately, the planar scenario assumption is too restrictive,

especially in situations with unparallel locally planar surfaces

such as ramps and plazas, which often occur in real urban

environments, as in our case.

An interesting technique to calibrate the camera network,

without the need of a pattern, is with the aid of a bright

moving spot [9]. The technique assumes overlapping fields

of view to estimate the epipolar geometry of the camera

network, to extract homographies, estimate depth, and finally

compute the overall calibration of the camera network. In

our case the cameras’ fields of view seldom overlap, and the

visibility of the bright spot does not always hold at sunlight.

Another alternative is to place the led light on a moving

robot and to have a secondary robot equipped with a laser

sensor tracking the first one, relating their position estimates

to the camera network [10]. Another system that relies on

tracking a moving object to estimate the extrinsic parameters

is [11], which assumes a constant velocity model for the

target. In contrast to these approaches, we opt for a system

that does not rely explicitly on a moving platform to calibrate

the network.

For camera network systems that incorporate controlled

camera orientation changes (pan and tilt), and motorized

zoom, it is possible to use such motion capabilities to first

estimate the intrinsic parameters rotating and zooming fitting

parametric models to the optical flow, and then to estimate

extrinsic parameters aligning landmarks to image features.

Unfortunately, in our case, the cameras are not active.

We benefit instead from the availability of a dense LRF

dataset acquired during a 3D laser-based SLAM session with

our mobile robot mapping devices [12]. The set contains over

8 million points and maps the environment with accuracies

that vary from 5 cm to 20 cm approximately. This data

replaces the need for a tracked beam, a robot, or active

capabilities of the camera network, and is used as external

information to calibrate the camera network.

III. CALIBRATION METHODOLOGY

The calibration procedure, illustrated in Fig. 3, consists of

two main steps. In the first step, a nominal calibration of the

cameras is generated by registering the LRF data to an aerial

image of the experimental site, showing both in a graphical
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Fig. 3. Distributed camera network calibration methodology.

user interface, and prompting a user to coarsely specify the

camera location, orientation, height and field of view. These

initial parameters allow the cropping of the entire LRF into

regions of interest compatible with the field of view of each

camera as shown in Fig. 4.

The second stage aims at refining the cameras nominal

calibration by matching, in a semi-automatic manner, 3D

features to the corresponding 2D features in the cameras’

images. The LRF data corresponding to each cameras’ field

of view is segmented into a set of best fitting planes with

large support from the point clouds and then, straight lines

are computed from the intersection of perpendicular planes

from the set. The extracted 3D lines are then associated with

2D image lines and this information is fed to a non-linear

optimization procedure that improves both intrinsic and ex-

trinsic camera calibration parameters. Finally, homographies

of the walking areas are computed by selecting planar regions

in the LRF data. The final output of the whole calibration

procedure consists in a) the extrinsic camera parameters (the

relative position and orientation in the world frame), b) the

intrinsic parameters (focal distance, image center and aspect

ratio) and c) the homographies of the walking areas.

The first step of the calibration procedure needs to be

performed only once, during the camera network installation,

or when the network topology changes, i.e., cameras are

added/moved. The second step can be executed as frequently

as needed to keep the system calibrated despite small modi-

fication in camera orientation due to weather conditions and

maintenance operations.

A. LRF Registration and Nominal Calibration

The registration of the LRF data with an aerial view of

the environment is the first step in the calibration process.

To that end, a graphical user interface is developed in

which each camera region of interest in the LRF data is

selected. Fig. 4 shows the interface where the user coarsely

selects the position of a camera and its viewing direction

(indicated by the magenta line in the zoomed area). The

cameras are set with default intrinsic parameters. The LRF

data corresponding to the field of view of each camera can

Fig. 4. Registration of aerial view with the LRF data and visual selection
of camera location and orientation.

be visually adjusted by manually changing the intrinsic and

extrinsic parameters, but this process is only required if the

initialization is too erroneous.

The user interaction with the interface for nominal cali-

bration consists of the following steps:

1) pointing the camera location, p1 in the aerial view;

2) pointing a ground point, p2 assumed to be in the field

of view of the camera;

3) entering an elevation angle, θ ;

4) entering an horizontal field of view, φ and the aspect

ratio of the images.

Steps 3 and 4 will usually have default values, in order to

make as simple as possible the task to the user. For instance,

φ = 40o corresponds to a common 8 mm lens in a 1/4 in

CCD. Default values for θ depend on the location, but in

our case many cameras are at the level of the second floor

(about 6 meters high), imaging objects in the ground plane

closer than 20 meters, and thus we have a typical value of

θ = 17o.

With the parameters referred in steps 1 to 4, one can com-

pute completely a pin-hole (perspective), projection model:

p1 and p2 define the azimuth direction, the elevation is given

by the user, and the roll of the camera is assumed null (these

three parameters suffice to define the rotation matrix, R); p1,

p2 and θ define the projection center of the camera, t in

world coordinates; the field of view combined with the size

of an image, and assuming the principal point equal to the

image center, give the intrinsics matrix, K. Hence we obtain

the perspective projection model:

P(ϑ j) = K[R|t] (1)

where P denotes the projection matrix and ϑ j represents a

vector containing the listed parameters for camera j.

Note that radial distortion could be included also in the

model but in this work we assume that it has been estimated

independent from camera installation. That is, we assume

that the knowledge of the radial distortion allowed correcting

the images and thus obtaining novel images as if they were

acquired by a non distorting optical system.
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In the second stage of the calibration procedure, the

parameters collected in ϑ j will be refined by matching LRF

(3D) and image (2D) straight line features.

B. Improving the Calibration

In order to improve camera calibration from the nominal

parameters we could let an operator iteratively change the

calibration parameters to find the best visual match between

the LRF and its projection over the image. However this

is a time consuming process and, in large camera networks

it is cumbersome and tedious. Instead we propose a semi-

automatic way where relevant 3D lines are automatically

extracted from the LRF and the user just has to select points

in the corresponding image lines. In practice the method

works well with about half dozen lines selected for each

camera image.

This procedure is expected to be conducted right after the

nominal calibration, which gives just a rough approximation,

and whenever the camera’s position or orientation is changed,

due to weather (wind, rain, etc.) or maintenance operations

(repair, cleaning).

1) Extracting Lines: The computation of straight lines

from the LRF data relies on identifying and intersecting

planes. The method to segment planar regions is motivated

by Felzenszwalb’s algorithm to 2D image segmentation [13],

and extended to deal with non-uniformly sampled 3D range

data [4]. The algorithm sorts point to point distances for

each point’s k-nearest neighbors and then traverses the list of

sorted distances in increasing order, growing planar patches

by joining points that meet two matching criteria, i.e.,

distance constraints and orientation constraints. Thanks to

the use of union by rank and path compression [14], the

algorithm runs nearly in linear time with respect to the

number of points in the LRF dataset.

To avoid the bottleneck of finding each point’s nearest

neighbors, an efficient library for the computation of approx-

imate nearest neighbors is used instead [15]. Then, a plane

is fit to each set of neighboring points [16] minimizing the

sum

ε = ∑(pT
i n̂−d)2

for all neighbors to that point pi. The term n̂ is the resulting

surface patch normal of the best fit plane, given as the

eigenvector associated to the smallest eigenvalue of

(

Q−
q qT

N2

)

n̂−λ n̂ = 0 (2)

with

ε = n̂T
(

∑ pi pT
i

)

︸ ︷︷ ︸

Q

n̂−2d
(

∑ pT
i

)

︸ ︷︷ ︸

q

n̂+N2d2

Once local surface normals and planar patches are com-

puted for each point in the LRF dataset, segments are merged

by growing a forest of trees based on curvature and mean

distance. Curvature is computed from the angle between the

normals of two neighboring regions, and for the regions to

merge, they must be below a user selected threshold tc,

|cos−1(nT
1 n2)| < tc . (3)

For two segments passing the curvature criteria, they can

be joined if their distance is below a user selected threshold

td ,

k1d1+k2d2
k1+k2

< td

with

d1 = (p1 − p2).n2

d2 = (p2 − p1).n1

and k1 and k2 are the number of points each segment holds.

Once a set of segments is obtained, their intersecting lines

are computed, and the ones with sufficient support from their

generating planes, and with good orthogonality conditions

are selected for projection onto the images.

2) Optimization Procedure: Given the nominal calibra-

tion, the 3D straight lines extracted from the LRF data can

now be projected in the image and guide the user to select

the corresponding 2D image lines. This 3D-2D association

allows improving the nominal calibration by minimizing a

cost function containing the camera projection matrix P.

Let mi = [ui vi]
T denote points that belong to an image line

and Mi = [Xi Yi Zi 1]T i = 1, ..,n denote the corresponding

3D points on the matching line in the LRF data . The cost

function is defined as:

ϑ̂ j = argmin
ϑ j

∑
i

∥
∥mi −h(P(ϑ j) ·Mi)

∥
∥2

(4)

where h is a de-homogenization function, P(ϑ j) is the

projection matrix of the j-th camera as defined in (1), and

ϑ j are the calibration parameters, namely focal length and

principal point, plus the extrinsic parameters for position

and orientation. The optimization is solved using Levenberg-

Marquardt nonlinear optimization.

C. Computing Homographies

Once the calibration parameters have been improved in

each camera, this information is used to compute homo-

graphies of planar patches in the ground floor. The idea

is to have a practical way to transfer 2D image to 3D

world coordinates of targets detected in the images. The

algorithm to compute the homographies is the Direct Linear

Transformation (DLT) that associates LRF data points in

the planes of interest to image points. The patches selected

to be represented by homographies are the ones where

it is likely to have people walking and where robots are

expected to provide services to people. The user selects

polygonal regions corresponding to the desired patches and

the 3D LRF points inside these patches are used to compute

the approximating 3D planes. Notice that this step is only

possible having a sufficiently precise projection matrix P

so that 3D patches are correctly associated to the selected

image regions, otherwise erroneous planar approximations

are likely to be computed.
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Fig. 5. Nominal calibration of cameras A6-8 and B6-2. Original images
(first row), projection of the LRF data to the image plane (second row) and
superposition of the projected LRF data over the image (third row). Note
the significant registration error in the second column (camera B6-2). This
error will be corrected during the optimization process.

IV. EXPERIMENTS

In order to test the validity of the proposed calibration

methodology we have performed tests at three levels: (i) LRF

registration and nominal calibration, (ii) optimization of the

calibration, based on improving the LRF data through image

registration, (iii) application of the calibration to obtain an

orthographic view of the ground plane. As described in the

introduction, the experiments were performed in the outdoor

non-overlapped camera network of the Barcelona Robot Lab.

(see Fig. 2).

Using the registration of the global LRF data with the

aerial view, one obtains a first calibration of a camera by

pointing in the aerial view two points and using some

nominal parameters. Fig. 5 shows two such calibrations,

for cameras A6-8 and B6-2. The figure shows the original

image taken from each of the cameras, the LRF data in

the field of view of the camera, and the 3D LRF data

projected over the image. See in part 1 of the accompanying

video a demonstration of the nominal calibration phase

complemented with some manual improvement.

Given such initial calibration of the cameras, one can

now run the optimization procedure described in Sec. III B.

Fig. 6 a shows the segmented planes and lines out of the

LRF data within the field of view of camera B6-2. Each color

represents a segmented plane. The parameters that were used

in this example to segment the data were: kn = 25 neigh-

bors, and distance and curvature thresholds of td = 0.5 and

tc = 0.8, respectively. Furthermore, only lines in intersecting

orthogonal planes in the interval [π
2
− 0.03,

π
2

+ 0.03] were

considered. Frames b and c, show the lines superimposed on

the image, before and after optimization, and frame d shows

the LRF data projected on the image. Parts 2.1 and 2.2 of the

accompanying video show more views of the detected planes

and lines, and a sequence of iterations of the optimization

procedure.

Once we have the calibration of the cameras, we can

relate 3D LRF date to its image counterpart, and vice-versa.

One typical application is to observe orthographically the

ground plane, i.e. obtaining a bird’s eye view by computing

an homography as discussed in Sec. III C. Fig. 1, shows

the input data, points selected in the LRF (top-left) and

their corresponding image points (top-right). The bottom

row shows the resulting image and a zoom region on it.

Note that as expected, the chess pattern placed in the floor

for evaluating the results, is dewarped correctly (perspective

effect removed). See also part 3 of the accompanying video

detailing the process of selecting a region of interest of the

ground plane and obtaining an orthographic view of the

selected area.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a methodology for cali-

brating outdoor distributed camera networks having small or

inexistent overlapping fields of view between the cameras.

The methodology is based on matching image data with LRF

data acquired and registered along the complete area of the

network using SLAM methodologies. In a first stage the user

obtains the nominal calibration by using default intrinsic

parameters for the cameras and indicating their positions

and orientations on an aerial view aligned with the LRF

data. Next, the calibration of each camera is improved by

a semi-automatic optimization procedure detecting lines in

the LRF and matching them with image lines. The lines are

detected in the LRF by automatically segmenting out planar

regions and finding such plane intersections. The optimiza-

tion procedure minimizes the distances between points in the

lines found in the LRF data and their corresponding points

in image lines.

Experiments performed in a real outdoor camera net-

work show that the methodology effectively allows calibrat-

ing camera networks. In particular the obtained calibration

proved to have enough precision to allow the computation

of dewarping homographies to observe orthographically the

ground plane. In more general terms, the LRF data of the area

mapped, actually acquired for robot navigation tasks, was

shown to have as a by-product useful calibration information

for the camera network.

Future work will focus on a deeper evaluation of the

precision and accuracy of the proposed methodology. In

addition, alternative primitives available both on the LRF

and image data, will be explored to build not only geometric

but also algebraic cost functionals, which may mitigate the

complexity and further automate the complete calibration

process.
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(a) Plane intersections. (b) Projection on images before optimization.

(c) Projection on images after optimization. (d) Final projection of the segmented LRF data.

Fig. 6. Improving the calibration. Input data is formed by planes and lines (a). The optimization approximates the projected laser lines (red) to the image
lines (yellow) (b, c). Cloud of LRF data points projected in the image after the optimization (d).
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