
Self-Adaptive Monte Carlo Localization for Mobile Robots
Using Range Sensors

Lei Zhang, René Zapata and Pascal Lépinay
Laboratoire d’Informatique, de Robotique et de

Microélectronique de Montpellier (LIRMM)
Université Montpellier II

161 rue Ada, 34392 Montpellier Cedex 5, France
{lei.zhang,rene.zapata,pascal.lepinay}@lirmm.fr

Abstract— In order to achieve the autonomy of mobile robots,
effective localization is a necessary prerequisite. In this paper,
we propose an improved Monte Carlo localization using self-
adaptive samples, abbreviated as SAMCL. This algorithm
employs a pre-caching technique to reduce the on-line com-
putational burden. Further, we define the concept of similar
energy region (SER), which is a set of poses (grid cells) having
similar energy with the robot in the robot space. By distributing
global samples in SER instead of distributing randomly in the
map, SAMCL obtains a better performance in localization.
Position tracking, global localization and the kidnapped robot
problem are the three sub-problems of the localization problem.
Most localization approaches focus on solving one of these
sub-problems. However, SAMCL solves all these three sub-
problems together thanks to self-adaptive samples that can
automatically separate themselves into a global sample set and
a local sample set according to needs. The validity and the
efficiency of our algorithm are demonstrated by experiments
carried out with different intentions. Extensive experiment
results and comparisons are also given in this paper.

I. INTRODUCTION

Localization is the problem of determining the pose of a
robot given a map of the environment and sensors data [1],
[2], [3]. The robot pose comprises its location and orientation
relative to a global coordinate frame. Localization problem
can be divided into three sub-problems: position tracking,
global localization and the kidnapped robot problem [4],
[5], [6]. Position tracking assumes that the robot knows its
initial pose [7], [8]. During its motions, the robot can keep
track of movement to maintain a precise estimate of its pose
by accommodating the relatively small noise in a known
environment. More challenging is the global localization
problem [4], [9]. In this case, the robot does not know
its initial pose, thus it has to determine its pose in the
following process only with control data and sensors data.
Once the robot determines its global position, the process
continues as a position tracking problem. The kidnapped
robot problem is that a well-localized robot is taken to some
other place without being told [4], [6], [10]. In practice,
the robot is rarely kidnapped. However, kidnapping tests the
ability of a localization algorithm to recover from global
localization failures. This problem is more difficult than
global localization. Difficulties appear in two aspects: one
is how a robot knows it is kidnapped, the other is how to
recover from kidnapping. The latter can be processed as a

global localization problem.
Among the existing position tracking algorithms, the Ex-

tended Kalman Filter (EKF) is one of the most popular
approaches [6], [11], [12]. EKF assumes that the state
transition and the measurements are Markov processes rep-
resented by nonlinear functions. The first step consists in
linearizing these functions by Taylor expansion and the
second step consists in a fusion of sensors and odometry
data with Kalman Filter. However, plain EKF is inapplicable
to the global localization problem, because of the restrictive
nature of the unimodal belief representation. Monte Carlo
localization (MCL) is the most common approach to deal
with the global localization problem. MCL is based on
a particle filter that represents the posterior belief by a
set of weighted samples (also called particles) distributed
according to this posterior [6], [13], [14]. MCL is already
an efficient algorithm, as it only calculates the posteriors of
particles. However, to obtain a reliable localization result, a
certain number of particles will be needed. The larger the
environment is, the more particles are needed. Actually each
particle can be seen as a pseudo-robot, which perceives the
environment using a probabilistic measurement model. At
each iteration, the virtual measurement takes large computa-
tional costs if there are hundreds of particles. Furthermore,
the fact that MCL cannot recover from robot kidnapping is
its another disadvantage. When the position of the robot
is well determined, samples only survive near a single
pose. If this pose happens to be incorrect, MCL is unable
to recover from this global localization failure. Thrun et
al. [6] proposed the Augmented MCL algorithm to solve
the kidnapped robot problem by adding random samples.
However, adding random samples can cause the extension of
the particle set if the algorithm cannot recover quickly from
kidnapping. This algorithm draws particles either according
to a uniform distribution over the pose space or according to
the measurement distribution. The former is inefficient and
the latter can only fit the landmark detection model (feature-
based localization). Moreover, by augmenting the sample
set through uniformly distributed samples is mathematically
questionable. Thus, Thrun et al. [6], [10], [15] proposed the
Mixture MCL algorithm. This algorithm employs a mixture
proposal distribution that combines regular MCL sampling
with an inversed MCL’s sampling process. They think that

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1541

the key disadvantage of Mixture MCL is a requirement for
a sensor model that permits fast sampling of poses. To
overcome this difficulty, they use sufficient statistics and
density trees to learn a sampling model from data.

In this paper, we propose an improved Monte Carlo lo-
calization with self-adaptive samples (SAMCL) to solve the
localization problem. This algorithm employs a pre-caching
technique to reduce the on-line computational burden of
MCL. Thrun et al. [6] use this technique to reduce costs
of computing for beam-based models in the ray casting
operation. Our pre-caching technique decomposes the state
space into two types of grids. The first one is a three-
dimensional grid that includes the planar coordinates and
the orientation of the robot. This grid, denoted as G3D, is
used to reduce the on-line computational burden of MCL.
The other grid is a two dimensional energy grid. We define
energy as the total information of measurements (the more
information, the higher energy). The energy grid, denoted as
GE , is used to calculate the Similar Energy Region (SER)
which is a subset of GE . Its elements are these grid cells
whose energy is similar to robot’s energy. SER provides
a priori information of robot’s position, thus, sampling in
SER is more efficient than sampling randomly in the whole
map. Finally, SAMCL can solve position tracking, global
localization and the kidnapped robot problem together thanks
to self-adaptive samples. Self-adaptive samples in this paper
are different from the KLD-Sampling algorithm proposed
in [6], [16]. The KLD-Sampling algorithm employs the
sample set that has an adaptive size to increase the efficiency
of particle filters. Our self-adaptive sample set has a fixed
size, thus it does not lead to the extension of the particle set.
This sample set can automatically divide itself into a global
sample set and a local sample set according to different
situations, such as when the robot is kidnapped or fails to
localize globally. Local samples are used to track the robot’s
pose, while global samples are distributed in SER and used
to find the new position of the robot.

The rest of this paper is organized as follows. In section
II, we briefly review Monte Carlo localization. In section
III, we introduce the SAMCL algorithm. Experiment results
are presented in section IV and finally some conclusions are
given in section V.

II. MONTE CARLO LOCALIZATION

In the probabilistic framework, the localization problem
is described as estimating a posterior belief of the robot’s
pose at present moment conditioned on the whole history of
available data. For mobile robots, the available data are of
two types: perceptual data and odometry data [6].

bel(xt) = p (xt |z0:t, u1:t) (1)

Where xt is robot’s pose at time t, which is composed
by its two-dimensional planar coordinates and its orienta-
tion. The belief function bel(xt) represents the density of
probability of the pose xt. The term z0:t represents all the
exteroceptive measurements from time τ = 0 to τ = t and
u1:t represents control data from time τ = 1 to τ = t.

Equation (1) is transformed by Bayes rule, the Markov
assumption and the law of total probability, to obtain the
final recursive equation:

bel(xt) = ηp (zt |xt)
∫
p (xt |xt−1, ut)bel(xt−1)dxt−1

(2)
where η is a normalization constant that ensures bel(xt) to
sum up to one. The probability p (xt |xt−1, ut) is called the
prediction model or the motion model, which denotes the
transition of robot state. The probability p (zt |xt) is the
correction model or the sensor model, which incorporates
sensors information to update robot state.

Different localization approaches represent the posterior
bel(xt) in different ways. MCL represents this posterior
belief by a set of N weighted particles distributed according
to this posterior [6], [10]:

bel(xt) ∝
{〈
x

[n]
t , ω

[n]
t

〉}
n=1,···,N

(3)

here x
[n]
t is a particle that represents a hypothesized pose

of robot at time t. The non-negative numerical parameter
ω

[n]
t is the importance factor which gives a weight to each

particle. The initial belief bel(x0) may be represented by
particles drawn according to a uniform distribution over the
state space if the initial pose of the robot is unknown, or by
particles drawn from a Gaussian distribution centered on the
correct pose if the initial pose is known approximately.

III. THE SAMCL ALGORITHM

The SAMCL algorithm can solve efficiently all the three
sub-problems of localization together. The whole process
is illustrated in Fig. 1. SAMCL is implemented in three
steps: (1) Pre-caching the map, (2) Calculating SER, (3)
Localization. The first step is executed off line, the other
two steps are run on line.

Fig. 1. The process of the SAMCL algorithm.

A. Pre-caching the Map

In the localization problem, the map is supposed to be
known by the robot. Hence, a main idea is to decompose the
given map into grid and to pre-compute measurements for
each grid cell. Our pre-caching technique decomposes the
state space into two types of grids.

1542

Three-dimensional grid (G3D). It includes planar coor-
dinates and the orientation. Each grid cell is seen as a
pseudo-robot that perceives the environment and stores these
measurements. When SAMCL is implemented, instead of
computing measurements of the map for each particle on
line, the particle is matched with the nearest grid cell and
then simulated perceptions stored in this cell are assigned
to the particle. Measurements are pre-cached off line, hence
the pre-caching technique reduces the on-line computational
burden. Obviously, the precision of the map describing
depends on the resolution of the grid.

Two-dimensional energy grid (GE). In this grid, each grid
cell pre-computes and stores its energy. Energy is the total in-
formation of measurements. For distance sensors, we define
ith sensor’s energy as 1 − di/dmax, di is the measurement
of ith sensor and dmax is the maximum distance that sensors
are able to “see”. Then we calculate the sum of energy
of all the sensors. The advantage of using total energy of
all the sensors is no need to consider the orientation of
the robot, thus we can reduce one-dimensional calculation.
Please note that we can calculate the sum of energy to reduce
one-dimensional calculation based on an assumption that the
robot has a circular or quasi-circular body and sensors are
distributed uniformly around its circumference. If a robot
has non-circular body or non-uniformly distributed sensors, it
will obtain different energy at the same location but different
orientation. Hence, we have to consider the orientation when
we use these robots. These grid cells nearby obstacles will
have larger energy than those in the free space. The inputs of
this step are the map M . The outputs are a three-dimensional
grid (G3D) and a two-dimensional energy grid (GE). The
process of calculating energy for grid cells is shown in
Alg. 1. Here ãi(k) represents energy of the ith sensor of
the kth cell, Ẽ(k) is total energy of the I sensors of the kth

grid cell. In line 6, we normalize total energy Ẽ(k). Like
this, energy ãi(k) and total energy Ẽ(k) has the same value
interval [0, 1] as probability density. This energy grid is used
to calculate SER that will be presented in Section III-B.

1: for all the grid cell k ∈ {1, · · · ,K} do
2: for all the distance sensors i ∈ {1, · · · , I}, each mea-

surement d̃i(k) < dmax do
3: ãi(k) = 1− d̃i(k)/dmax

4: Ẽ(k) =
I∑

i=1

ãi(k)

5: end for
6: normalize Ẽ(k) = 1

I Ẽ(k)
7: end for

Algorithm 1: Calculating energy for each grid cell

B. Calculating SER

Similar energy region (SER) is defined as a subset of
GE . Grid cells in SER have similar energy with the robot.
SER may be seen as the candidate region for sampling, in
which particles have higher probability. Information provided
by SER is used to match the position of the robot, such

as the robot is in the corridor or in the corner, is nearby
obstacles or in the free space. Fig 2 shows SER when the
real robot is located in a corridor (a) and in a corner (b).
To distribute global samples, SER provides a priori choice.
Obviously, sampling in SER is more efficient than sampling
stochastically in the entire map. Especially, if the robot is in
a distinct region such as Fig. 2(b), the advantage of sampling
in SER is more significant.

(a) (b)

Fig. 2. SER when the robot is in the corridor (a) and in the corner (b).

The inputs of this step are the energy grid GE obtained off-
line in the pre-caching phase and the range measurements of
the robot at time t. The output is SER. In Alg. 2, ai represents
energy of the ith sensor of the real robot, E is total energy
of the I sensors of the real robot, which is normalized in line
5. δ is a given threshold that determines the size of SER.

1: for all the distance sensors i ∈ {1, · · · , I}, each mea-
surement di < dmax do

2: ai = 1− di/dmax

3: E =
I∑

i=1

ai

4: end for
5: normalize E = 1

IE
6: for all the grid cell k ∈ {1, · · · ,K} do
7: defining SER in the grid cell k if

∣∣∣E − Ẽ(k)
∣∣∣ < δ

8: end for
Algorithm 2: The calculating SER algorithm

C. Localization

The SAMCL algorithm uses self-adaptive samples to solve
the position tracking, global localization and the kidnapped
robot problems together. Self-adaptive samples can auto-
matically divide themselves into a local sample set and a
global sample set and transform between them according
to different situations. SAMCL maintains local samples by
MCL and distributes global samples in SER. When the robot
is well localized, SAMCL only maintains local samples
around the robot. Once the robot is kidnapped, part of
samples migrate from local samples to global samples. After
the robot re-localizes itself, global samples are converted as
one part of local samples. Global samples are able to help
the robot recover from kidnapping. But they may also induce
a wrong reaction, for instance, in symmetrical environments,
all the particles in symmetrical regions may have high
probability and the pose of robot could be ambiguous. Hence,
global samples should only appear when the robot is ”really”
kidnapped. We value whether the robot is kidnapped by

1543

measuring the probabilities of particles. If the maximum of
probabilities of particles is less than a threshold, the robot
will deduce that it has been kidnapped.

The inputs of the last step are the particle set Xt−1, motion
control ut, measurements zt, the three-dimensional grid G3D

and SER. Its output is the particle set Xt. The SAMCL
algorithm is summarized in Alg. 3, NT denotes the total
number of particles used in this algorithm, NG is the number
of global samples distributed in SER, and NL denotes the
number of local samples used for tracking the robot. We
explain this algorithm in five parts.

Part1: sampling total particles. Line 2 generates a particle
x

[n]
t for time t based on the particle x[n]

t−1 and the control ut.
Line 3 determines the importance weight of that particle.
Particularly, measurements of the particle are searched in
G3D.

Part2: determining the size of the global sample set and
the local sample set. It distributes the number of global
samples and local samples according to the maximum of
importance factors ωt. If ωmax

t is less than the threshold ξ,
we assume the robot is kidnapped, part of particles NG are
divided as global samples. If not, all the particles are local
samples. α determines the ratio of global samples and local
samples. The reason why we do not use all the particles as
global samples is that the robot may mistakenly believe that
it is kidnapped. This more often occurs in incomplete maps.
Keeping part of local samples can reduce this mistake. ξ is
a sensitive coefficient, which determines the sensitivity of
SAMCL. The greater ξ may make robot more sensitive to
kidnapping, but on the other hand the robot mistakes more
frequently.

Part3: resampling local samples. It is the operation to
resample local samples that is identical to regular MCL. At
the beginning, importance factors ωt are normalized. Local
samples are drawn by incorporating the importance weights.

Part4: drawing global samples. A real trick of the SAMCL
algorithm is in part 4, global samples are distributed in SER
with a uniform distribution. The advantage of sampling in
SER is more efficient. This part is only executed when the
robot considers itself to be kidnapped.

Part5: combining two particles sets. At last, local sample
set XL

t and global sample set XG
t are combined. The new

sample set Xt will be used in the next iteration.

IV. EXPERIMENTS

The SAMCL algorithm described in this paper has been
tested with a Pioneer 3-DX mobile robot in a real office
environment. The robot has an onboard laptop with 1.06GHz
Intel Core 2 Solo U2100 CPU and 1024M of RAM, and
SAMCL is implemented with MATLAB. The experiment
environment is the first floor of our laboratory. Fig. 3 shows
the ground plan and the expected trajectory. The robot should
follow this trajectory and go around in the corridor. The
real environment of this corridor is shown in pictures. There
are several unmodeled obstacles in the corridor, such as
cabinets and tables (see pictures A and B of Fig. 3). We use
this incomplete map to test the robustness of our algorithm.

Sampling total particles
1: for n = 1 to NT do
2: generate a particle x[n]

t ∝ p
(
xt

∣∣∣x[n]
t−1, ut

)
3: calculate importance factor ω[n]

t = p
(
zt

∣∣∣x[n]
t , G3D

)
4: end for

Determining the size of the global sample set and the
local sample set

1: if ωmax
t < ξ then

2: NL = α ·NT

3: else
4: NL = NT

5: end if
6: NG = NT −NL

Resampling local samples
1: normalize ωt

2: for n = 1 to NL do
3: draw x

[n],L
t with distribution ω[n]

t

4: add x[n],L
t to XL

t

5: end for
Drawing global samples

1: for n = 1 to NG do
2: draw x

[n],G
t with uniform distribution in SER

3: add x[n],G
t to XG

t

4: end for
Combining two particle sets

1: Xt = XL
t ∪XG

t

2: return Xt

Algorithm 3: The SAMCL algorithm

SAMCL inherits the advantage of MCL, so it can treat these
unmodeled obstacles as sensors noise. Because our map is
quasi-symmetrical, to recover from kidnapping in this map is
more difficult. The resolution of the three-dimensional grid
G3D is 0.2m×0.2m×pi/32 and the resolution of the energy
grid GE is 0.2m×0.2m in our experiments. The size of the
experiment map is about 25m× 10m.

Two experiments were performed (see the video attached
to this paper). The first one aimed at testing the ability of
global localization and the robustness of the SAMCL algo-
rithm by adding artificial errors to wheel encoder reading.
The second one focused on testing the ability of recovering
from kidnapping. In order to get reliable statistical results,
each experiment was repeated 20 times.

A. Global Localization with Artificial Errors

In the first experiment the robot would localize itself with
unfaithful odometry. In practice, these enormous errors of
odometry are often caused by wheels sliding on the slippery
ground or by the robot passing the concave-convex road.
In order to simulate coarse odometry, we added about 27%
artificial errors to each wheel. Because of testing the ability
of localization, the sensitive coefficient ξ was given a low
sensitive value.

1544

Fig. 3. The ground plan including the expected trajectory. Pictures show
the real environment (with unmodeled obstacles).

The localization result is illustrated in Fig. 4, line A and
line B represent the trajectories of the weighted average of
particles and odometry, respectively. The weighted average

of particles is obtained by xt =
N∑

n=1
x

[n]
t ∗ ω

[n]
t . As we

can see, odometry has totally lost because of gradually
accumulated errors. On the contrary, SAMCL still gives a
good localization result. Average errors of final poses of
localization and odometry are shown in Table I.

Fig. 4. The result of global localization with artificial errors. Line A
and line B present the trajectories of the weighted average of particles and
odometry, respectively.

TABLE I
AVERAGE ERRORS OF THE FINAL POSE OF GLOBAL LOCALIZATION WITH

ARTIFICIAL ERRORS

x y θ
Localization 0.469m 0.031m 17.1◦

Odometry 6.353m 7.301m 72.5◦

B. Kidnapping

The second experiment demonstrates the ability of the
SAMCL algorithm to recover from kidnapping, which is the
most difficult issue. We kidnapped the robot at the beginning
of the trajectory after particles converging. Put differently,
after the robot was well localized, we took it to about 7m

far away in its moving direction. Moreover, we added about
27% artificial errors to each wheel. In order to make the
robot find kidnapping more quickly, the sensitive coefficient
ξ was given a medium sensitive value.

Fig. 5 illustrates the distribution of the self-adaptive sam-
ple set during the process of recovering from kidnapping.
In the beginning, the robot is well localized as shown in
Fig. 5(a). Then the robot is kidnapped from position A to po-
sition B (position B is about 7m far away from position A in
the moving direction of the robot). Next, kidnapping brings
on probabilities of particles reducing, when the maximum of
probabilities is less than ξ, global samples are divided and
distributed in SER, as shown in Fig. 5(b). The robot moves
forward and perceives the environment. Because of the quasi-
symmetry of environment, SAMCL gives out three probable
poses of the robot after resampling, depicted in Fig. 5(c).
The robot continues to move and perceive, SAMCL discards
two probable poses and confirms the correct pose of robot,
shown in Fig. 5(d).

(a) (b)

(c) (d)

Fig. 5. The distribution of the self-adaptive sample set during the process
of recovering from kidnapping.

In this experiment, the final pose of the Pioneer robot
is measured, that is x = 0.79, y = 0.02 in the Cartesian
coordinate. For the convenience of analysis, trajectories given
by the weighted average of particles (line A) and odometry
(line B) are decomposed to X-axis and Y-axis. As shown in
Fig. 6, the final pose of localization is x = 0.43, y = 0.09,
but the final pose of odometry is x = −2.96, y = −4.35.
Obviously, the localization result is better than odometry.
From the figure, we can also find that the robot discovers
kidnapping at 3rds and recovers at 6ths. In the later process,
it mistakes once, but it re-localizes in less than 2s interval.
Average errors of final pose of localization and odometry are
shown in Table II.

TABLE II
AVERAGE ERRORS OF THE FINAL POSE OF KIDNAPPING

x y θ
Localization 0.605m 0.076m 13.2◦

Odometry 5.6728m 5.017m 45.3◦

1545

(a)

(b)

Fig. 6. The result of kidnapping. Trajectories are decomposed to X-axis
(a) and Y-axis (b). Line A and line B depict the trajectories of the weighted
average of particles and odometry, respectively.

C. Comparisons

Results of this part are obtained by simulation. Fig. 7
shows the success rate of recovering from kidnapping as
a function of the number of particles. The success rate
increases with the number of particles, both for sampling in
SER and for sampling randomly. However, with the same
size particle set, the success rate of sampling in SER is
much higher than sampling randomly. For example, when
using 300 particles, the success rate of sampling in SER may
achieve to 33%, while this rate of sampling randomly is only
11%. To reach the same success rate, sampling randomly has
to use 900 particles, while using 900 particles, the success
rate of sampling in SER has achived to 91%.

Fig. 7. The success rate of recovering from kidnapping as a function of
the number of particles.

V. CONCLUSIONS

In this paper, we proposed an improved Monte Carlo
localization with self-adaptive samples (SAMCL) to solve
the localization problem. This algorithm inherits all the
advantages of MCL, moreover it improves in several aspects.

SAMCL employs an off-line pre-caching technique to solve
the expensive on-line computational cost problem of regular
MCL. We define Similar Energy Region (SER) in this paper.
SER provides a priori information of the robot’s pose. Hence
sampling in SER is more efficient than sampling randomly
in the entire environment. Because of using self-adaptive
samples, SAMCL can deal with the kidnapped robot problem
as well as position tracking and global localization.

We designed two experiments to verify the validity of the
SAMCL algorithm. The first one achieved global localization
even by adding artificial errors to wheel encoder reading.
The second one confirmed the ability of recovering from
kidnapping. The simulation results show the success rate of
sampling in SER is much higher than sampling randomly
with the same size of particle set.

The future work would address to the issue of applying the
SAMCL algorithm in the multi-robot localization problem.

REFERENCES

[1] D. Fox, W. Burgard, and S. Thrun, “Active markov localization for
mobile robots,” Robotics and Autonomous Systems, vol. 25, pp. 195–
207, 1998.

[2] W. Burgard, D. Fox, and S. Thrun, “Active mobile robot localization,”
in Proceedings of IJCAI-97. Morgan Kaufmann, 1997.

[3] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile
robots in dynamic environments,” Journal of Artificial Intelligence
Research, vol. 11, pp. 391–427, 1999.

[4] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. Cremers, F. Del-
laert, D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and
D. Schulz, “Probabilistic algorithms and the interactive museum tour-
guide robot minerva,” International Journal of Robotics Research,
vol. 19, pp. 972–999, 2000.

[5] S. I. Roumeliotis and G. A. Bekey, “Bayesian estimation and kalman
filtering: a unified framework for mobile robot localization,” in Pro-
ceedings of IEEE International Conference on Robotics and Automa-
tion (ICRA ’00), vol. 3, 2000, pp. 2985–2992.

[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, September 2005.

[7] B. Schiele and J. L. Crowley, “A comparison of position estimation
techniques using occupancy,” in Proceedings of IEEE International
Conference on Robotics and Automation, vol. 2, 1994, pp. 1628–1634.

[8] G. Weiss, C. Wetzler, and E. von Puttkamer, “Keeping track of
position and orientation of moving indoor systems by correlation of
range-finder scans,” in Proceedings of the International Conference on
Intelligent Robots and Systems, vol. 1, 1994, pp. 595–601.

[9] A. Milstein, J. N. Sánchez, and E. T. Williamson, “Robust global
localization using clustered particle filtering,” in AAAI-02, 2002, pp.
581–586.

[10] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo
localization for mobile robots,” Artificial Intelligence, vol. 128, no.
1-2, pp. 99–141, 2000.

[11] R. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[12] M. S. Grewal and A. P. Andrews, Kalman filtering: theory and
practice. Prentice-Hall, Inc., 1993.

[13] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo localiza-
tion: Efficient position estimation for mobile robots,” in Proceedings of
the Sixteenth National Conference on Artificial Intelligence (AAAI’99),
July 1999, pp. 343–349.

[14] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo lo-
calization for mobile robots,” in Proceedings of IEEE International
Conference on Robotics and Automation, vol. 2, 1999, pp. 1322–1328.

[15] S. Thrun, D. Fox, and W. Burgard, “Monte Carlo localization with
mixture proposal distribution,” in Proceedings of the AAAI National
Conference on Artificial Intelligence, 2000, pp. 859–865.

[16] D. Fox, “Adapting the sample size in particle filters through kld-
sampling,” International Journal of Robotics Research, vol. 22, no. 12,
pp. 985–1003, 2003.

1546

