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  Abstract—This paper presents a distributed algorithm for a mobile 
sensor network to track targets with unknown motion. We formulates 
the target tracking as a multi-objective optimization problem which 
integrates the tracking quality, the energy saving and the network 
connectivity. To cope with sensing noises, we use the determinant of 
the covariance matrix of target estimation as the tracking quality 
measure and compute its partial derivatives for the optimization 
process. Virtual nodes are introduced to represent obstacles in the 
environment. Furthermore this algorithm can be extended to solve the 
problem of source tracking where sensors can only detect the density 
of the diffusing substances emitted by the source. Therefore a whole 
tracking framework has been set up which can be easily extended for 
applications under complicated situations. Simulations demonstrate 
the effectiveness of the proposed algorithm in energy conservation and 
tracking accuracy under different situations.  

I. INTRODUCTION 

Due to attractive characteristics such as wide coverage of 
environment, fast response to changes and high reliability for 
information gathering, mobile sensor networks have been widely 
used in civil and military applications, such as surveillance, 
environmental control, and health care. Target tracking using a 
mobile sensor network is to maintain the moving targets within the 
sensing coverage of the network by properly moving the nodes.  

This topic is being extensively studied in robotics and sensor 
networks in recent years and several approaches have been 
developed. Makarenko [1], Chung [2] and Spletzer [3] proposed to 
optimize positions of the sensor nodes for tracking under different 
performance index. Jung [4] developed an approach distributing 
the robots in the region according to the target densities. The 
aforementioned methods determine node motion on the basis of 
the data collected by all the sensor nodes under the assumption 
that the communication link always exists between any two nodes 
during tracking. This communication requirement can hardly be 
satisfied in mobile sensor networks with a large number of nodes. 
Parker [5] combined virtual forces with high-level behavior-based 
probabilities for controlling the motion of robots. Shucker [6] 
simplified the network into a virtual spring mesh and used the 
incident edges of nodes to generate the control force. In those 
works, it was assumed that accurate information about the target is 
available, which is not true in real applications. Zou [7] integrated 
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the mobility-enhanced improvement with negative consequences 
and proposed a distributed mobility management scheme.  

Almost all these works assumed that there is no sensing noise or 
obstacle in the environment. Moreover, they all coped with point 
targets whose position can be directly detected by sensors. There 
is no work on emission source tracking where we need to find the 
source through tracking its diffusing substances. And for sensor 
networks with scarce energy resources, it is not favorable for 
nodes to move because the energy required for locomotion energy 
is much higher than that for sensing and communication.  

This paper extends our previous work [8] to tracking point 
targets and emission sources with the existence of sensing noises 
and obstacles. The algorithm developed was for tracking a point 
target with unknown motion while minimizing the energy 
consumption and maintaining network connectivity, provided that 
the sensor measurements are accurate. In this paper, we cope with 
sensing noises in the measurements and consider both point targets 
and emission source tracking. For sensing noises, the determinant 
of the covariance matrix of the target estimation is adopted as the 
tracking quality measure. Then based on the calculus rule of 
matrix, we compute its partial derivatives to be used in on-line 
optimization process. For obstacle avoidance, we incorporate 
virtual nodes in the potential function to represent the obstacle 
existence. For emission source tracking, we use the product 
integral of the point tracking quality and the substance density 
over the whole area as the new tracking quality measure. Then the 
previous tracking strategy can be adopted here. We can see that a 
whole tracking framework has been set up which can be easily 
modified and extended for many complicated situations in reality. 
Simulations have been conducted and the results confirmed good 
performance of the algorithm.  

II. ALGORITHM OUTLINE  

We first describe some general notations and models that will 
be applied throughout in this entire paper. Then the proposed 
algorithm in our previous paper will be outlined. 

A. Notations and Modeling 

Consider a mobile sensor network with a large number of sensor 
nodes deployed on a 2-D plane. There may be point targets with 
unknown motion or sources that emit diffusing substances around. 
For point target tracking, the target can be detected by the nodes. 
Then the problem is to trace the target by moving the nodes so that 
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the target is always within the sensing coverage of the network. 
For emission source tracking, the source may be locomotive and 
hidden. Its location cannot be detected directly by the nodes. But 
its emitted substances diffuse around continually and the nodes 
can measure the properties of these substances such as temperature, 
density, etc. Then we can approximate the source location through 
tracking the substances because the source always exists at the 
point with the maximal density of the substance.  

The notations used in this paper are given in table I. We use 
bold letters to represent vectors. To clarify the tracking problem, 
some assumptions are made as follows: 

i) The communication region of each node is modeled as 
circular discs with the same communication radius cr . 

ii) The sensor network is abstracted into a graph ),( EVG = . V  

is the set of nodes. The edge Eji ∈),( connects node i to node j if 

i is in the communication region of j . 

iii) The initial network is connected but the whole network 
topology is not available. 

iv) Every node knows its position accurately. 

TABLE I.  NOTATIONS USED THROUGHOUT THE PAPER 

Notation Description 

k The k-th sampling time 

tΔ  The sampling time interval 

)(kiη  The location of node i at time k 

)(kiz  The measurement of node i at time k 

)(kiu  the control input of node i at time k 

)(kTη and )(kTη&  The location and velocity of the target at time k 

)(ˆ kTη  The target location estimation at time k 

)(kiμ and )(kiP  The mean value and the covariance matrix of the 
target location estimation on node i at time k 

),( kqρ  The substance density at point q at time k 

),(,..., 21 kiNjj ∈  The one-hop RNG neighbors of node i at time k 

At every k, each node updates its RNG neighbor list ),( kiN and 

maintains connectivity only with them during the motion within 
current time interval. Each node is subject to the same motion 
model as  

 )()1()( kkk iii uηη +−=               (1) 

Assume the target is initially within the sensing coverage of the 
network. For small sampling time interval, it is possible to adopt 
linear model to model the target motion  

)1()1()1()( −+−⋅Δ+−= kktkk TTT wηηη &          (2) 

)(kw represents the white noise with zero mean. The introduction 

of the noise term is to compensate for the high order motion. The 
target can be observed by the sensors equipped on the nodes. The 
sensing model of the target by sensors on node i is given by: 

)())(),(()( kkkhk iTii vηηz +=                (3) 

()ih is the sensing function of node i, which means the sensing 

model of nodes can be different. )(kv represents the white noises 

with zero mean. Assume that the distributions of noises )(kv and 

)(kw are ),0( WN and ),0( VN respectively. 

Distributed target tracking problem: Given a mobile sensor 
network and a moving target with unknown motion, design an 
algorithm such that the target is maintained within the sensing 
coverage of the network and: 

i) The network maintains connected during the tracking.  
ii) The number of nodes that must be moved and their motion 

steps must be minimized to minimize the energy consumption. 
iii) The algorithm must be distributed, i.e. each node must 

determine its motion only by either its own information or the 
information of its one-hop neighbors. 

B. Distributed Tracking Algorithm Outline  

In [8], we have proposed a distributed tracking algorithm in 
which the nodes are classified into idle and active nodes. During 
the tracking process, the active nodes will move and the idle nodes 
will remain at their current positions. The nodes switch between 
active and idle state so that the tracking becomes a node-to-node 
hand-off process as the target moves through the region.  

At every time, each active node estimates and predicts the target 
motion. It optimizes its motion using a heuristic algorithm under 
three criteria. First, the target escaping probability is defined to 
measure the tracking quality. Second, the potential function is 
defined to represent the network connectivity status as  

∑ ∑
= ∈

−=
n

i kiNj
ji kkkU

1 ),(
))()(())(( ηηη φ            (4) 

where ()φ is the function which represents the distance constraint 

between two neighbors. Third, the kinetic energy of the nodes is 
determined by the node velocity during tΔ  
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We propose a local motion strategy to solve the multi- objective 
optimization problem 

           ( ) ( ){ })()),((,)(max kUkCkQ
D

ηηη −             (6) 

Based on the multi-objective optimization theory, it is transformed 
to a single objective optimization as  

( ) ( )[ ]))(()()(max))((max kCkUkQkJ
DD

ηηηη βα −+=
  

    (7) 

where α and β are the coefficients to unify the magnitude order. 

β reflects the importance of energy conservation. Then we adopt 

the optimization recursive theory [9] to solve it.  

III. TRACKING POINT TARGETS WITH SENSING NOISES 

Section III and IV will improve our previous algorithm to be 
suitable for complicated situations such as noisy sensing model, 
obstacle avoidance and emission source tracking.  
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A. Noisy Sensing Model 

Using a proper quality measure to plan motion of active nodes 
is crucial for the tracking performance of the sensor network. 
When defining the quality measure, two factors must be taken in 
account. First, the measure must represent the tracking quality. 
Second, each node must be able to calculate the quality measure 
using information collected by itself and its one-hop neighbors so 
as to conduct distributed computation. We propose to use the 
estimation accuracy of the target motion as the tracking quality 
measure. Certainly, the better can the target motion be estimated, 
the better is it covered by the sensor network. Under the quality 
measure, the active nodes will move so as to yield more accurate 
estimation of the target motion.   

We linearize the measurement model (3) as follows: 
)()()()( kkkk Tii vηHz +=              (8) 

)(kiH is the Jacobian matrix of ))(),(( kkh iTi ηη . For example, the 

acoustic amplitude sensor is usually adopted in sensor network 
applications. Assuming that the sound source is a point source and 
sound propagation is lossless and isotropic, the amplitude 
measurement )(kiz is related to )(kTη as 

)(
)()(

)( k
kk

ak
iT

i v
ηη

z +
−

=             (9) 

where a represents the physical characteristics of the sensor. Its 
Jacobian matrix has the following form 
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At every time, each node uses Kalman Filtering (KF) to calculate 
the estimation )/( kkiμ of the target state and the covariance matrix 

)/( kkiP which represent the distribution property of the estimation 

probability. The distributed KF equations are as follows 

WPP
μμμ

+−−=−
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( )Tjji kkkk L)()()()(
21

zzzz = , ( )Tjji kkkk L)()()()(
21

HHHH = . 

)/( kkiP is a measure for the estimation uncertainty. Minimizing 

)/( kkiP corresponds to minimizing the uncertainty. While entropy 

[10] contains more information than the covariance, it is at the 
expense of more computational costs and not suitable for 
low-configured nodes. Therefore, we choose the determinant of 

)/( kkiP as the tracking quality measure of node i 

( ))/(det))(( kkkQ iPη −=             (13) 

Since each node estimates the target location independently using 
KF based on the measurements of itself and its neighbors, 
so ))(( kQ η can be certainly evaluated distributedly. And the 

measurements are determined by the locations of the nodes, so the 

independent variables of ))(( kQ η are actually ⎟
⎠
⎞

⎜
⎝
⎛ ∪
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kk jkiNji ηη .  

  To move the active nodes in the direction of minimizing the 
determinant of ))(( kQ η , it is necessary to calculate its partial 

derivative with respect to )(kiη . First we introduce the standard 

derivative calculus rule of matrix [11]. RR nn →×:f  is a 

real-valued matrix function. nnRx ×∈)(A is a symmetric definite 

matrix with the scalar variable Rx ∈ . )(xB is a matrix function 

with any dimension. nnR ×∈C is a symmetric constant matrix. Then  
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The partial derivative of ))(( kQ η with respect to the x-coordinate 

of the location of node i is given by  
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By substituting the term )()/( kkk ixi ηP ∂∂ by KF, we obtain  
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)1/( −kkiP is independent of )(kiη , so Eq. (16) is equal to  
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Using the matrix operations (14) and omitting k and k-1 for 
simplification, the upper equation can be revised as  
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Similarly, it is possible to calculate the partial derivative of 
))(( kQ η with respect to the y-coordinate )(kiyη . 

  It is noted that )(kTη is unavailable in the calculation of )(kiH  

and )(kjH , so we use )1/( −kkiμ to approximate it. Since )(kiη  

only affects the Jacobian matrix )(kiH , we have  
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|)/(| kkiP exists in both x and y derivatives, so it can be ignored in 

the determination of the node motion. 

B. Obstacle Avoidance 

Usually many static or dynamic obstacles may exist in the field. 
We will add the capability of obstacle avoidance in the tracking 
framework and present an on-line avoidance planning for nodes 
while tracking the target. This algorithm is suitable for any type 
obstacle. As we know, ))(( kU η represents the distance constraint 

between any two neighbors. If the obstacles are transformed to 
virtual neighbors of the nodes, the optimization process of 

))(( kU η will also keep nodes within the safe region of obstacles. At 

time k, node i detects the obstacles )(kOm . We suppose the 

obstacle surface is piecewise continuous and draw a vertical 
projection line from node i to this surface. Then the projection 
points denote the virtual nodes as  
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Fig.1. The virtual nodes corresponding to obstacles 

Fig. 1 shows how to generate the virtual nodes on the obstacle 
surface. When node i locates at )1( −kiη , the length of the vertical 

line between the node and the obstacle )(1 kO  is less than the safe 

distance 3δ , the virtual node )1('
1,1 −kη  occurs. When node i moves 

to )(kiη , the distance between the node and )(1 kO , )(2 kO are both 

less than 3δ . Then )('
1,1 kη , )('

1,2 kη and )('
2,2 kη occurs. When the 

distance is more than 3δ , the virtual nodes disappear. The shape 

and location of the obstacles is changeable all the time, which does 
not affect the avoidance process. One obstacle may generate more 

than one virtual node, such as )('
1,2 kη and )('

2,2 kη in Fig. 1. 

If the virtual nodes are considered as a part of neighbor list, 
then ))(( kU η in the obstacle environment is  
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()φ ′ denotes the distance constraint between the obstacle and the 

nodes. Its partial derivative with respect to )(kiη is  
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IV. TRACKING EMISSION SOURCES  

 

  Most existing works focused on point target tracking, which 
means the targets are assumed as discrete points in the field. But in 
some cases such as the battle field, heat plumes from wildfire, 
radioactive or chemical clouds may exist and we need to find the 
emission source of these hazardous substances. The substances 
emitted by the source diffuse around. We can approximate the 
source location through tracking these substances. It is somewhat 
more complex, as the substances do not have a well-defined 
location. We need to know both the extent and the density of the 
substance. Because the source may exist at the point where the 
substance density is maximal, it also may be desirable to increase 
the node density in areas of great concentration while sacrificing 
detailed information about areas of low concentration or areas 
outside the substance.  

In section IIIA, we have defined the quality measure for point 
target tracking. Now it will be improved for emission source 
tracking. The basic difference between point target tracking and 
emission source tracking is the target state value while the former 
is the target location and the latter is the substance density in the 
field Ω . At any point q , the change trend of the substance density 

is decided by the environmental parameters such as wind direction, 
air flow, temperature, etc. For example, when tracking a chemical 
gas under no wind condition, the simplified Gauss model [12] is 
always adopted as the gas diffusion model  
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where σ is the diffusion parameter. Eq. (22) indicates that the 
time-varying rate of the gas density is the summation of diffusion 
rates along the x and y axis. Then we discretize (22) into the 
transition model form as (2) 
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where xqΔ and yqΔ is the unit axis space. The second term means 

the density change at q is brought by the density difference 

between q and its neighboring unit space. Eq. (23) can be used to 

predict the density of q at next time point.  

Obviously, the more the density at some point is, the more its 
importance is and the more the tracking quality at this point should 
be. Each point is considered as a special point target. So the 
tracking quality measure of diffusing substance is set up as the 
product integral of the point tracking quality and the substance 
density over the region  

∫Ω= qqηqη dkQkkQ )),((),())(( ρ           (24) 

)),(( qη kQ is the tracking quality measure at point q defined in 

Section IIIA. The optimization process of ))(( kQ η  will drive the 

nodes toward the region with higher density. Its derivative with 
respect to )(kiη is given by  
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For )(ksi∉q ( )(ksi denotes the sensing region of node i), )(kiη will 

not affect )),(( qη kQ . So Eq. (25) is simplified as  
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The computation of
)(
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k
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iη
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∂
∂ has been shown in (15). Here 

),( kqρ is unknown, so we substitute it by )1/,(ˆ −kkqρ .  

V. SIMULATION STUDIES 

We have constructed a Matlab simulator to evaluate the 
algorithm performance. This simulator adopts the discrete event 
driven mechanism. The virtual clock drives the event execution in 
the simulation. At every time instant, the inner event scheduler 
chooses the earliest event in the candidate event queue, executes 
its handling function, generates new events with assigned time 
stamp and schedules these events in the event queue. So on this 
simulator, the packet exchange and transmission can be simulated 
closely to the distributed execution in reality. 

A. Execution Snapshot 

 
Fig.2.  Execution snapshot of source tracking with obstacle existence 

Fig.2 shows how the algorithm works. The communication 
radius is set to 30m and the sampling interval is 1s. The obstacles 
are made up of the big gray disks which locate within the field. 
The black line circles are the nodes and the red line circles are the 
location of the virtual nodes generated by the obstacles. The 
minimum safe distance is set to 3m. A gas tank car moves 
randomly and let out dangerous gas with a constant speed. The 
blue line is the car trajectory and the gray shadow represents the 

level of the gas density. The point with the highest density 
indicates the car location. The gray lines are the trajectories of the 
active nodes.  

At every time only the nodes near the region of high density are 
active while the rest nodes maintain idle. The algorithm is fully 
distributed, so the sensing regions may happen to overlap each 
other. The car goes through the corridor between the obstacles. A 
few nodes locate at both ends of the corridor. With the car moving 
on, some nodes are drawn into the corridor to follow the car. They 
generate the virtual nodes based on their measurements. When the 
car moves near the other end, some nodes are activated by current 
active nodes and move toward the car to take over the tracking 
task. The network maintains the car visible all the time by tracking 
the gas region of high density. 

B. Variance of Sensing Noise  

V
V
V

V
V
V

V
V
V

V
V
V

Sampling Time

Sampling Time

Sampling Time

Sampling Time
  

Fig. 3.  Performance under different sensing noises  

The target moves randomly in the field with a constant speed 
value 5m/s. The velocity constraint of each node is 3m/s and a 
acoustic amplitude sensor is fixed on each node. The sensor only 
detects the distance between the sensor and the target, so the 
measurement information is very limited. The energy efficient β in 

Eq. (7) is set to 0.001. 
Fig. 3 illustrates the relationship between energy conservation 

and the tracking quality when the variance || v of sensing noise is 

different. We evaluate the algorithm performance from four 
aspects: Energy consumption is measured by the number and the 
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moving distance of active nodes; the tracking quality is measured 
by the covariance determinant and the estimation error between 
the real location and the estimated location of the target. 
Obviously, it will cost more energy when using more uncertain 
sensors to track the target. But the estimation error is still larger 
because the energy conservation should also be considered. 

C. Target-to-Node Speed Ratio 

 
Fig.4.  Performance under different target-to-node speed ratios 

The algorithm performance is also related to factors such as the 
speed of the nodes, the target speed, the node density and so on. 
Fig. 4 shows the average of the position error over as well as the 
covariance determinant over the time sequence when the target 
–to-node ratio varies from 0.1 to 10. When the target is moving 
slowly, nodes are able to track accurately. If the target moves 
faster and faster, nodes cannot follow it any longer, which results 
the increase of the estimation uncertainty.  

D. Node Density 

 
Fig.5.  Performance under different node densities (nodes/ 2m ) 

In Fig. 5, when the node density increases, the tracking quality 
is improved. This can be easily understood because the motion 
strategy of each node is decided by its negotiation with one-hop 
neighbors in a timely manner. Higher node density means more 
sensor data from neighbors is available for the node to make 
movement decision. But when the node density increases to a 
certain value, the uncertainty does not decrease greatly because the 

sensing coverage of nodes in the field almost reaches saturation 
and the existence of sensing noises prevent more increase of the 
tracking quality. 

VI. CONCLUSION 

This paper proposed a distributed algorithm for a mobile sensor 
network to track motion of targets under sensing noses and 
existence of obstacles. The algorithm is suitable for tracking not 
only point targets but also diffusing targets. To incorporate sensing 
noises into the motion planning of nodes, we proposed to use the 
determinant of the covariance matrix of the target estimation as a 
new tracking quality measure. To cope with the obstacles in the 
environment, we transformed them to the virtual neighbors of the 
nodes so that obstacle avoidance and tracking can be integrated 
into a multi-objective optimization process. In a word, we have set 
up a widely applicable framework for distributed tracking problem 
using mobile sensor networks. It can be extended to complicated 
situations such as noisy sensing, obstacle existence, emission 
sources and so on. Numerical simulations have been conducted 
which confirmed good performance of the proposed algorithm. 
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