
Image-based mapping and navigation with heterogenous robots

Gorkem Erinc, Stefano Carpin

Abstract— We present a system that enables multiple het-
erogenous mobile robots to build and share an appearance
based map appropriate for indoor navigation using exclu-
sively monocular vision. Robots incrementally create online
an appearance based model based on SIFT descriptors. The
spatial model is enriched with additional information so that
the map can be used for navigation also by robots different
from those that built it. Once the map is available, navigation
is performed using an approach based on epipolar geometry.
The control mechanism builds upon the unicycle kinematic
model, and assumes robots are equipped with a servoed camera.
The validity of the proposed approach is substantiated both in
simulation and on an heterogeneous multirobot system.

I. MOTIVATION AND CONTRIBUTION

This paper presents our first steps towards the implemen-

tation of a an heterogeneous multi-robot system operating

in indoor environment relying only on visual sensors. We

show how a team of heterogenous robots can build and take

advantage of a spatial model for an unknown environment

based exclusively on images taken from monocular cameras.

The model is then used to localize and safely navigate to a

target location specified as a desired robot view. Notably, and

differently from most formerly developed similar approaches,

the map is built incrementally and does not require a prelim-

inary data acquisition stage followed by an off-line lengthy

map generation process. Our eventual goal is to equip these

robots with mapping and navigation abilities comparable to

those displayed by more sophisticated systems using laser

range finders. While obviously the spatial model will be

different, we strive to reach the same level of autonomy

and safety in navigation. We stick to the use of monocular

images because monocular cameras are cheap and represent a

ready to use tool to exchange high-level information between

hand-held devices and robot systems. Therefore, this appears

to be a natural way to exchange information between users

and robots, or to specify interesting locations for the robot

to go. Our work builds upon different contributions made

in the past in the fields of visual servoing, mapping, and

computer vision, and achieves a new level of competence,

namely heterogeneous visual based navigation. The system

described in this paper builds from scratch an appearance

based map capturing salient visual features detected in the

environment explored by the robot. Features inserted into the

map are not tied to a specific robot morphology, but are, so

to speak, disembodied, inasmuch as they can be interpreted

and reused also by robots with a morphology different from

G. Erinc and S. Carpin are with the School of Engineering, University
of California, Merced (USA). E-mail: {gerinc,scarpin}@ucmerced.edu.
Gorkem Erinc is supported by a CITRIS Seed grant entitled Mobile Sensor

Networks for Independent Living and Safety at Home.

the the one that produced the map. The map built can then

be used to localize a robot and also for navigation towards

a desired target image. In Section II we shortly describe

related literature in the field of spatial modeling using vision.

Next, in Section III we present a method that allows a

robot to move so that its perceived image matches a desired

target view. The method used to organize data extracted

from images into an appearance based map is presented in

Section IV. Section V presents an experimental validation

using simulations confirming the goodness of the navigation

technique, and also an implementation of the system on an

heterogenous couple of robots. Conclusions and future work

are presented in Section VI.

II. RELATED WORK

Robot mapping using range sensors has been deeply

investigated and the reader is referred to [1] for an in depth

discussion of metric maps. Much closer to our study are

topological maps, as originally proposed by Kuipers [2].

Often times topological maps have been extracted from met-

ric maps using geometric concepts like generalized Voronoi

diagrams [3], [4]. Less attention has been devoted to the

problem of building topological maps with the only help

of cameras. The concept of appearance based map has

gained importance, as this kind of maps are well suited for

extracting a topological structure. One of the few systems

where vision is used in the context of metric and topological

mapping is described in a few recent papers by Kr̈ose and

colleagues [5], [6], where a system composed of a single

robot relies on an omnidirectional camera. Omnidirectional

cameras greatly simplify the problem, since omnidirectional

images can be associated with the position where they have

been acquired disregarding the robot heading due to their

rotational invariance. For what concerns navigation, there is

a vast literature on visual servoing, i.e. the use of computer

vision data to control the motion of a robot. The reader

is referred to [7] for a recent introduction on the topic,

since a thorough discussion is not doable herein due to

space constraints. However, we single out a couple of papers

by Mariottini and colleagues that solve the the navigation

problem for a non-holonomic robot based on epipolar ge-

ometry [8], [9]. As described later on, our approach ex-

tends the ideas presented therein. Their work focuses on

a single robot approach and assumes the robot navigates

using a data structure based upon formerly collected data.

Instead, we support multiple heterogeneous robots and we

acquire the data structure incrementally. A recent paper by

Santosh and colleagues [10] presents an autonomous image-

based navigation algorithm that utilizes an adaptive color

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5807

based frontier exploration strategy. Nevertheless, their visual

control algorithm computes rototranslation between image

pairs using the odometry which may not be available for all

robotic systems. Finally, there has been substantial research

devoted to the identification and use of visual features to

ease robotic tasks. Lowe’s SIFT features are probably the

most used method in robotics [11]. Koseka and colleagues

have investigated the problem of robot localization using

SIFT features [12], but they assumed the map was given and

static. Fraundorfer et. al. [13] utilized a content based image

retrieval system for topological localization and mapping

using a single monocular camera. The approach however

relies on the bag of words scheme which implies an offline

processing for vocabulary construction. A similar approach

is proposed by Cummins and Newman in their recent paper

[14] tackling the problem of modeling the environment using

a bag of words model. Particularly relevant is the solution

to the problem of detecting when a new place is visited, but

it requires a timely offline processing of the training data.

III. VISUAL BASED NAVIGATION

This section describes how it is possible to implement

an image based visual servoing strategy that steers a robot

so that its currently perceived image matches a given target

view. Even though this step is conceptually the last one, i.e.

it is executed after a set of images is collected and organized

into an appearance map, its discussion is presented first since

it introduces some concepts related to epipolar geometry that

will be used useful later on.

A. System model

It is assumed each robot in the system can be modeled

as a unicycle moving on a plane and that each robot is

equipped with an actuated camera that can be turned to a

desired direction. Hence, the state of the robot is a vector

in R
4 and is defined as [x y θ φ]

T
, where x and y are the

Cartesian coordinates of the center of the robot, θ is the

orientation of the robot with respect to x axis of the world

coordinate frame, and φ is the orientation of the camera with

respect to the robot’s heading. The kinematic model is the

following:

ẋ = u1 cos θ ẏ = u1 sin θ

θ̇ = u2 φ̇ = u3.

The input vector for the system is U = [u1 u2 u3]
T ∈ R

3

specifying forward speed (u1), rotational speed (u2), and the

rotational speed for the camera (u3). We assume the camera

is tilted by an arbitrary known angle, and that it is possibly

displaced with respect to the robot’s frame.

B. Navigation between two images

Our approach to navigation exploits some results coming

from epipolar geometry [15]. With reference to Fig. 1, let us

consider two cameras whose relative displacement is given

by a rototranslation (R, T), where R ∈ SO(3) is a rotation

matrix, and T ∈ R
3 a translation vector. Let K be the

common intrinsic camera parameter matrix. The first camera

position will be indicated as the actual camera position,

while the second is the desired camera position (hence the

subscripts used in the following).

a

z

y

x

x

y
z

Od
Oa

e
e d

Fig. 1. The frame on the left is associated with the actual camera position,
while the frame on the right indicates the desired camera position. The
dotted line connecting Oa and Od is the principal line. Its intersection with
the two image planes determines the two epipoles ea and ed.

The line connecting the centers of the reference frames

associated with the two cameras is called principal line,

and let ea and ed be the intersections of the principal

line with the image planes of the first and second camera,

respectively. Points ea and ed are called epipoles. The

horizontal coordinate of ea in the actual image plane will

be indicated as eau, and a similar notation is used for ed.

The following 3 × 3 matrix is called fundamental matrix:

F = K−T T̂RK−1 (1)

where T̂ is the skew-symmetric matrix associated with the

translation vector T . Under these hypothesis the following

relationships hold, showing that the epipoles are in the left

and right null spaces of the fundamental matrix F .

e
T
d F = 0 Fea = 0

Then, given F the epipoles can be computed. It is however

immediate to realize that knowledge of F , or of the epipoles,

does not imply the transformation (R, T) can be retrieved.

As evident from Fig. 1, epipoles are invariant for translations

along the principal line. The fundamental matrix F can

be computed using various algorithms known in literature

and it requires knowledge of a certain number of matching

features between two images taken by the cameras. In our

system we use the eight points algorithm, that requires eight

correspondences. Corresponding features are obtained by the

SIFT features inserted into a database, as described in the

next sections, so from now onwards we assume that the

fundamental matrix F and the epipoles can be computed

when needed. In [9] Mariottini and colleagues proposed

a two-stage method that controls a non-holonomic robot

equipped with a fixed camera. Given the actual camera

position, and a desired camera position specified as a target

view, their control schema moves the robot so that the

actual image eventually matches the desired image. Due to

the non-holonomic constraints, the produced path signifi-

cantly deviates from the shortest one between the current

and the goal positions. Given that the system model we

formerly assumed allows for rotations in place and includes

an additional degree of freedom for the camera, we extend

5808

their approach into a four-stage control schema which is

more articulated but produces the shortest possible motion.

The four-step strategy is described in the following. To

shorten the discussion it is assumed that simple proportional

controller laws are used to zero errors, while in practice one

could use more sophisticated approaches. The ki factors are

then the proportional gains used in the various steps. The

algorithm proceeds to next step when the error defined for

the current step falls below a preset value. The reader is

referred to Fig. 2 for a graphical illustration of the four steps.

1) From the initial configuration, applying the control law

U = [0,−k1eau, 0]
T

the actual epipole’s horizontal

coordinate eau is brought to 0. The desired behavior

is that the robot rotates around its z axis towards the

target configuration. At the end of this step, the robot’s

heading will be aligned with the principal line.

2) Keeping the robot still, the camera will be rotated

to align the actual camera coordinate frame with the

desired camera configuration. The control law brings

the horizontal coordinate of the actual epipole eau to

the horizontal coordinate of the desired epipole edu:

U = [0, 0,−k2 (eau − edu)]
T

.

3) Since in the first two steps the epipoles are locked to

appropriate values to produce the desired behaviors, in

this step an error based on feature matches is used for

feedback. The error Errpix is defined as the maximum

error between the horizontal image coordinates of

matched features. The control law for this step is the

following: U = [−k3Errpix, 0, 0]
T

. As the error goes

to zero, the robot approaches the desired robot position

while moving along the baseline. During this motion

the actual camera heading is kept aligned with the

desired camera configuration. At the end of this step

the robot will be at the desired location and the camera

will have the same view.

4) If it is desired to match the robot’s heading with the

camera heading, then in the last step the robot should

be rotated to zero the angle between its heading and

the camera orientation. Since the camera is attached to

the robot, its rotation also affects the camera. Thus, the

camera also rotates in order to compensate the rotation

of the robot. The resulting control law is defined as

U = [0,−k4Errpix,−k5φ]
T

.

While describing the above strategy we implicitly assumed

there was some overlapping between the initial actual image

and the desired image. This assumption can always be

enforced, and it will be briefly resumed at the end of the

next section where the supporting spatial model is presented.

C. Enabling heterogenous navigation

The proposed navigation algorithm provides a viable con-

trol strategy even if the desired and actual images are taken

with different camera configurations. In other words, a target

image captured by a certain robot can be used by a different

mobile platform for navigation purposes. This ability greatly

enhances the utility of the system. For the moment we

assume the robots are equipped with same cameras, i.e. same

Fig. 2. This picture describes the four steps needed to bring the robot to
the desired position specified by a target view.

intrinsic camera parameters, however, we plan to extend

the framework to achieve full heterogeneity. Changing the

elevation of the camera only shifts the projection of the

observed scene along the vertical axis of the image plane

and does not have any effect on horizontal coordinates of

the image pixels. Since the navigation algorithm is designed

based on the u-coordinates of the epipoles, the elevation

of cameras does not affect the movement of eau and edu.

Thus, the navigation algorithm can be used for heterogeneous

teams of robots having cameras at different heights. Another

factor that plays an important role on how the scenery is

perceived is the tilt angle of the camera. In a heterogeneous

team of robots some robots may have cameras tilted to a

different angle than the rest of the team, or a single robot

may capture images by tilting its camera to get better angles

of perception during the course of its navigation. However,

as the tilt angle between two cameras differs, the locations of

the epipoles change. Hence, we extend the control strategy to

make navigation possible between images taken by cameras

with different tilt angles. The intuition behind this extension

is that we want to know how the image would look like if the

actual camera position had the same tilt angle as the desired

camera position (or viceversa). In that case, that image could

be used as the target image and the navigation algorithm

could be applied without much change since the tilt angles of

the cameras used to capture both images would be the same.

In order to create this image we back-project each image

into normalized image coordinates from pixel coordinates,

virtually rotate the desired camera to the same tilt angle

of the actual camera, and project the image again to pixel

coordinates as observed from the rotated camera. The idea is

explained below in more detail as a 3-step procedure. Since

we are only interested in the extracted features, we slightly

abuse the terminology and refer to the union of the extracted

features as the image. Let It be the target image defined as

It =
⋃
pi where pi is an extracted feature from the image

with coordinates [ui vi]
T in the image plane. The intrinsic

parameter matrix K can be decomposed as K = KsKf

where the two matrices, Ks and Kf , are shown below. The

parameter f represents the focal length of the camera, sx and

sy are the skew coefficients, and Pc is the principal center

5809

of the camera

Ks =

sx 0 Pcx
0 sy Pcy
0 0 1

 ,Kf =

f 0 0
0 f 0
0 0 1

 .

For each feature pi in the target image we apply the following

transformations:

1) The feature pi = [ui vi]
T

is first transformed into

ppix = [ui vi 1]
T

defined in homogeneous pixel coor-

dinates. Then, we back-project it to normalized image

coordinates by using Ks

pimg = K−1

s ppix. (2)

After the feature is transformed into normalized image

plane, the z coordinate is set to the focal length of the

camera

p′img =

1 0 0
0 1 0
0 0 f

 pimg. (3)

2) Next, in order to simulate the perception from the

virtually rotated camera, we rotate the point around

the camera center with Rψ where R is the rotation

matrix defined around the camera’s x axis and ψ is

the tilt angle between the two cameras

prot = Rψ p
′

img. (4)

At the end of the this step we achieve the normalized

image coordinates of the feature as it would be per-

ceived from the target camera if it had the same tilt

angle of the actual camera.

3) In the last step we project the feature onto the CCD

of our virtual camera and get the pixel coordinates we

look for. The projected feature should be normalized

in order to get the correct pixel values

p′pix = KsKf prot. (5)

The tilt-correction process is summarized in Fig. 3. Once

all features are transformed into their new pixel coordinates,

the resulting image can be used as the target image and the

navigation algorithm can be applied.

IV. APPEARANCE BASED MAPPING AND LOCALIZATION

In this section we describe the spatial model used, how

the map is incrementally built, and how it can be used for

localization and navigation.

A. Mapping

The proposed method is built on the concept of appear-

ance graph. An appearance graph is an undirected weighted

graph G = (V,E). Each vertex v ∈ V represents an image

captured by a monocular camera at a certain position in the

workspace. For the case of monocular cameras each image

is intrinsically related to the position and orientation of the

camera capturing the image. However, it is important to note

that this information is not encoded in the graph structure.

An edge e ∈ E connects two vertices vi, vj , i 6= j whenever

the associated images are sufficiently similar. The weight

Fig. 3. The first row represents the feature extraction process. In the first
step feature points are back-projected and pimg is computed. Then, points
are rotated by ψ around x axis of the camera as illustrated in the second
step and projected back to achieve the desired effect.

wij associated with an edge measures the similarity between

images in vertices vi and vj . A metric to measure similarity

between images will be discussed in the next subsection.

A sample graph is shown in Fig. 4. It is impractical to

store raw images to determine similarities between vertices

and then build the graph. Therefore, a set of robust local

image features characterizing the scene perceived is extracted

from each image. For this purpose we have chosen SIFT

descriptors. Extracted SIFT features are inserted into a fea-

ture database, DB, and linked to the vertex they belong to.

The database stores each feature in a structure holding its

128 dimensional descriptor and the list of its appearances.

An appearance object contains the feature’s x and y pixel

coordinates in the image plane, and other properties like its

scale and direction along with the pointers to the vertices the

feature belongs to. In order to account for possibly different

tilt angles, all features are transformed into zero tilt angle

using the procedure described above before being stored in

the database. To the best of our knowledge all successful

applications of appearance-based visual localization methods

presented in Section II embrace a static approach for database

generation which requires a training session. Striving instead

to create systems that can autonomously and incrementally

build their own spatial models, we opt for a dynamic database

generation method where the database DB and the graph G

5810

Fig. 4. The figure shows an appearance based map with 7 vertices. Edges
are added between sufficiently similar images.

are created from scratch and grown with features, vertices,

and edges as the robot progresses through its mission.

B. Localization

The proposed approach provides solutions to both lo-

calization and mapping problems. Given a graph and its

associated feature database, the robot captures an image and

extracts its SIFT features. The graph is then searched for

a similar image. If a vertex with the same image already

exists in the graph, that vertex is assigned to be the location

of the robot. Otherwise, new features are pushed into the

database, and a new vertex containing these features is

created and inserted into the graph after generating necessary

edges towards similar vertices. The added vertex is then

returned as robot’s current location. The strength of this

method becomes apparent with the fact that this is the same

procedure that describes mapping and all kinds of local-

ization (tracking, global localization and kidnapped robot).

As described above, the algorithm incrementally builds the

graph while at each step it also provides the current location.

It is obviously not practical to insert every captured image

into the appearance graph. Therefore, to reduce the growing

computational costs only the images that provide additional

valuable information should be added. On the other hand, the

more images are in the map, the more similar the localization

result will look to a random query image. Commonly, image

selection is implemented by sampling image data uniformly

over time or using a position estimate. In the literature there

are more elaborate solutions like the one proposed by Booij

et al. [16]. In this implementation we only add images that

are similar to the last image inserted into the graph but have

no more than a preset number of features in common.

1) Matching images to vertices: Given an image and its

associated set of features Bi, the algorithm searches DB

for a match to each feature fj ∈ Bi, according to the

matching method described in the next subsection. Each

feature match (fj , fk) votes for the vertex pointed by that

feature. At the end of the voting process the vertex vm
with most votes is selected as the strongest candidate. In

order to eliminate possible outliers, a robust estimation of

the multi-view geometry that links the images encoded by

these vertices is computed utilizing a RANSAC algorithm as

described in [17]. The set of matches that voted for vm is

considered and the fundamental matrix F is computed based

on a number of randomly selected tentative matches. Next,

matches supporting the computed fundamental matrix are

determined by checking all the tentative matches. A match

(fa, fb) is said to be supportive of F if dist (xa, Fxb)
2

+

dist
(
xb, F

T xa
)2

≤ ε where dist(.) is the distance between

a point and a line, ε is a predetermined constant, and x is the

normalized image coordinates of a feature. These steps are

repeated m times and the fundamental matrix with the most

support is chosen as the best possible fundamental matrix

between these two vertices. A match between the image and

vm is defined if the number of matches supporting this matrix

is higher than some threshold. The same process is used to

decide if two vertices are sufficiently similar, and then to

insert edges in the graph. The weight of each edge encoding

the similarity measure is set to the number of matches

supporting the fundamental matrix between two connected

vertices. The majority voting schema proposed to find the

closest vertex to the current image is compared with the

common image-image matching method [18] and the results

are shown in Fig. 5. The other method extracts features

from the current image, compares them with features from

each image stored in the database and the image scoring the

greatest similarity measure is returned as the current location.

In order to reduce the computational cost of image matching,

a kd-tree is constructed from the features of each image

in the database. In this performance comparison analysis,

graphs with different number of images are generated and

the resulting graph is used to localize a random query image.

The plots in the figure correspond to the overall time required

to construct the kd-trees and compute 500 localizations. The

incremental construction of the kd-tree consisting of all the

features in the database in our approach takes much more

time comparing it to the construction process of several small

kd-trees. However, as can be seen in the figure the difference

between storing the kd-trees in advance or re-constructing

kd-trees for each localization takes only a small percentage

of the overall time required. In other words, the performance

of the other approach suffers more from the localization

step realized by image-image comparisons. On the other

hand, the time spent to build the feature database pays off

since in the majority voting schema the localization step

becomes computationally cheap. Consequently, in scenarios

where the number of localization calls exceeds the number of

image insertions into the graph, the majority voting schema

outperforms image-image comparison approach.

2) Matching features: Given a feature fj to match against

DB, we preliminary determine the distance to the nearest

neighbor and to the second nearest neighbor, according to

the L2 norm. Lowe [19] empirically showed that any query

point returning a distance ratio below 0.8, eliminates 90% of

the false matches while discarding 5% of correct matches.

Therefore, we adopt the same criterion and pick the same

5811

0 50 100 150 200 250 300 350 400 450 500
0

5000

10000

15000

number of vertices

ti
m

e
 (

s
e

c
)

majority voting

other approach 1

other approach 2

Fig. 5. Appearance graphs are constructed for different number of images,
and 500 localizations to random query images are performed. The graph
shows the overall time spent by the proposed majority voting schema
and two image-image comparison methods. In Other approach 1 for each
localization instance kd-trees for images in the database are constructed
from scratch. In Other approach 2 kd-trees are computed in advance and
used throughout all localization calls.

threshold. Even though this is probably the method mostly

used at the moment, it exhibits some problems. The main

one is that it is non-symmetric, i.e. it is possible that fj
matches a certain feature fi, but fi does not match fj . This

is due to the local nature of the metric, i.e. matching is

influenced not only by the two features being considered, but

also by the surrounding ones. Consequently, as the database

DB is updated over time, formerly determined matches

may become invalid due to newly added features altering

the local distribution. For this reason, only features which

could not be matched with any other feature in DB are

inserted, because otherwise each time a matched feature is

inserted the next feature to be matched against the same

feature has to be much closer than the current match. Since

features are elements in R
128, nearest neighbor search is

a computationally expensive process. Kd-trees provide no

speedup over exhaustive search for spaces with 10 or more

dimensions [19]. Moreover, it is known that for a Kd-tree to

be effective the search space should be well populated, i.e.

N >> 2d where N is the number of points to be searched

and d the dimensions of the search space. Therefore, we

instead use MPNN [20], a version of Approximate Nearest

Neighbor (ANN) [21] that handles fast queries with an ε

approximation bound and allows the incremental growth of

the Kd-tree. This last possibility is essential to implement

the dynamic extension of the database of features.

C. Navigation

The appearance graph representation coupled with the

presented navigation method provides the ability to au-

tonomously navigate towards interesting places even though

no metric information is stored. Given a goal image the

algorithm first searches it in the appearance graph. If it

fails in locating the goal image in the graph, the image

is inserted and the vertex is set as the target location. If

the initial position is not known the robot then localizes

itself in the map by searching for the vertex with highest

similarity to the actual view as described in Section IV-

B. The optimal path connecting the initial and goal images

is determined using Dijsktra’s algorithm. Since Dijsktra’s

algorithm tries to minimize the cost of the path, edges in

the graph are labeled with a distance measure. The distance

between vertices is defined as dissimilarity between images

associated with them, where non existing edges indicate

an infinite dissimilarity. The distance is calculated as 1

wij
.

The computed path is not necessarily the shortest path in

Euclidean space since the planning happens in the appear-

ance space. Therefore, the computed path favors navigation

through images with a high number of features matches and

avoid places where features change rapidly. Hence, the robot

has better recognition during the course of its navigation.

Moreover, this strategy ensures sufficient overlap between

successive images in the path, as requested by the navigation

schema formerly illustrated.

V. EXPERIMENTAL RESULTS

A. Simulation

The described four step navigation algorithm is first simu-

lated in MATLAB. The environment is modeled by random 3-

D points posing as actual correspondences of visual features.

The desired camera configuration is also randomly chosen

with the constraint that enforces a minimum number of

visible features. Among the places from which the desired

camera configuration is in the field of view, the actual camera

configuration is randomly selected in a way that at least

50% of the features are seen by both cameras. Two camera

configurations can vary in terms of 3-D coordinates and pan

and tilt angles. The 3-D scene is projected into virtual image

planes and the feature correspondence problem is assumed to

be solved. Image coordinates of the features are projected to

zero tilt angle configuration for both cameras. The resulting

feature sets are used to compute the fundamental matrix

and the epipoles. The necessary inputs are calculated by the

algorithm described in Section III. The overall behavior of

the errors of a sample run are shown in Fig. 6 and it shows

that even using cameras with different tilt angles it is possible

to zero out the defined errors.

B. Implementation on a multirobot system

The proposed system has been implemented on a multi

robot system consisting of two platorms. The first one is

the P3AT platform produced by Activemedia. The other is

an in-house autonomous robot developed atop the iRobot

Create robotic platform. Both robots are equipped with a

Philips webcam operating at a resolution of 320 × 240
pixels mounted on a Phidget servo providing the needed

additional degree of freedom for rotating the camera. The

robustness of the proposed approach has been demonstrated

with the implementation of multi-robot navigation in the

appearance graph. Initially each robot is driven through an

arbitrary trajectory, and a sequence of images are automati-

cally captured. For each image, SIFT features are extracted

and processed as described in Section IV, thus building

5812

0 100 200 300 400
0

20

40

Distance to desired position

c
m

0 100 200 300 400
0

0.2

0.4

0.6

Angular error to desired heading

ra
d

0 10 20 30 40 50
0

100

200
Stage 1: Actual epipole error

p
ix

e
l

0 10 20 30 40 50 60
0

100

200

300
Stage 2: Difference between epipoles

p
ix

e
l

0 50 100 150 200 250
0

20

40
Stage 3: Pixel error due to robot translation

p
ix

e
l

0 10 20 30 40 50 60 70
−1

−0.5

0
Stage 4: Angle error due to camera rotation

ra
d

0 10 20 30 40 50 60 70
−20

0

20

40
Stage 4: Pixel error due to robot rotation

p
ix

e
l

Fig. 6. Simulation results of a random run of the navigation algorithm
shows the error profiles for each stage in addition to the translational and
angular errors to the target configuration which differs from the actual
camera configuration by 30

◦ tilt and 12.5◦ pan angle. Each dotted line
in the first two columns corresponds to a transitions to the next stage.

the appearance graph and the feature database, DB. Each

robot is then placed on an arbitrary location close to the

explored part of the environment and forced to use the

graph generated by the other robot. Robots are assigned a

given desired view. After an preliminary localization step

each robot computes the optimum path using Dijsktra’s

algorithm. The resulting path is followed by navigating from

one image to the next as in waypoint navigation. Due to the

noise in feature coordinate estimations and outliers in feature

matches, errors regarding the epipoles are obviously not as

smooth as observed in simulation. Thus, by applying the

action computed based on the noisy data the robot might get

lost, i.e. the number of common features may fall below the

minimum number required to robustly estimate the epipoles

due to loss of overlap in their observed scenes. Whenever

the number of matches between the actual image and the

intermediate desired image falls below a threshold, the robot

first assumes the failure is due to the delay in communication

between the controller and the actuators and swipes its local

environment for re-localization by rotating its camera. In the

trials with Create, where this type of failure is commonly

observed, this method successfully re-localized the robot in

the graph. On the contrary, the P3AT never lost its sight

in our trials. Only in one occasion where sufficient overlap

between the captured and the desired image could not be

recovered by the camera rotation, the Create declared itself

lost and started a global localization procedure. The robot

successfully localized itself in the graph by creating an edge

to the next waypoint in the path and reached the target image

by navigating through the remaining waypoints.

Fig. 7. The thick path illustrates the followed trajectory during the
map building process. Circles indicate some of the vertices created in the
appearance graph and the associated images are presented in Fig. 8. Robots
start from the bottom vertex on the right and navigate to the top vertex in
the middle along the depicted path.

Fig. 7 presents the path followed in a sample run where

the traversed distance is roughly 30 meters. The resulting

appearance graph is built online at real-time frame rates

and consists of 42 images whereas the feature database

contains 7735 features. The overall graph and database

construction takes 13 seconds if processed offline on a 2

GHz Core2 Duo machine. Please note that the path is only

for visualization purposes since the proposed method does

not use any metric information. Some of the images used to

build the appearance graph are shown in the top row of Fig.

8. More precisely, those are the images associated with the

six vertices outlined along the path. The middle row shows

the corresponding view obtained by the P3AT robot while

navigating to reach in sequence those waypoints. The last

row instead shows the same images collected by the iRobot

Create. As can be seen in the last image of the sequence,

both robots successfully reached the target location.

VI. CONCLUSION AND FUTURE WORK

We have presented a system capable of incrementally

building an appearance based map from scratch. The map

can be used for localization and to plan a path that can be

followed by a robot using an image based visual servoing

5813

Fig. 8. With reference to Fig. 7, the top row shows the images collected while building the appearance map. Then middle row shows the corresponding
view of the P3AT robot upon reaching those waypoints, while the bottom row shows the corresponding views for the iRobot Create.

approach using epipolar geometry. An interesting feature of

the system we propose is that the appearance based map can

be used by a set of hetereogenous robots, i.e. it can be shared

among the members of an heterogenous multirobot team.

The proposed approach has been implemented and validated

both in simulation and on a team of two robots, effectively

demonstrating the power of the proposed system. We plan

to extend the system in various directions. Firstly, we will

study how the map can be cooperatively built by multiple

robots operating in the same environment. This problem

can be solved in two ways. Each robot may continuously

contribute its data to a shared model, or each robot may build

its own partial map, and then occasionally merge it with some

other partial model acquired by a different robot. Both these

approaches will be pursued and compared. Secondly, on the

practical side we will investigate the tradeoff between speed

of execution and precision to evaluate the effects of moving

the robots at higher velocities at the cost of occasionally

losing localization or missing some of the steps in the

navigation strategy. Furthermore, we will study the stability

of the proposed 4-step servoing algorithm and explore how to

choose the control parameters to guarantee the convergence

of designed errors at each step. Finally, from a computational

point of view it is evident that better strategies are needed

to establish correspondences between SIFT features. The

problems we outlined are usually unimportant when the set of

features is acquired upfront and then processed in one batch.

Instead, for the case of incremental construction it is evident

that more sophisticated methods need to be investigated to

overcome the limitations outlined.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2006.

[2] B. Kuipers, “Modeling spatial knowledge,” Cognitive science, vol. 2,
pp. 129–153, 1978.

[3] H. Choset and K. Nagatani, “Topological simultanous localization
and mapping (SLAM): Toward exact localization without explicit
localization,” IEEE Transaction on Robotics and Automation, vol. 17,
no. 2, pp. 125–137, 2001.

[4] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[5] Z. Zivkovic, O. Booij, B. Kröse, E. Topp, and H. Christensen, “From
sensors to human spatial concepts: An annotated data set,” IEEE

Transaction on Robotics, vol. 24, no. 2, pp. 501–505, 2008.
[6] Z. Zivkovic, , O. Booij, and B. Kröse, “From images to rooms,”

Robotics and Autonomous Systems, vol. 55, no. 5, pp. 411–418, 2007.
[7] F. Chaumette and S. Hutchinson, “Visual servoing and visual tracking,”

in Handbook of Robotics. Springer, 2008, ch. 24, pp. 563–583.
[8] G. L. Mariottini and D. Prattichizzo, “Epipole-based visual servoing

for nonholonomic mobile robots,” in Proceedinds of the IEEE Inter-

national Conference Robotics and Automation (ICRA), 2004.
[9] G. L. Mariottini, G. Oriolo, and D. Prattichizzo, “Image-based visual

servoing for nongolonomic mobile robots using epipolargeometry,”
IEEE Transactions on Robotics, vol. 23, no. 1, pp. 87–100, 2 2007.

[10] D. Santosh, S. Achar, and C. V. Jawahar, “Autonomous image-based
exploration for mobile robot navigation,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2008.
[11] D. Lowe, “Distinctive image features from scale-invariants keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[12] J. Košecká, F. Li, and X. Yang, “Global localization and relative posi-
tioning based on scale-invariant keypoints,” Robotics and Autonomous

Systems, vol. 52, no. 1, pp. 27–38, 2005.
[13] F. Fraundorfer, C. Engels, and D. Nister, “Topological mapping,

localization and navigation using image collections,” in Proceedings

of International Conference on Intelligent Robots and Systems (IROS),
2007.

[14] M. Cumming and P. Newman, “FAB-MAP: Probabilistic localization
and mapping in the space of appearance,” International Journal of

Robotics Research, vol. 27, no. 6, pp. 647–665, 2008.
[15] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry, An Invitation to 3-D

Vision: From Images to Geometric Models. Springer-Verlag, 2003.
[16] O. Booij, Z. Zivkovic, and B. Krose, “Sampling in image space for

vision based slam,” in Proceedings of the Inside Data Association

Workshop during the Robotics: Science and Systems Conference (RSS),
2008.

[17] L. Maohai, H. Bingrong, and L. Ronghua, “Novel method for
monocular vision based mobile robot localization,” in Proceedings of

International Conference on Computational Intelligence andSecurity,
2006.

[18] O. Booij, B. Terwijn, Z. Zivkovic, and B. Krose, “Navigation using
an appearance based topological map,” in Proceedings of IEEE Inter-

national Conference on Robotics and Automation (ICRA), 2007.
[19] D. G. Lowe, “Distinctive image features from scale-invariant key-

points,” International Journal of Computer Vision, vol. 60, pp. 91–110,
2004.

[20] A. Yershova and S. LaValle, “Improving motion-planning algo-
rithms by efficient nearest-neighbor searching,” IEEE Transaction on

Robotics, vol. 23, pp. 151–157, 2007.
[21] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu,

“An optimal algorithm for approximate nearest neighbor searching,”
Journal of the ACM, vol. 45, no. 6, pp. 891–923, 1998.

5814

