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Abstract— Spherical joints have evolved into a critical com-
ponent of many robotic systems, often used to provide dexterity
at the wrist of a manipulator. In this work, a novel 3 degree of
freedom spherical joint is proposed, actuated by tendons that
run along the surface of the sphere. The joint is mechanically
simple and avoids mechanical singularities. The kinematics and
mechanics of the joint are modeled and used to develop both
open and closed loop control systems. Simulated and experi-
mental assessment of the joint performance demonstrates that
it can be successfully controlled in 3 degrees of freedom. It is
expected that the joint will be a useful option in the development
of emerging robotic applications, particularly those requiring
miniaturization.

Index Terms— mechanism design, tendon-driven, spherical
joint, visual servoing

I. INTRODUCTION

Spherical joints have become an integral component in
robotic applications, commonly comprising both the wrist
and shoulder of robotic manipulators. As a result, three de-
gree of freedom (DOF) joints have been studied extensively,
with a great deal of work being devoted to the development
of transmission systems that route power to and through
them. Methods to avoid the creation of the singularities
that occur in Euler joints have also been developed. Most
of these systems, however effective on the macro scale,
do not lend themselves well to miniaturization due to the
mechanical complexity inherent in gear trains and similar
systems. Aside from being difficult to produce on a small
scale, these systems require such a large portion of a device’s
volume that, when space is limited, the strength of the device
may be significantly compromised.

The work presented herein introduces a tendon-driven 3
DOF spherical joint in which the tendons run along the
surface of the sphere, as shown in Fig. 1. This approach
avoids the Euler singularities inherent to orthogonal rotary
joints and maximizes the load bearing structure of the joint
through the use of a relatively small tendon transmission
system. While previous 3 DOF tendon actuated spherical
joints have been devised, such as [1]–[3], the tendons in
these systems have all passed through free space, originating
and inserting on some sort of frame fixed to either side of
the joint. The tendons are assumed to always run along a
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Fig. 1. Solid model of joint ball, socket, and assembly with tendons. Note
that only two of four origin-insertion pairs are labeled.

straight path that requires an uninterrupted volume around
the joint. The required free space increases the effective size
of the joint as it cannot move through any orientation where
the tendons might collide with another object, each other,
or with the joint itself. By developing a design where the
tendons are assumed to run along the surface of the joint, the
available space can be used more effectively. The advantages
of this approach for the miniaturization of manipulators is
readily obvious. However, for it to be of value in a robotics
application position control of the joint must be predictable
and accurate.

A 2 DOF form of the joint proposed in this work has
been successfully explored in [4]. Therein, by choosing an
appropriate tendon configuration, the spherical joint was
limited to acting in 2 degrees of freedom and could be driven
using as few as three tendons. However, to exploit all three
mechanical DOF available in the spherical joint, at least 4
tendons must be used to drive it. Herein, the design and
control of a 3 DOF spherical joint using 4 tendons that lie
on the surface of the sphere is presented.

II. METHOD

A. Inverse Kinematics

The joint structure comprises a redundant parallel mech-
anism and therefore no closed-form analytical solution to
the forward kinematics will exist for most cases [5]. The
inherent redundancy requires that the motion of the actuators
be coordinated to control the orientation of the distal end of
the joint. To achieve this motion, the following relationship
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between joint and tendon position can be used:

Ln = r arccos
(

R In

r
· On

r

)
, (1)

hn = Lin − Ln, (2)

the derivation of which is described in Appendix I. In
these equations, using the convention for tendon driven
manipulators presented in [6], hn is defined as the proximal
motion of nth tendon actuator away from the joint. For each
tendon, an origin On and insertion point In are defined in
Cartesian coordinates on the sphere, relative to the stationary
(proximal) and moving (distal) frames respectively. The
locations of these points, On and In, as they may be used in a
potential joint design are shown in Fig. 1, and in a kinematic
representation of the joint in Fig. 2. The origins of both
frames are defined to be at the center of the joint’s sphere of
radius r. A rotation matrix R is defined that represents the 3
DOF rotation of the moving frame relative to the stationary
one. With this information, the length of each tendon running
along the sphere surface, Ln, can be found. This can then
be related to hn as in (2), where Lin is the length of the nth
tendon prior to joint motion. Note that prior to joint motion,
hn is zero.

Fig. 2 illustrates the underlying kinematics of the joint
by substituting curved prismatic joints for the tendons. The
curve of the prismatic joints is a circular path concentric to
the central spherical joint linking the mobile platform and
the base of the manipulator. This fixes all of the origin and
insertion points at an equal distance (equivalent to the radius
of the ball in the actual design) from the central spherical
joint. The legs of the base and moving platform act radially
to the ball joint and prismatic joint curves.

From this illustration it can also be seen that the extension
of the prismatic actuator (cable length) will be an arc which
subtends the angle between the two legs supporting the
actuator, as described by (1).

B. Joint Mechanics

From Fig. 2 it may be observed that the two legs attached
to each actuator define a plane in which the actuator will lie,
and exert forces on the legs. Any torque exerted by an actu-
ator on the central ball joint will therefore be perpendicular
to this plane. Thus, torque applied by each tendon on the
joint, relative to the fixed frame, can be expressed as:

τn = tn (R In ×On)/r, (3)

where tn is the tension in the tendon and τn is the vector of
torques generated around the fixed frame by tendon n. The
derivation of this equation is described in Appendix II.

Furthermore, assuming inelastic tendon behavior, a Jaco-
bian matrix P(θ) that relates the joint torques to tendon
tensions and the rates of change in hn to the angular
velocities of the joint can be defined as follows [6]:

P(θ) =
∂h
∂θ

, (4)

ḣ = PT (θ) θ̇, (5)
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Fig. 2. Kinematic diagram of the idealized joint, with curved prismatic
joints illustrating tendon paths.

τ = P(θ) t, (6)

where h is a vector containing the hn values for all of the
individual tendons and τ is a vector representing the sum
of all torque vectors τn generated by the tendons. Both of
these features can be exploited for control of the manipulator
in path planning, compensation for tendon elasticity, and in
the estimation of external forces applied to the end effector.

An important constraint on the design of the joint results
from (3). If the tendon origin, insertion and the sphere
center become collinear (i.e., τn becomes a zero vector),
the path between the origin and the insertion will be the
same length, no matter how it runs across the sphere. This
results in a singularity in the tendon space, where the
direction of the torque applied by the tendon is unknown.
To avoid encountering such singularities, the tendon origin
and insertion points should be selected such that they will
not align with the sphere center at any orientation in the
desired workspace.

C. Simulation of the Joint Dynamics

Initial simulations of a 3 DOF joint actuated by 4 tendons
were conducted to estimate a few features of the joint:
the stability of the ball in the socket, the stiffness of the
joint under open-loop control, the workspace available, and
the sensitivity of the joint to tendon origin and insertion
locations.

The system was modeled using Simulink, where the
“controller” received the target angles for the joint and used
the kinematics from (1) and (2) to find the target proximal
displacements for the tendons. The current state of the ball
joint was then determined using (7), below:

θ̈ =
(
u−Bθ̇ + P(θ)K (h + l)

)
/Jm(θ), (7)

where θ represents the fixed-frame rotation angles of the
joint. The tendons are assumed to act with a linear elasticity
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matrix K, which may be a function of h due to changes
in tendon stiffness with length. The position of the ball is
used (with (1) and (2)) to find the lengths of the tendons on
the ball, l, which, along with actuator position h, generate
tensions in the tendons. The tensions are then used with the
matrix P from (4) to find the torques applied to the ball that,
along with viscous damping B and external loads applied u,
will cause joint motion. The viscous damping effects in each
direction of rotation were assumed to be decoupled from
the others, making B a diagonal matrix. Here, Jm(θ) is
the inertial tensor of the joint, which is a function of the
joint angles. In order to simplify the simulations, centripetal
and centrifugal forces were ignored. This is a reasonable
assumption for many applications, as the forces generated by
these effects, at low speeds and accelerations, are negligible
when compared to friction and tendon forces.

The reachable workspace was estimated by finding the
portion of the mechanically available workspace that has
force closure. In a tendon-driven joint, force closure is a
necessary condition for stability in a given position [7]. It
refers to the ability of a tendon network to reach a certain
position with a sufficient number of tendons in tension that
joint motion is constrained. If the tension is supplied solely
by the tendons (not an external force), there must be one
more tendon than the number of DOFs in the joint. For
a position to be within the workspace of a tendon-driven
joint, it must be a position with force closure and it must be
reachable (with force closure) from the rest of the workspace.

For a given static position, with no other torques applied
to the joint, the tensions in each tendon can be found if one
tendon has a known, positive tension value te. The torque
vector of this tendon can then be removed from the matrix
P(θ), resulting in a reduced matrix Pr(θ) that will be square.
The removed column can be transposed to form a vector, fe.
The tensions in the remaining tendons will be defined as tr,
as expressed in (8):

tr = −Pr(θ)−1(tefe). (8)

If all of the resulting tensions are positive, the position has
force closure and may be a stable position. The initial tests
exploring the sensitivity of the joint to tendon layout were
conducted simply by manually altering the tendon layout
in this model and examining how changes influenced joint
stability, stiffness, and workspace volume.

D. Open-Loop Control

An open-loop control strategy that increased the stiffness
of the joint was tested in simulation. The strategy applied a
minimum pretension tmin across the tendon network, rather
than assuming that all tensions would be zero when the joint
is stationary. In this approach, (8) becomes:

tr = −Pr(θ)−1(tminfe). (9)

This equation is used in an iterative manner, starting with an
arbitrary tendon to create fe and Pr and which is assumed
to act with the minimum tension, tmin. From the generated
tensions, the tendon with the smallest tension is then used

to create a new fe and Pr, have tmin applied to it, and
generate a new set of tendon tensions, tr. The vector tr will
be missing the tension value for the tendon with tmin. This
value can then be reinserted to form t, in which the smallest
tension will be tmin. The vector of additional proximal
tendon motion, ht, that provides this tension can be found
as:

ht = K−1t. (10)

This motion, when added to the vector found from (2),
will provide the h values that drive a sphere to a given
position with the desired tension distribution, assuming no
other forces act upon the joint. This is a variation of the
method used in [8] to gain the optimal tension distribution
for a manipulator with tendons passing through free space.

To compensate for tendon stretch caused by loads applied
to the joint, (9) may be refined as follows:

tr = Pr(θ)−1(KgP(θ)tob − tminfe), (11)

where tob are the observed tensions and Kg is a gain factor.
To ensure that the controlled system remains stable, Kg must
be less than 1; otherwise, the controller will react to tensions
introduced by inertial forces in an overly aggressive manner.

It is likely that a nonlinear control strategy such as that
proposed in [9] would prove far more effective than the
proportional control strategy outlined here. Additionally, as
the distance between the actuators and the manipulator is
made longer and tendon–sheath interactions become more
influential, it may prove necessary to introduce specific
compensation for this effect, as proposed in [10], [11].

E. Visual Servoing

A closed-loop control system for the joint was developed
that utilizes visual servoing to reduce joint positioning error
through a position-based dynamic look-and-move approach
[12]. Based on the transformations between actuator and joint
space, the visual servoing of this device can be handled as
any other device controlled using a similar strategy.

Since the base of the joint and the end effector are
both visually tracked, as seen in Fig. 3, and the target
position is known relative to the base, this arrangement
can be considered as a kind of end-point closed-loop visual
servoing. This arrangement serves to nullify the influence of
camera position, which significantly reduces the calibration
required and makes the control system more robust.

For each observation of the joint end effector and base, an
estimate of the joint rotation matrix, Rvis, was generated. By
using this matrix as the rotation in (1) and (2), the proximal
tendon motion, hvis, can be estimated. This allows the error
in joint position to be estimated as an error in the proximal
tendon motion space (i.e., the difference between the vectors
hvis and h.). Thus, the control algorithm assumes that joint
position error can be treated as an error in the proximal
tendon displacement, feeding back a PI control signal to
correct the error:

ht = Kp vis(h− hvis) +Ki vis

∫
(h− hvis)dt, (12)
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Fig. 3. Experimental joint apparatus with optical tracking system.

where hvis is the tendon displacement estimated using visual
feedback. The variables Kp vis and Ki vis are the proportional
and integral gains, respectively. This constitutes the control
law of the outer loop within the look-and-move algorithm as
described in [13].

Through experimental testing of this controller it was ob-
served that tension would be lost in a tendon if an origin and
insertion were much closer together than intended, leading
to a build up of slack and in some cases instability. Such a
situation could arise when slack is fed to the lower tensioned
tendon faster than it can be taken in from the opposing
higher tension tendons. This led to two modifications to the
control law (12). The first change limits potential slack by
limiting the magnitude of the

∫
(h− hvis)dt by a saturation

value. The second change schedules the Ki vis gain so that it
changes depending on the sign of

∫
(h−hvis)dt. This change

allows a given error integral to result in more actuator motion
when increased tension is required than if increased slack
is required. These two modifications were observed to help
maintain tension within the tendon network.

F. Experimental Testing

Initial physical testing of this system was conducted
with the prototype shown in Fig. 3. The joint was turned
from 25 mm 6061 aluminum round stock. The tendons
were made from 0.45 mm Dyneema/Nylon (Berkley 50 lb
test Gorilla Braid). These tendons where driven using a
set of motors: Maxon 305007 paired with 1024 pulse/rev
quadrature encoders driven by Maxon ADS 50/10 servo
amplifiers. This setup was controlled using a Sensoray model
626 multifunction I/O board coupled with a PC, along with
feedback from the optical tracking system, in a fixed camera
arrangement shown in Fig. 3. The servo motors were driven
by an inner control loop using PID control through the I/O
board with a proportional gain of 33.5 A/rad, an integral gain
of 3.35 A/(rad·s), and a differential gain of 0.034 A·s/rad.

The outer loop control system used with the actual joint
was an open-loop strategy with no control over system
pretension, using (1) and (2) alone as the controller. Thus,
without joint position feedback to compensate for errors, the

accuracy results are representative of the accuracy of the
joint kinematics presented herein, rather than the efficacy of
a control algorithm in compensating for model inadequacies.

Joint position was measured using a MicronTracker optical
tracking system, from Claron Technology Inc. This system
provides 6 DOF tracking with a maximum position error
±0.25 mm, or approximately ±0.24◦ for θ1 and θ2 and
±1◦ for θ3 rotation. The tracking system was used with a
tracked stylus to register the axes of rotation for the joint.
By constructing a least squares fit of the measured surface
of the joint ball to a sphere, the origin could be located at
its center. A similar procedure was preformed to find the
x-axis, which passes along the central axis of the cylinder
forming the base of the joint. A third registration was used to
find the x-y plane passing through one of the tendon origins.
This procedure allowed the motion reported by the tracking
system to be translated into rotations as perceived by the
controller, so that tracking error could be assessed. This same
tracking system was also used to provide feedback for visual
servoing.

III. RESULTS AND DISCUSSION

Results from testing the prototype joint are shown in
Fig. 4. These results show that the joint performs as ex-
pected under open-loop control with no pretension. The
driven angle tracks its reference with less than 5◦ error
with a visible phase lag. The trajectory also consistently
undershoots the peak reference values, likely due to the
effects of friction within the joint. It appears that effects not
being compensated for by the open-loop control system (e.g.,
gravity, tendon/apparatus compliance, or tendons shifting
within their origins [4]) caused motion around the other axes
of approximately 4◦.

Some of the error apparent in Fig. 4 may also be due
to inaccurate measurements of the origin and insertion lo-
cations [4]. During the development of the prototype it was
observed that controller accuracy was sensitive to any errors
introduced in these values. Errors in the supposed origin or
insertion location of about 1 mm could dramatically affect
the trajectory of the joint, on the order of 20◦, as the tendon
in question could not be moved appropriately. Additionally,
some of this error is likely due to the fact that the tendon
tensions were not initialized in a manner that made them
known to the controller. At startup, the tension distribution
may have been such that joint friction was preventing motion
while the tendon tensions where not in equilibrium. Such
a situation would be equivalent to starting the joint in a
position slightly different than that assumed by the controller.
This initial error would cause the actual relationship between
joint and tendon motion to be slightly different than that
calculated by the controller, causing errors in the trajectory.

Significant, high frequency motion of the joint around
the θ3 axis can be seen in the measurements of link mo-
tion reported. In practice, such motion was not physically
observed. These oscillations are an artifact of the tracking
system set up, which from Fig. 3 can be seen to have very
short distances between tracking targets and the x-axis. This
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arrangement has rendered the tracking system less sensitive
to motion around this axis and resulted in significant random
error in the measurement of θ3 . Motion in the θ3 direction
results in less motion of the actual tracker targets than motion
around θ1 or θ2. With the furthest tracking target being
about 19 mm away from the x-axis and the tracking system
accuracy being 0.25 mm, we would expect errors on the order
of ±1◦. This estimate conforms well to the error magnitudes
actually seen in the θ3 measurements.

A. Validation of Simulations

By comparing the results of the experimental tests to those
garnered from simulation of the constructed joint, errors in
the dynamic model should be made readily apparent by
discrepancies with the actual link behavior. Such a com-
parison can be seen in Fig. 4 and Fig. 5. In this example
the joint geometry used in simulation was that measured
from the actual constructed joint, excluding the fact that the
origin and insertion holes are significantly larger than the
tendons. One further simplification made here was that the
dynamics of the motors were entirely ignored. Instead, the
measured motor positions from experimentation were used
to drive the simulation. Removing the motor dynamics from
the simulation reduced uncertainty in the model, allowing a
more accurate evaluation of the joint model to be performed.

From the results in Fig. 4 we can see that the model
used in simulation is representative of the actual behavior
of the joint. Of particular importance is the fact that the
motion of θ2 and θ3, when θ1 is being driven, matches
well. This result indicates that the tracking errors of θ2
and θ3 are not predominantly due to a poor estimate of the
origin locations in the control algorithm, a misrepresentation
of the joint kinematics, the effects of tendon thickness, or
deviation from a circular tendon path due to constructed joint
geometry. Since these influences were not included in the
model, these sources of error would not have been captured
in simulation. With these sources eliminated, the tracking
errors likely stemmed from the effects of friction, tendon
stretch, and gravity.

The simulated driven angle θ1 consistently reached a
higher peak value than actually occurred. This discrepancy
was likely due to stiction of the joint near the apex of
its motion due to dry friction. This mechanism was not
captured by the simulation, which represented friction as
purely viscous. Dry friction would be expected to cause a
brief period of stiction which would start as soon as tendon
motion reversed direction (the reference peak). At this time
the torques generated by the tendons would become less than
those required to overcome friction and motion would stop.
Examination of Fig. 4 reveals this to be what occurs. The
plateau lasts until tension has built in the tendons pulling
in the new direction, leaving the joint with an element of
apparent backlash similar to that reported in [14]. Attempts
were made to include dry friction in the simulated model;
however, these proved too computationally expensive to be
practical. The conformance of the simulation with experi-
mental results, for θ2 being driven, proved virtually identical
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Fig. 4. Driving θ1 through a sine wave using open-loop control. Both
simulated results and optically-tracked observations are presented.

to those reported for θ1.
Similar results were observed when θ3 was driven, as

shown in Fig. 5, with the simulated and experimental joint
motion matching quite well. In these results, the peak track-
ing error in θ3 is consistently overestimated in simulation
by about 3◦. However, the results from the simulations are
clearly representative of those observed with θ1 and θ2
matching within at least 5◦. The simulated model appears to
represent the behavior of the actual mechanical joint well and
may be used in the development of new joints and control
strategies.
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Fig. 5. Driving θ3 through a sine wave using open-loop control. Both
simulated results and optically-tracked observations are presented.

B. Visual Servoing of the Joint

Visual servoing can clearly be seen as a valid means of
reducing joint positioning error as shown in Fig. 6. From
these tests, we can see that the reference angle can be tracked
with greater accuracy than was possible with the open-loop
system. This is particularly visible in the angles with zero
reference where the maximum error has been halved.

An error not found in the previous tests is visible in
the results obtained under visual servoing. The error in the
driven angle remains quite high, about 2◦, for the first half
cycle of motion. This temporary error likely occurred due
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Fig. 6. Joint angles as recorded by optical tracking while driving angles
θ1 and θ3 through a sine wave using visual servoing.

to inappropriate initial tensions in the tendons that were
gradually absorbed by the integrator term of the visual servo
control law. This initial error is smaller than the peak error
values observed under open-loop control. It was observed
that the time needed to absorb this error was reduced by using
larger controller gains in (12). However, increased Ki vis
was seen to result in instability under certain conditions.
Closed loop tension control could reduce this source of error,
although it would increase the complexity of the control task.

In testing, Kp vis = 0.95, while Ki vis = 0.131/s and Ki vis
= 1.01/s were used with negative and positive

∫
(h−hvis)dt

respectively, in order to help maintain tension throughout
the tendon network. The integrator

∫
(h − hvis)dt was set

to saturate at a minimum value of -0.25 mm/s to limit
the amount of slack that could accumulate in the tendon
network due to the integrated visual error. The controller
gains were selected through a manual tuning process and,
though effective, may not be optimal.

Without the saturation feature, substantial slack was seen
to accumulate on the side of the joint the link was leaning
toward, since the motors could move more readily on the
slack side than the tensioned side. This slack would then
allow the link to flop past vertical and overshoot its target,
leading to significant tracking errors and instability.
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IV. CONCLUSION

The joint presented here simplifies the mechanical de-
sign of a tendon driven spherical joint by incorporating all
three degrees of freedom into a single joint. This serves
to eliminate any instances in which a set of tendons must
be routed through a joint: a significant simplification when
compared to previously designed 3 DOF wrists [15]. By
using a true spherical joint, the singularities inherent in a
spherical wrist consisting of orthogonal rotary joints are
eliminated. Herein, it has clearly been demonstrated that such
a joint can be driven through a range of motion suitable for
many applications.

The parallel nature of this joint does complicate the
control task when compared to simpler, serial joint designs.
To achieve predictable, controlled motion of the joint, the
motion of all actuators must be closely coordinated due to
the fact that the joint and tendons comprise a redundant,
parallel mechanism. However, this parallelism also serves
to allow load sharing between actuators, decreasing actuator
power requirements compared to serial joint arrangements.

Using visual servoing, the joint can be controlled precisely.
The major disadvantage of this approach is the stereo-
scopic vision system that such an arrangement requires.
In applications that are not suitable for optical tracking,
alternative methods, such as electromagnetic tracking, may
be substituted.

The joint proposed in this work is mechanically simple,
having a minimal number of moving parts generating three
degrees of freedom. Being so simple, such a design could
easily be miniaturized. This joint provides an ideal candidate
for use in micro-manipulators and many emerging robotics
applications where size is critical.
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APPENDIX I

Under tension, the tendons will shift to the shortest
available path between their origin and insertion points,
minimizing the potential energy that they store. If the origin
and insertion are points on the surface of the sphere, the
path taken will be a circular arc concentric to the sphere,
neglecting the dynamics of the tendon moving on the sphere
surface. The angle subtended by this arc will be defined by
lines formed between the sphere center and the origin and
insertion points:

arccos
(

R In

r
· On

r

)
. (13)

With the angle measured in radians, the length of the arc
will be defined as:

Ln = r arccos
(

R In

r
· On

r

)
. (14)

APPENDIX II

Given the proof outlined in Appendix I, and the assump-
tions made there, any tensioned tendon will pass along a
plane defined by its origin, insertion, and sphere center. The
tendon will only be able to exert a torque on the sphere
around a vector perpendicular to this plane, in the direction:

R In ×On. (15)

The magnitude of this torque will be the product of the
radius of the sphere and the tension in the tendon. Combining
this with the direction vector, the exerted torque may be
expressed as:

τn = tn (R In ×On)/r. (16)
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