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Abstract— This paper describes our successful implementa-
tion of a robot that autonomously and strategically removes
multiple blocks from an unstable Jenga tower. We present an
integrated strategy for perception, planning and control that
achieves repeatable performance in this challenging physical
domain. In contrast to previous implementations, we rely only
on low-cost, readily available system components and use
strategic algorithms to resolve system uncertainty. We present a
three-stage planner for block extraction which considers block
selection, extraction order, and physics-based simulation that
evaluates removability. Existing vision techniques are combined
in a novel sequence for the identification and tracking of blocks
within the tower. Discussion of our approach is presented
following experimental results on a 5-DOF robot manipulator.

Index Terms— Jenga, Entertainment Robot, Block Extrac-
tion, Game Strategy, Movable Obstacles, Pose Estimation

I. INTRODUCTION

JENGA [1] is a popular game marketed by Hasbro, con-
sisting of 54 wooden blocks constructed into a tower of

three blocks per level (Fig. 1). Players take turns identifying,
removing loose blocks, and placing them on top of the tower.
As the game progresses, the tower becomes increasingly
unstable. The objective of the game is to build the tallest
tower possible (in a single-player setting) or avoid being the
player that collapses the tower (in a multi-player setting).
Tower instability, uncertainty in pressure distribution, and
imprecise force control are all known to be difficulties for
human players, where the world record is 40 and 2/3 levels.
A robot manipulator that plays Jenga faces an even greater
challenge, where the robot must also recognize and localize
Jenga pieces as well as track their unexpected motion.

Due to these complex physical requirements, the design of
a robot Jenga system has received significant attention in the
robotics community. South [2] created a spring-based physics
simulation model to identify a playing strategy, but simulated
a portion of the Jenga tower and not the full 18-level
structure. Ziglar [3] approached the block extraction from
a mechanics point of view and analyzed the translational
and rotational moves for the likelihood of disturbing other
blocks in the tower assuming a piecewise planar model; the
results are used to determine moves that do not disturb the
configuration tower, forming a play strategy. Barnum [4]
constructed a simulator based on the commercial NVIDIA
PhysX engine which is capable of simulating the full tower,
and analyzed its stability with particular considerations to the
center of gravity and the forces of friction. Kroger, et al [5]

The authors are with the Center for Robotics and Intelligent
Machines (RIM) at the Georgia Institute of Technology, Atlanta,
Georgia, 30332, USA. Emails: {j.w, progers7, lonnie,
douglas.brooks}@gatech.edu, mstilman@cc.gatech.edu

Fig. 1. A Pioneer 3-AT robot and the associated 5-DOF servo manipulator,
with a standard Hasbro Jenga tower. Image courtesy of Hasbro, Inc.

created a robotic Jenga platform to demonstrate multi-sensor
integration using a Staubli RX 60 industrial manipulator, four
PCs, a 6D force/torque sensor, a 6D acceleration sensor, a
laser triangulation distance sensor, and two CCD cameras
for visual feedback. The system was able to construct ten
additional levels (29 blocks) on top of an 18-level tower,
using no strategy beyond the random selection of blocks.

The main contribution of the paper is the development
and evaluation of an autonomous and strategic Jenga system,
with particular consideration given to the planning of block
extraction. In this work, we use a three-stage planner for
block extraction which explicitly tracks the extraction history
and simulates tower stability using a physics engine. Using
active contour-based block pose estimation and optical flow-
based tower movement detection, we do not assume a
structured environment such as the painted blocks used in
the Kroger platform. We demonstrate our approach using
low-cost, off-the-shelf components including a five degrees
of freedom servo manipulator (shown in Fig. 1), two CMOS
cameras, and a single desktop for all sensing and control
tasks. While the performance obtained was not comparable
to the Kroger platform, the results are promising given the
drastic reduction in cost and resources.

The remainder of the paper is organized as follows. Sec-
tion II formulates the Jenga game as a planning problem and
proposes several strategies for use with a robotic manipulator.
Section III describes the hardware and software architecture
for the robotic Jenga system. Section IV describes the results
obtained by applying our system with a simple robot on a
generic Jenga tower. Finally, Section V provides concluding
remarks and directions for future work.
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Fig. 2. A physics-based simulation showing that a particular removal leads to a tower collapse.

II. STRATEGY

A. Overview
We present three-stage strategy, coupled with a vision-

based error detection scheme, for autonomous extraction of
blocks within a Jenga tower. First, we limit our block se-
lection to side blocks to maximize the number of removable
pieces. Second, we select a particular block from a list of
potential choices generated in the first stage and identify
a single block from a decision table. Third, a physics-
based simulation is conducted for the final block selection to
identify the feasibility of removing that particular block. If
the removal is deemed feasible, the robot proceeds to extract
the block using vision-based error detection to monitor tower
stability and abort if appropriate.

B. Removal strategy
On a tower with three blocks per level, there are two types

of blocks available for removal, a single center block and two
side blocks. There are advantages and disadvantages to both
types: removing the center block ensures the stability of the
tower, since there are still two side blocks on that level to
support the pieces on top; however, there are no longer any
available blocks for removal on that level. Removing the side
blocks pushes the tower towards instability, but maximizes
the number of removable blocks.

While our algorithmic strategy has no constraints on which
blocks to remove, our platform adds some restrictions. The
five-axis Pioneer arm cannot simultaneously control all six
degrees of freedom for the end-effector. In the general case,
translation of a block implies its rotation about some axis.
For the middle block this necessarily implies a disturbance
to the neighboring pieces. For the side blocks, we select
motions that couple lateral translation with rotation about
the vertical axis. The robot grips the small rectangular end
of the Jenga block, and rotates the piece to the side. Aside
from servo error, our approach causes no additional forces
on neighboring blocks.

C. Block Removal Planner
Based on the removal strategy, we generate a list of

candidate blocks for removal at every step. The Block

Removal Planner (BRP) selects a block in this list based
on heuristic evaluation, and passes the information to the
Removal Feasibility Planner for further analysis.

The BRP tracks the history of removal attempts in a
decision table which is used as the basis for new removal
choices. The decision table couples each removable block
with a tower movement threshold. The movement threshold
is initialized to a pre-defined value and updated as the game
progresses. The threshold keeps track of how much the tower
moved when the robot last attempted to remove the particular
block. By tracking earlier block motion, BRP can rank blocks
according to threshold values. Hence, it identifies the block
that is least likely to affect tower stability.

For every successful block removal, an additional valida-
tion step is used to consider previously failed extractions. As
a particular block is removed, the forces due to weight and
friction acting on its neighboring blocks change. If one of
the neighboring blocks was previously marked unremovable,
then this change justifies another attempt. Consequently, with
every successful removal, we iteratively mark the neighbor-
ing blocks for a new attempt.

D. Removal Feasibility Planner
Once the Block Removal Planner returns a potential

choice, the Removal Feasibility Planner (RFP) conducts a
physics-based simulation to determine if this removal choice
could potentially lead to tower collapse. If simulation results
in a collapse as shown in Fig. 2, then the BRP is asked
to provide an alternate choice and the process is repeated.
We chose the Newton Physics Engine, which has previously
been shown to produce accurate approximations of static
friction, outperforming all other engines compared in [6].
Depending on the size and structure of the tower, the
RFP typically requires several seconds of computation on
a standard desktop computer to complete a simulation.

Once the RFP verifies that the block can be removed
in simulation, the robot proceeds with the manipulation as
described in Section III. During a block removal, the motion
of the tower is continuously monitored, and a stop signal
is issued in the event that the tower movement exceeds
the threshold. If a stop occurs, then the final movement
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Fig. 3. The Jenga architecture with strategy, vision, and control subsystems.

value is recorded in the decision table, and the BRP is
asked to provide an alternate choice. The tower movement
is determined using a vision-based technique, also described
in Section III.

III. ARCHITECTURE

A. Overview

Our robot Jenga player consists of inexpensive, off-the-
shelf components. Compared to the Kroger platform, which
uses a Staubli manipulator, we use a low-cost five-DOF
Pioneer servo arm. Instead of multiple PCs, we use a single
desktop computer (2.0 GHz, 2 GB of RAM) to make deci-
sions about motion, control the manipulator and process all
sensor data. Our system only employs two CMOS cameras
for visual feedback and no additional sensors.

Despite our limited equipment, the system operates suc-
cessfully with standard Jenga blocks and minimal control
over lighting. In contrast to the structured environments
described in previous work we do not assume painted/marked
blocks and instead use monocular pose estimation to identify,
localize, and track blocks with respect to the robot arm.

The software architecture for our Jenga system consists
of two subsystems, each with two components. First, the
vision subsystem uses active contours for pose estimation
and optical flow for motion estimation. Second, the control
subsystem applies closed form inverse kinematics and con-
trols arm motion. The structure of this architecture is given
in Fig. 3

B. Block Pose Estimation

The pose estimation subsystem uses a CMOS camera
facing the front side of the Jenga tower from an angle. It is
tasked with determining the 2D pose of all candidate blocks
on this plane with the assumption that the distance from
the robot to the tower is known. During setup, a calibrated
camera image is transformed using planar homography so
that one tower side appears from the manipulator’s reference
frame. The pose estimation problem can then be separated
into 3 steps: (1) locating candidate blocks, (2) tracking blocks
across time, and (3) calculating pose. This is accomplished

using existing techniques applied in a novel sequence, over-
coming variations in block color, texture, and other uncertain
variables.

1) Locating candidate blocks: First, the image is pro-
cessed using four filters with intermediate results shown in
Fig. 4). The image is converted to grayscale, then subjected
to Gaussian blur (to reduce woodgrain), Canny edge detector
[7], and dilation using a square kernel. The resulting binary
image is searched for connected regions of appropriate area
using the topological method outlined in [8]. Any regions
found are used to initialize the block tracker.

2) Tracking blocks: The tracker is based on an active
contour model [9]. Because the Canny edge detector provides
reasonable contour initializations, it is again used as the
external energy measure of the active contours. This is
implemented as a minimization of the negative Canny edge
value along the block’s contour, and has proven effective in
our experiments. We apply a heuristic method to infer the
location of missing blocks from the even-odd level structure
of the tower and the presence of other tracked blocks on a
given level.

Block tracking is suspended when a block is occluded by
the manipulator if either of the following conditions are met:

• Area: Given block area ab and expected area ae, a block
is removed if |ab − ae| > θa

• Cross-ratio: given four corners C1 . . . C4, the cross ratio
is equal to

CR(C1, C2, C3, C4) =
(C1 − C3)(C2 − C4)
(C1 − C4)(C2 − C3)

(1)

Any four points are invariant with respect to their
cross ratio under a perspective transformation [10] so
for known block corners b1 . . . b4 and estimated block
image corners i1 . . . i4, a block is removed if

|CR(b1, b2, b3, b4)− CR(i1, i2, i3, i4)| > θCR (2)

3) Calculating pose: Due to the simplification of blocks
being attached to one side of the tower, the pose calculations
are reduced to calculating block position relative to the
tower plane. Because of the planar homography calculated
during setup, an image of the tower from the manipulator’s
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(a) Original (b) Canny edge (c) Dilation

(d) Contour (e) Snake (f) Pose

Fig. 4. Intermediate results from filtering, used to locate the candidate blocks.

perspective is known. Using a constant ratio of pixels to real
units (cm), the x and y components are computed as follows:

worldx = imagex ×
cm

pixels
(3)

worldy = imagey ×
cm

pixels
(4)

The block tracking and pose estimation results are shown in
Fig. 4.

C. Tower Motion Estimation

Vision is also used to estimate tower stability as it relates
to the motion of the tower while the robot attempts to
remove a block. If the movement exceeds a threshold, a stop
command is issued, and the movement value is recorded. To
accomplish this, we compute the optical flow field of the
tower as seen by an overhead CMOS camera, and compute
a movement value based on the magnitude of the field.

We divide the motion estimation problem into several
stages. First, we select easily identifiable features that can
be tracked across frames. Next, we run the Lucas-Kanade
algorithm to compute the optical flow field with respect to the
movement of the blocks. Finally, we calculate a movement
value based on the magnitude of the field.

1) Feature Selection: In order to compute tower motion
we must first select robust features that can be relied on
to compute optical flow. Initially, we chose Harris corners
[11] as features to track, but encountered significant errors
in the motion estimation, as many of the corners are not
readily identifiable between frames. Instead, we settled on
the feature selection criterion described in [12]. Based on the
Shi and Tomasi definition, good features to track in motion
estimation are features that minimize a dissimilarity function
while using affine motion as the underlying image change
model. This has been shown to be particularly compatible
with the Lucas-Kanade algorithm discussed below.

In experimentation, we found that while the Shi and
Tomasi definition returned fewer features, the quality of
the keypoints was superior to that of Harris. We were able
to produce consistent matching results with relatively low
computation.

2) Optical Flow: The Lucas-Kanade algorithm [13] is one
of the most widely used algorithms for estimating optical
flow. A template with an extracted sub-region (a small
window) of the image is locally displaced in an attempt to
minimize the squared error between two images. The Lucas-
Kanade algorithm assumes three basic conditions,

• Brightness constancy: a pixel does not change in ap-
pearance between frames. In grayscale the brightness
should not change.

• Temporal persistence: the motion of a feature window
changes slowly in time.

• Spatial coherence: neighboring points in a scene, be-
longing to the same surface, have similar motions, and
project to nearby points on the image plane.

With controlled lighting, small movement, and standard
tower shape, our system satisfies all three assumptions. To
avoid the aperture problem that results from large motions
and without using a large window (which breaks the small
and coherent motions assumption), we run the Lucas-Kanade
algorithm in a pyramidal fashion. In this approach, we
construct a Gaussian image pyramid of several layers, with
increasing resolution from top to bottom. The motion estima-
tion from each preceding level is taken as a starting point for
estimating motion at the next level. This provides a low-cost
assurance of accurate motion estimation.

3) Movement Magnitude: Once the optical flow field is
calculated via Lucas-Kanade, we simply sum the flow field
to obtain a value representing the overall movement in the
frame. This value is then used by the planner described in
the previous section for error detection. The threshold is
determined experimentally. If needed, the flow field can also
provide the dominant direction of flow, but this was not used
in our platform.

D. Arm Control

The motion of our servo-based robot arm was necessarily
position controlled. We found a geometric closed form so-
lution for the inverse kinematics of the Pioneer manipulator.
Due to the limited range of motion required for removing
individual blocks from the tower, we elected to keep the
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gripper orientation facing towards the blocks and only varied
its position when approaching blocks.

The low-level arm control was implemented in the Player
Project [14], a popular middleware for a variety of physical
and simulated robots. The Player system follows a server-
client architecture, in which a sever running the Pioneer
driver continuously listens for motor commands. The con-
trol algorithm was implemented as a client to the Player
server which sends the appropriate joint commands. In this
architecture, the individual components can be separated to
different processors or computer, in the case that a single
process cannot reliably control the arm in conjunction with
other computationally intensive vision components.

IV. EXPERIMENTS & RESULTS

In the experiments conducted, four adjustments were made
to the game of Jenga to simplify the system:

• Due to the limited length of the manipulator, a nine-
level tower was used instead of the full eighteen-level
structure.

• Due to the limited width of the gripper, the side blocks
are pre-pulled forward approximately 0.5 cm from the
tower; if a wider gripper is used, the extraction could
take place from the longer side of the blocks, making
this step unnecessary.

• After a block is removed, instead of placing it on top
of the tower, the block is simply dropped to the side
to simplify the manipulation task (i.e., the tower is not
reconstructed).

• If the tower is disturbed during the block extraction
process, the out of place blocks are not corrected (where
in the official game, this is required).

Fig. 7 shows an example run of the the block extraction
process, demonstrating various aspects of the decision pro-
cess discussed in the previous sections. There are six frames
in the figure taken from the accompanying video: in the first
frame, a tower is constructed with eight side blocks pre-
pulled. In the second frame, the gripper is in place, ready
to extract the block. In the third frame, block is successfully
extracted. In the fourth frame, a new block is selected by
the BRP, and the gripper is in place. In the fifth frame, the
previous extraction attempt exceeded movement threshold
and a new block is selected by the BRP. Finally, in the sixth
frame, another block is successfully extracted from the tower.

Trials are set up to test the performance of the system.
Out of 20 trials, we recorded the number of total attempts,
successful extractions, and aborts due to tower movement;
the statistics are shown in Fig. 5 and Fig. 6. Nine of the
20 trials successfully extracted three blocks, two trials failed
to extract any blocks, and one trial extracted five blocks.
We also calculated the average success percentage, i.e., in
a single trial the number of blocks extracted divided by the
total number of attempts (which includes aborts). Overall,
approximately half of the trials have an average success
percentage of 90% or above.

In the various components we used, such as history track-
ing, physics simulations, reactive stopping, etc, the vision-
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Fig. 5. Number of successful extractions for each of the 20 trials.
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Fig. 6. Average number of successful extractions per trial out of 20 trials.

based pose estimation and movement detection were the most
relevant and critical to the success of block extraction. The
accuracy of the vision results directly affects the planning
and manipulation tasks and when incorrect readings are
obtained, the extraction is more likely to fail. We typically
experienced two types of pose estimation failures: failure
to locate a candidate block and failure to calculate the true
pose of the block. While the former simply implies that a
block will not be considered in the planners, the latter lead
to more serious consequences, as an incorrect pose almost
always resulted in manipulation failures.

While we believe the physics simulation is a valuable
component in a successful Jenga strategy, we found that
it did not play a significant role in our experiments and
often did not catch instability in the reduced-size tower. The
simulation can reliably capture simple errors, e.g., removing
the only support block on a level; however, for other stability
simulations, the inaccuracy in vision and in the simulation
engine itself often prevents it from returning valuable results.
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(a) Full tower setup with eight side blocks pulled
0.5cm forward.

(b) A new block is selected by the Block Removal
Planner.

(c) The block is successfully extracted from the
tower.

(d) A new block is selected by the BRP. (e) The previous extraction attempt exceeded the
movement threshold. A new block is selected.

(f) The block is successfully extracted from the
tower.

Fig. 7. Example block extraction run showing the decision making process and error detection.

V. CONCLUSIONS

In this paper, we have presented the design and evaluation
of an autonomous Jenga robot, using low-cost, off-the-shelf
components. The main contributions of this work are the
strategies in a Jenga game, which consist of block removal,
tracking extraction history, and the physics behind tower
stability. We have greatly reduced the number of sensors
required for block extraction compared to previous imple-
mentations, and given the limited resources available, the
results are highly encouraging.

Some immediate steps towards a better Jenga system can
be taken in the vision and physics domain, as was discussed
in the previous section. A more advanced manipulator could
be used to remove many of the limitations and assumptions.
More sophisticated pose estimation and movement detection
could greatly reduce the failure rate for the manipulation pro-
cess. Finally, the integration of force feedback may further
reduce failures due to tower movements and hence enhance
playing capabilities.
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