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Abstract— Gas distribution modelling constitutes an ideal
application area for mobile robots, which – as intelligent mobile
gas sensors – offer several advantages compared to stationary
sensor networks. In this paper we propose the Kernel DM+V
algorithm to learn a statistical 2-d gas distribution model from
a sequence of localized gas sensor measurements. The algorithm
does not make strong assumptions about the sensing locations
and can thus be applied on a mobile robot that is not primarily
used for gas distribution monitoring, and also in the case
of stationary measurements. Kernel DM+V treats distribution
modelling as a density estimation problem. In contrast to most
previous approaches, it models the variance in addition to the
distribution mean. Estimating the predictive variance entails
a significant improvement for gas distribution modelling since
it allows to evaluate the model quality in terms of the data
likelihood. This offers a solution to the problem of ground
truth evaluation, which has always been a critical issue for gas
distribution modelling. Estimating the predictive variance also
provides the means to learn meta parameters and to suggest
new measurement locations based on the current model. We
derive the Kernel DM+V algorithm and present a method
for learning the hyper-parameters. Based on real world data
collected with a mobile robot we demonstrate the consistency
of the obtained maps and present a quantitative comparison,
in terms of the data likelihood of unseen samples, with an
alternative approach that estimates the predictive variance.

I. INTRODUCTION

Gas distribution modelling constitutes an ideal application
area for mobile robotics. Acting as intelligent mobile gas sen-
sors, gas-sensitive robots offer several advantages compared
to stationary sensor networks. For stationary sensor networks
it is a problem that the optimal sensor locations can vary with
the environmental conditions. Mobile sensors can provide
a distribution model with adaptive (and higher) resolution.
Mobile robots that carry the sensors offer the required
accurate localization and computational resources to create
the distribution model on-line. Thus also the possibility to
decide based on the current model which locations to observe
next. Compared to human operators, mobile robots have the
advantage to carry out the required repetetive measurement
procedure without suffering from fatigue.

Gas distribution modelling with mobile robots at smaller
scales has important applications in industry, science, and
every-day life. Mobile robots equipped with gas sensors are
deployed, for example, for pollution monitoring in public
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Fig. 1. Normalised raw response readings from an example trial. Corre-
sponding gas distribution models are shown in Fig. 5.

areas [1], or can be used for surveillance of industrial facili-
ties producing harmful gases and inspection of contaminated
areas within rescue missions.

Gas distribution modelling is the task of deriving a truthful
representation of the observed gas distribution from a set of
spatially and temporally distributed measurements of relevant
variables, foremost gas concentration, but also wind and
temperature, for example. In this paper we consider the case
where only gas sensor measurements are available.

Building gas distribution models is a very challenging
task. One main reason is that in many realistic scenarios gas
is dispersed by turbulent advection. Turbulent flow creates
packets of gas that follow chaotic trajectories [15]. This
results in a concentration field that consists of fluctuating,
intermittent patches of high concentration. Fig. 1 illustrates
gas concentration measurements recorded with a mobile
robot along a corridor containing a single gas source. It is
important to note that the “noise” is dominated by the large
fluctuations of the instantaneous gas distribution and not by
electronic noise of the gas sensors.

While an exact description of turbulent flow remains
an intractable problem, it is possible to describe turbulent
gas distribution on average under certain assumptions [5].
We therefore aim at a modelling approach that represents
the time-averaged distribution and the expected fluctuations
without making strong assumptions about the environmental
conditions. With respect to stationary and particularly mo-
bile sensing applications we further want to avoid explicit
assumptions about the sensing locations so that the algorithm
can be applied on a mobile robot that is not primarily used
for gas distribution monitoring, for example.

Many gas distribution models were developed for at-
mospheric dispersion [12]. RIMPUFF, for example, is a
Gaussian puff model used to calculate the dispersion of
airborne materials at the mesoscale under the condition of
a moderate topography [17]. Such models cannot capture
all the relevant aspects of gas propagation with a suffi-
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cient level of detail. High resolution models are required
particularly at small scales and in typical complex indoor
and outdoor settings where critical gas concentrations often
have a local character. In principle, CFD (Computational
Fluid Dynamics) models can be applied, which try to solve
the governing set of equations numerically. However, CFD
models are computationally very expensive. They quickly
become intractable with increasing resolution and depend
sensitively on accurate knowledge of the state of the en-
vironment (boundary conditions), which is not available in
practical situations.

We propose an alternative approach to gas distribution
modelling, that is to create a statistical model of the observed
distribution, treating the sensor measurements as random
variables. In this paper, we introduce the Kernel DM+V
algorithm to learn a statistical two-dimensional distribution
model from a sequence of localized sensor measurements.
In the presented experiments, gas sensors were carried by a
mobile robot, which has a number of advantages (mentioned
above). However, the proposed algorithm addresses also
the more general case including stationary sensors, since
stationary sensors are just a special case of mobile sensors.
The Kernel DM+V algorithm is non-parametric in the sense
that it makes no assumptions about a particular functional
form of the model, which includes that it does not assume
certain environmental conditions such as a uniform airflow,
for example. The learned model is represented as a pair of 2-
d grid maps, one representing the distribution mean and the
other one the corresponding predictive variance per grid cell.
Instead of estimating the variance of the distribution mean, as
could be obtained from a Bayesian solution to gas modelling,
we carry out two parallel estimation processes, one for the
mean and the other one for the variance. In contrast to
the covariance of the mean, which only decreases as new
observations are processed, our estimate of the variance will
adapt to the real variability of gas readings at each location.

To measure the quality of a gas distribution model we
cannot conduct a straightforward ground truth evaluation
since it is not generally possible “to take a snapshot” of
the instanteneous concentration field. This is actually another
reason that makes gas distribution modelling difficult in
practice. Gas sensors provide information about a small
spatial region only since the measurements require direct
interaction between the sensor surface and the molecules
of the target chemical. As a consequence, it is usually
impossible to independently measure the concentration field
at the same time and the same height as with the sensors
mounted on the robot. The fact that Kernel DM+V models
the variance in addition to the mean makes it possible to
evaluate distribution models by calculating the data likeli-
hood of unseen measurements. In this paper, we use this
standard criterion to compare how well future measurements
are predicted by different distribution models. In addition, we
observe whether the obtained model is “reasonable” in that it
is consistent and complies with the observed environmental
conditions and the known gas source location. Thus, a gas
distribution model is considered truthful if it explains new

observations well and allows to identify hidden parameters
such as the location of the source of gas, for example.

By its capacity for model evaluation, estimating the pre-
dictive variance also provides the means to learn meta
parameters. Apart from its importance for model evaluation,
the estimation of the predictive variance entails further
significant advantages [7], which we only mention here but
cannot demonstrate in the paper due to lack of space: First,
the data likelihood can be used to determine when the model
should be updated or re-initialised. Second, models that
include the variance much better fit the particular structure
of gas distributions, which exhibit strong fluctuations with
considerable spatial variations. Third, the predictive variance
is often used in methods that suggest new measurement
locations based on the current model (sensor planning).
Fourth, referring to an “exotic” but fascinating possibility,
the predictive variance is required to integrate gas distribution
predictions into probabilistic localization methods [2].

This paper is organized as follows. After a discussion of
related work in Section II, we describe the proposed Kernel
DM+V algorithm in Section III-B. Then, the experiments
are detailed in Sec. IV. In Sec. V we analyse the relative
importance of the hyper-parameters and discuss how they can
be learned. Finally, we present the experimental evaluation
of our work based on gas sensor measurements collected
with a mobile robot (Sec. VI) in an unmodified environment
and conclude the paper in Sec. VI with a summary and
suggestions for future work.

II. RELATED WORK

This section gives an overview of work in the area of gas
distribution mapping at small scales with a particular focus
on methods that have been developed for mobile robots.

A. Model-based Approaches

Model-based approaches infer the parameters of an an-
alytical gas distribution model from the measurements. As
discussed above, the application of complex numerical mod-
els based on fluid dynamics simulations is not feasible in
practical situations. Simpler analytical models, as in [6], for
example, often rest on rather unrealistic assumptions and are
of course only applicable for situations in which the model
assumptions hold. Approaches based on an analytical model
also rely on well-calibrated gas sensors, an established un-
derstanding of the sensor-environment interaction and often
require knowledge about the source intensity.

B. Statistical Approaches Without Predictive Variance

A common approach to creating a representation of a
time-averaged concentration field is to acquire measurements
using a fixed grid of gas sensors over a prolonged period
of time, and to map average [6] or peak [14] concentrations
obtained to the given grid approximation of the environment.
Consecutive measurements with a single sensor were used
in [3]. To make predictions at locations different from the
measurement points bi-cubic or triangle-based cubic inter-
polation was applied. A problem with such interpolation
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methods is that there is no means of “averaging out” in-
stantaneous response fluctuations. Response values that were
measured very close to each other appear independently in
the gas distribution map and thus the representation tends
to get more and more jagged while new measurements are
added. This can be seen in the top right of Fig. 5, where
an example of a gas distribution map resulting from using
trilinear interpolation is shown. This map has to be compared
to the maps in the middle row in the same figure, which show
equivalent distribution mean maps obtained with the Kernel
DM+V algorithm.

Histogram methods reflect the spatial correlation of con-
centration measurements to some degree by the quantization
into histogram bins. The 2-d histogram proposed in [4]
accumulates the number of “odor hits” received in an area
assigned to the histogram bins. Odor hits are counted when-
ever the response of a gas sensor exceeds a defined threshold.
Disadvantages of this method include the dependency on bin
size and selected threshold, that a perfectly even coverage of
the inspected area is required, and that only binary measure-
ments are used and so useful information is discarded.

Kernel extrapolation distribution mapping (“Kernel DM”)
can be seen as an extension of histogram methods. The
concentration field is represented in the form of a grid
map. Spatial integration is carried out by convolving sensor
readings and modelling the information content of the point
measurements with a Gaussian kernel [8].

C. Statistical Approaches With Predictive Variance

All the methods discussed so far model the average or the
peak gas concentration but not the concentration fluctuations.
The Kernel DM+V algorithm proposed in this paper also
models the observed distribution variance per grid cell.

Another method that predicts the mean concentration and
the corresponding variance uses Gaussian process mixture
(GPM) models [16]. It treats gas distribution modelling as a
regression problem. Two components of the GPM represent
the rather smooth “background signal” and areas of high
concentration. The components of the mixture model and
a gating function, that decides to which component a data
point belongs, are learned using Expectation Maximization
(EM). In contrast to the Kernel DM+V approach, the model
is represented directly using the training data. Because it
requires the inversion of matrices that grow with the number
of training samples n, the computational complexity of learn-
ing the GPM is O(n3). This is addressed in [16] by adaptive
sub-sampling of the observations to obtain a sparse training
set. The sparsification of the training data is integrated into
the EM-based learning procedure. Similarly to the Kernel
DM+V approach, the dependancy between nearby locations
is modelled in the GPM approach by a radially symmetric,
squared exponential covariance function.

III. KERNEL DM+V

In this section, we introduce the basic ideas of the Kernel
DM+V algorithm and develop the underlying equations in a
step-by-step manner.

A. Preliminary Remarks and Assumptions

The general gas distribution modelling problem addressed
here is to learn a predictive model of a measurement z at
the query location x

p(z|x,x1:n, z1:n), (1)

given a set of measurements z1:n taken at locations x1:n. All
the approaches reported in Sec. II and also the Kernel DM+V
method proposed in this paper, are used to learn a two dimen-
sional spatial model that represents time-constant structures
in the gas distribution. While the statistical approaches are
not generally restricted to represent a 2-d distribution, the
assumption that the model is learned from measurements,
which are generated by a time-constant random process, will
not generally be valid. However, this assumption is often
made in indoor environments [18] and suggestions how to
handle this issue are given in Section VIII. The sample index
i ∈ [1, n] in Eq. (1) corresponds to a time ti when the
measurement was performed. Due to the assumption that
the samples are generated by an underlying time-constant
random process the measurement time does not have to
be considered explicitly. The sample index i is only used
to identify individual samples. Please note that in order
to avoid calibration issues, which occur because the metal
oxide gas sensors used in our experiments rarely reach the
equilibrium state when exposed to the quickly fluctuating
gas distribution, we model the sensor response r directly. In
order to compensate for drift issues and individual variations
between different gas sensors, “raw” response values Ri are
normalised to r ∈ [0, 1] as

ri =
Ri − min({Ri})

max({Ri}) − min({Ri}) . (2)

A further assumption we make is that the response is caused
by a single target gas, i.e. we do not consider problems
related to interferents or simultaneous mapping of multiple
odours. In principle the proposed method can be extended
to the case of multiple odour sources as described in [11].
In this paper, we also assume perfect knowledge about the
position xi of a sensor at the time of the measurement. To
account for the uncertainty about the sensor position, the
method in [10] can be used.

B. The Kernel DM+V Algorithm

Inspired by the Parzen window method [13], Kernel
DM+V treats distribution modelling as a density estimation
problem. As a non-parametric estimation approach, it makes
no assumptions about the particular functional form of the
modelled gas distribution. Gas sensor measurements are
interpreted as noisy samples from the distribution we wish
to estimate given the set of samples z1:n = r1:n. In contrast
to the estimation of probability density functions we do not
sample from the gas distribution directly when creating the
gas distribution map. It is therefore necessary to make the
assumption that the trajectory of the sensors roughly covers
the available space. A perfectly even coverage, however, is
not necessary.
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Kernel DM+V uses a uni-variate Gaussian weighting
function N to represent the importance of measurement ri

obtained at location xi to model the gas distribution at grid
cell k. First, two temporary grid maps are computed: Ω(k)

by integrating importance weights and R(k) by integrating
weighted readings as

Ω(k) =
∑n

i=1 N (|xi − x(k)|, σ),

R(k) =
∑n

i=1 N (|xi − x(k)|, σ) · ri.
(3)

Here, x(k) denotes the center of cell k and the kernel width σ
is a parameter of the algorithm. The integrated weights Ω(k)

are used for normalisation of the weighted readings R(k),
thus even coverage is not necessary. The integrated weights
Ω(k) also provide a confidence measure for the estimate at
cell k. A high value means that the estimate is based on
a large number of readings recorded close to the center of
the respective grid cell. A low value, on the other hand,
means that few readings nearby the cell center are available
and that therefore a prediction has to be made using sensor
readings taken at a rather large distance. We formalize this
by introducing a confidence map α(k) computed as

α(k) = 1 − e−(Ω(k))2/σ2
Ω . (4)

Confidence values α(k) are normalized to the interval [0, 1).
The confidence map α(k) depends on the trajectory of the
sensors, the size of grid cells c, the width of the kernel σ
and the scaling parameter σΩ. This map is used to compute
the mean concentration estimate r(k) as

r(k) = α(k) R
(k)

Ω(k)
+ {1 − α(k)}r0 (5)

where r0 represents an estimate of the mean concentration
for cells for which we do not have sufficient information
from nearby readings, indicated by a low value of α(k). We
set r0 to be the average over all sensor readings.

As it was mentioned above, we want to estimate the real
variability of gas readings at each location instead of the
covariance of the mean and therefore carry out a parallel
estimation process. Similarly to the distribution mean map,
Eq. (5), the variance map v(k) is computed from variance
contributions integrated in a further temporary map V (k)

V (k) =
∑n

i=1 N (|xi − x(k)|, σ)(ri − r(k(i)))2,

v(k) = α(k) V (k)

Ω(k) + {1 − α(k)}v0

(6)

where k(i) is the cell closest to the measurement point xi,
and thus r(k(i)) is the mean prediction of the model for cell
k. The estimate v0 of the distribution variance in regions far
from measurement points is computed as the average over
all variance contributions.

Fig. 2 shows an example of a weight map Ω(k) (top row)
and the corresponding confidence map α(k) (bottom row).
For narrow kernels, and large values of σΩ (left column)
one can see the trajectory of the gas sensor carried by the
robot, indicating that the predictions from extrapolation will
only be considered trustworthy close to actual measurement

Fig. 2. Weight map Ω(k) (top row) and the corresponding confidence
map α(k) (bottom row) obtained using the parameters σ = 0.10 m, σΩ =
5.0 · N (0, 0.10) ≈ 20.0 (left column) and σ = 0.50 m, σΩ = 1.0 ·
N (0, 0.50) ≈ 0.8 (right column) on a grid with cell size c = 0.05 m.

locations. For wider kernels or smaller values of σΩ (right
column) the area for which predictions based on extrapola-
tion are made is larger.

The complexity of computing the maps in Eq. (3) is
generally O[n · (D

c )2] where n is the number of training
samples, D is the dimension of the environment and c is the
cell size. In practice, we do not have to evaluate the Gaussian
weighting function N for all cells and limit the region for
which the weights are computed to a circle of radius 4σ
around the measurement location. Therefore the effective
computational complexity is O[n · (σ

c )2]. The complexity of
computing the maps α(k), r(k), and v(k) in Eqs. 4, 5, and 6 is
O[(D

c )2] and computing V (k) in 6 requires one pass through
the data (O[n]), thus the overall complexity is O[n · (σ

c )2].

IV. EXPERIMENTS

We carried out gas distribution mapping experiments in
which a robot followed a predefined sweeping trajectory
covering the area of interest. Measurements were recorded at
a frequency of 1 Hz. Along its path, the robot was stopped at
a pre-defined set of grid points to carry out measurements on
the spot for 10 s (outdoors) and 30 s (indoors). In this way we
can investigate how the proposed algorithm deals with the
case of a moving sensor (by using only the measurements
taken between the stops) or a situation similar to that of
a stationary sensor network (using only the measurements
from the stopped robot). The spacing between the grid points
was set to values between 0.5 m to 2.0 m depending on the
available space. The sweeping motion was performed twice
in opposite directions and the robot was driven at a maximum
speed of 5 cm/s in between the stops. The gas source was a
small cup filled with ethanol.

Apart from a SICK laser range scanner used for pose
correction, the robot was equipped with an electronic nose
and an anemometer (not used to compute gas distribution
maps). The electronic nose comprises six Figaro gas sensors
(2×TGS 2600, TGS 2602, TGS 2611, TGS 2620, TGS 4161)
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Fig. 3. The pollution monitoring robot “Rasmus” equipped with a SICK
laser scanner for pose correction, an electronic nose and an anemometer.

enclosed in an aluminum tube. This tube is horizontally
mounted at the front side of the robot at a height of
34 cm, see Fig. 3. The electronic nose is actively ventilated
through a fan that creates a constant airflow towards the gas
sensors. This lowers the effect of external airflow and the
movement of the robot on the sensor response and guarantees
a continuous exchange of gas in situations with very low
external airflow. In this work, we address the problem of
modeling the distribution from a single gas source. With
respect to this task, the response of the different sensors
in the electronic nose is highly redundant and we therefore
compute the gas distribution maps from the response of a
single sensor (TGS 2620).

Three environments with different properties have been
selected for the gas distribution mapping experiments. Ex-
periments were carried out in an enclosed indoor area that
consists of three rooms separated by slightly protruding walls
in between them (3-rooms). Here, the area covered by the
path of the robot was ≈ 14 × 6m2. There is very little
exchange of air with the “outer world” in this environment.
The gas source was placed in the middle of the central room
and all three rooms were monitored. The second location was
a part of a corridor with open ends and a high ceiling. The
area covered by the trajectory of the robot is ≈ 14 × 2m2.
The gas source was placed on the floor in the middle of the
investigated corridor segment. Finally, an outdoor scenario
was considered. Here, the experiments were carried out in
an 8× 8m2 region that is part of a much bigger open area.
The gas source was placed in the middle of this area.

V. PARAMETER SELECTION

The Kernel DM+V algorithm depends on three param-
eters: the kernel width σ, which governs the amount of
extrapolation on individual readings (and the complexity of
the model); the cell size c that determines the resolution
at which different predictions can be made; and the scaling
parameter σΩ, which defines a soft threshold between values
of Ω(k) that are considered “high” (where α(k) is close to 1)
and “low” (α(k) is close to 0). Smaller values of σΩ entail a
lower threshold on Ω(k), i.e. an increasing tendency to trust
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Fig. 4. NLPD landscape for the data shown in Fig. 1 measured in the
3-room environment depending on the cell size c and the kernel width σ.

the distribution estimate obtained from extrapolation on local
measurements.

In order to evaluate how well the map estimate captures
the true properties of the gas distribution, we divide the
sample set D into disjoint sets Dtrain and Dtest. Optimal
values of the model parameters are determined by cross-
validation on Dtrain. An obvious way to measure how well
unseen measurements are predicted by the distribution model
is to compute the average prediction error. Due to the large
fluctuations of the instantaneous gas distribution, however,
this measure of model quality is not particularly suitable
for gas distribution modelling. A gas distribution model
should represent the time-averaged concentration and the
expected fluctuations. These properties are both captured by
the average negative log predictive density (NLPD), which
is a standard criterion to evaluate distribution models. Under
the assumption of a Gaussian posterior p(ri|xi), the NLPD of
unseen measurements D = {r1, ..., rn} acquired at locations
{x1, ..., xn} is computed as

NLPD = − 1
n

∑
i∈D log{p(ri|xi)} =

1
2n

∑
i∈D

{
log v̂(xi) + (ri−r̂(xi))

2

v̂(xi)

}
+ log(2π).

(7)

The estimations v̂(xi) and r̂(xi) are obtained from the
corresponding cells in the maps in Eqs. 5 and 6 as v̂(xi) =
v(k(i)), r̂(xi) = r(k(i)). Since the goal is to maximize the
likelihood of the data points, we search for parameters that
minimise the NLPD in Eq. (7).

Regarding the selection of the model parameters, we first
note that the exact value of σΩ is not critical as long as it
is of the right scale. We have observed that for all practical
aspects it can be tied to the selected kernel width σ using
σΩ = N (0, σ). Fig. 4 shows a typical NLPD landscape,
which was obtained from the data shown in Fig. 1 by cross-
validation using 5% of the data for training and the remaining
95% for testing. One can first observe that the dependency
on the grid cell size is rather weak, with a tendency to favour
smaller cell sizes as expected. We can further see that the
minimum with respect to the kernel size σ is shallow to the
end of large kernel sizes and steep towards small kernel sizes
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Fig. 5. Top row, left: trajectory of the robot and a picture of the
experimental environment 3-room. Top row, right: gas distribution map
created by trilinear interpolation (using the Matlab function trisurf). The
second row shows the mean distribution map r(k) and the third row the
variance distribution map v(k), obtained from measurements where the
robot was driving (left) and standing, respectively (right). The location of
the gas source is indicated by a circle. Parameters were selected as described
in the text by cross-validation on 5% of the data. The optimal values of the
kernel width σ were found to be 1.05 m (driving robot) and 1.0 m (stopped
robot).

where overfitting occurs. Remarkably, for a fixed cell size,
the relative course of the NLPD depending on the kernel size
σ does not change substantially. In the example in Fig. 4, the
minimum occurs between 0.75 m and 0.95 m and the optimal
value was found to be σ = 0.90 m. This enables us to reduce
the parameter selection problem from three (σ, c, σΩ) to
one dimension (σ). In order to make the learning process
even faster, we search for the optimal value of σ using a
relatively large cell size and recompute the map with the
optimal value of σ found at a larger resolution. With a cell
size of 0.8 m, for example, the computation of a map from
5% of the data (approx. 300 data points in the example shown
in Fig. 4) takes less than 0.1 s in an un-optimized Matlab
implementation.

VI. RESULTS

Using the parameter selection method described in Sec. V,
we obtain the maps shown in Fig. 5 for the example
experiment that was used for illustration so far in this paper
(see Fig. 1, Fig. 2 and Fig. 4). The left column shows
the mean and variance map computed from measurements
recorded while the robot was driving. The maps in the right
column were created from the measurements collected while
the robot was stopped. The similarity between the maps is a
remarkable indication of the consistency of the maps created
with the Kernel DM+V algorithm considering that the un-
derlying data sets are disjunct. The observed gas distribution
was found to be restricted to two of the three rooms although
these rooms where connected by large alleyways, a finding

TABLE I

NLPD COMPARISON OF KERNEL DM+V AND THE GPM METHOD.

Dataset NLPD, GPM NPLD, Kernel DM+V

3-rooms -1.54 -1.44
corridor -1.60 -1.81
outdoor -1.80 -1.75

that is supported by the wind measurements, which indicate
the existence of an effective wall created by stable airflows in
the room. This experiment provides an illustrative example of
the use of mobile robots in a rescue mission where they could
report that the leftmost room is secure for human rescue staff
while the concentration levels in the other rooms are too high.

For one experiment in each of the three environments de-
scribed in Sec. IV we compared the Kernel DM+V algorithm
to the Gaussian process mixture approach [16] (“GPM”). We
do this by dividing the data into a training set, comprising all
the measurements collected during the first full sweep. This
data set is used to learn the gas distribution model, which
is then evaluated on a separate test set that comprises the
remaining measurements collected during the second sweep
in opposite direction. The GPM approach has a mechanism
to select training data and we used exactly the same data to
learn the parameter σ for the Kernel DM+V algorithm.

Although the training data were selected for the GPM
method and GPM learns three parameters compared to one
parameter in the case of Kernel DM+V, the results shown
in Tab. (I) are comparable. This gives Kernel DM+V an
edge because of its ability to scale better to larger training
samples (having complexity O[n · (σ

c )2] compared to O[n3]
in the case of GPM) and the fact that the learning proce-
dure is simpler since it is not necessary to simultaneously
learn model components and a gating function that switches
between these components.

VII. SUMMARY

Gas distribution modelling constitutes an ideal application
area for mobile robots. As intelligent mobile gas sensors,
robots can provide a higher and adaptive resolution than
a stationary sensor network. They further offer accurate
localization and the computational resources to create the
distribution model on-line. Thus also the possibility to decide
based on the current model which locations to observe next.

In this paper we propose the Kernel DM+V algorithm to
learn a statistical 2-d distribution model from a sequence of
localized gas sensor measurements. We discuss the hyper-
parameters and present a method to learn them from the data.
In the presented experiments the sensors were carried by a
mobile robot, which was stopped at pre-defined measurement
points to demonstrate that the algorithm can be applied
to a stationary sensor network without modifications. The
Kernel DM+V algorithm is non-parametric, i.e. it makes no
assumptions about a particular functional form of the distri-
bution model. In contrast to most previous gas distribution
modelling approaches, Kernel DM+V estimates the observed
variance in addition to the distribution mean. Estimating the
predictive variance entails a significant improvement for gas
distribution modelling since it among other benefits allows
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Fig. 6. Trajectory of the robot (right) and the maps r(k) and v(k) (right)
plotted partly over a picture of the experimental environment outdoor. The
location of the gas source is indicated by a circle. Parameters were selected
as described in the text by cross-validation on 5% of the data. The optimal
value of the kernel width σ was found to be 1.20 m.

to evaluate the model quality in terms of the data likelihood
and provides the means to learn meta parameters.

The results, based on real world data collected with a
mobile robot, demonstrate the consistency of maps obtained
from stationary and mobile sensors. We also present a
quantitative comparison with a recently presented alterna-
tive approach [16] using Gaussian process mixture models
(“GPM”), which is, to the best of our knowledge, currently
the only other statistical gas distribution modelling approach
that estimates a predictive variance. The comparable perfor-
mance in terms of the data likelihood demonstrates that the
two approaches produce maps, which predict unseen samples
similarly well, giving Kernel DM+V an edge due to its
simpler learning procedure and better scaling properties in
the case of larger training samples.

VIII. FUTURE WORK

Confirming results of a previous study [9], we made the
observation in the experiments presented in this paper that
the maximum in the variance map often provides a more
accurate and better localized prediction of the location of the
gas source than the maximum in the distribution mean map,
see Fig. 6. In order to statistically support this observation,
we need to carry out and evaluate further experiments.

For a fixed location (i.e. a particular grid cell), the
Kernel DM+V algorithm assumes a normal distribution.
This assumption does not generally hold, particularly for
gas distributions, which often exhibit rather a multimodal
distribution at one measurement point. Future work will
therefore investigate the possibility to relax the assumption
of a normal distribution towards other parametric or non-
parametric distributions.

An important assumption of the proposed gas distribution
modelling method (and of all the statistical gas distribution
modelling methods mentioned in Sec. II) is that the model
is learned from measurements, which are generated by a
time-constant random process. Possible extensions of the
Kernel DM+V algorithm that allow to cope with dynamic
situations include adding a “lazy update” mechanism. The

quality of the current gas distribution map could be continu-
ously evaluated on new sensor readings and updated only
if the data likelihood drops significantly. Such an update
could be compared to a map that is computed from fewer,
more recent samples only. By eventually selecting this map,
the representation could follow slow changes of the gas
distribution. Such a mechanism would also help providing an
answer to the question how many measurements are needed
in a given environment to provide a truthful representation.
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