
Building a Distributed Robot Garden

Nikolaus Correll, Nikos Arechiga, Adrienne Bolger, Mario Bollini, Ben Charrow, Adam Clayton,
Felipe Dominguez, Kenneth Donahue, Samuel Dyar, Luke Johnson, Huan Liu, Alexander Patrikalakis,

Timothy Robertson, Jeremy Smith, Daniel Soltero, Melissa Tanner, Lauren White and Daniela Rus

Abstract— This paper describes the architecture and imple-
mentation of a distributed autonomous gardening system. The
garden is a mesh network of robots and plants. The gardening
robots are mobile manipulators with an eye-in-hand camera.
They are capable of locating plants in the garden, watering
them, and locating and grasping fruit. The plants are potted
cherry tomatoes enhanced with sensors and computation to
monitor their well-being (e.g. soil humidity, state of fruits)
and with networking to communicate servicing requests to
the robots. Task allocation, sensing and manipulation are
distributed in the system and de-centrally coordinated. We de-
scribe the architecture of this system and present experimental
results for navigation, object recognition and manipulation.

I. INTRODUCTION

Our long-term goal is to develop an autonomous green
house consisting of autonomous robots and pots and plants
enhanced with computation, sensing, and communication.
The network of robots, pots, and plants transforms energy,
water and nutrients into produce and fruits. In this type
of precision agriculture system water and nutrients will be
delivered locally on-demand and fruit will be harvested
optimally. Plants will drive the robots’ activities in the garden
using sensors to monitor their local environment conditions,
and maintain a local database storing fruit location and
maturity that is obtained in interaction with robots.

From an economical perspective, cultivation of specialty
crops (such as fruits and vegetables) requires a huge amount
of manual labor and cultivation when compared with broad-
land crops. This need has recently led to multiple initiatives
in the United States (e.g. the Comprehensive Automation
for Specialty Crops (CASC) program) and Europe (e.g. with
in the scope of the 7th Framework program which aims at
sustainable crop and forestry management, among others).

This paper describes some first steps toward creating an
autonomous distributed robotic garden as part of the under-
graduate project course 6.084/086 taught at MIT during Fall
2008, and two undergraduate summer projects in Summer
2008 and 2009. The project was framed as addressing a grand
challenge: to create a robotic gardening system. Solving the

This work was supported in part by the Swiss NSF under contract number
PBEL2118737, MURI SWARMS project W911NF-05-1-0219, NSF IIS-
0426838, EFRI 0735953 Intel, and by the MIT UROP and MSRP programs.
We are grateful for this support.

This work was done at the Department of Electrical Engineering and
Computer Science and the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02478,
USA. Corresponding author nikolaus@csail.mit.edu

This paper is partly the result of a “challenge class” taught at MIT
(6.084/85) by DR,NC, and AP (teaching assistant).

Fig. 1. Tomato plants are arranged on a platform of 3× 4 meters. Plants
are illuminated by growing lights.

grand challenge required designing and programming robots
to interact effectively and autonomously with the real world.

We describe the system architecture and algorithmic de-
tails that constitute the distributed robot garden. We also
describe experimental results for watering plants, identifying
tomatoes, harvesting tomatoes, and coordinating the inter-
action between robots and plants in this system that have
been collected during a spiral-based design approach and
motivated our design decisions. Our work provides a proof of
concept working system but much work remains to be done
to achieve our vision of self-sustaining precision agriculture
with teams of gardening robots.

A. Project Structure

The system has been designed following a spiral-design
philosophy that aimed at experimental evaluation of working
sub-systems of the system after each term (Summer ’08,
Fall ’08, Summer ’09) and a rotating student population.
This approach has led to a series of major design revisions
for almost all of the hardware components, sensors and
algorithms and has led to the system presented in this paper.

B. Related work

Commercial agriculture has reached a high level of au-
tomation, although mainly for broad-land crops, e.g. using
autonomous combiners. Similarly, fine-grain satellite im-
agery is commercially available for targeted pesticide and
fertilizer application. More recently, autonomous solutions
have been developed for specialty crops such as apples [1],
cherry [2], tomatoes [3], mushrooms [4], or cucumbers [5],

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1509

among others. Also, embedding sensors in the environment
has been studied. For instance, in [6], [7] distributed wireless
sensor networks for precision agriculture (e.g. irrigation) are
presented. Our work aims to extend this body of research by
focusing on precision agriculture tasks where autonomous
mobile agents are networked with the environment. Other
instances of systems that heavily rely on sensors and actu-
ators embedded in the environment in a home companion
context are [8], [9].

C. Outline

We start with describing the system architecture that
consist of robots and plants networked with each other
(Section II). We will then describe the individual components
of the robotic system: Navigation and Path-Planning (Section
III), Object Recognition (Section IV), Inventory (Section
V), Visual Servoing and Grasping (Section VI), and Task
Allocation (Section VII). We will then present experimental
results for selected components of the system in Section VIII.

II. SYSTEM ARCHITECTURE

The distributed robot garden architecture (Figure 3) con-
sists of robots and computationally enhanced plants (Figure
2) and includes the following subsystems :

a) Robots:
• Notebook computer running Ubuntu Linux.
• An iRobot Create providing a bumper sensor (left/right),

four cliff sensors, a wall sensor and an infra-red sensor
on the robot base. The robot has been retrofitted with
a rear-end caster wheel to improve odometry, has been
powered by an external battery and is outfitted with a
laser-cut Delrin structure to attach its peripherals. The
robot is controlled from the notebook using an USB-to-
Serial connection.

• Servo board (Lynxmotion SSC-32), which controls the
arm, provides an analog-digital converter for the force
sensor, and PWM control for the water pump using an
USB-to-Serial connection.

• Water tank and pump (Hargraves) connected to the SSC-
32.

• 4-DOF arm (Crustcrawler robotics) with gripper and
resistive force sensor (0-10 Newton) connected to the
SSC-32 (Figure 2, right).

• Lithium-Polymer battery pack (19.2V, 130Wh) for pow-
ering the entire system.

• Logitech Quickcam connected to the notebook using
USB.

• Hagisonic Stargazer relying on 4 markers mounted at
the ceiling for global localization.

• Atheros PCMCIA radio card.
The ability to program, debug, and visualize the system

on the notebook (vs. an embedded PC) drastically sped up
the software engineering process. Also, USB (together with a
series of TTL serial port to USB converters) proved to be an
elegant solution for connecting all of the robot’s components.
The Crustcrawler arm does not allow for position-based

feedback control, but turned out to be sufficient for proof-
of-concept visual servo based grasping at a fraction (around
1/20th) of the cost of the smallest available industrial arm
that we could find at the time of writing. Using a single
battery pack for powering all of the system’s component is
motivated by the need for autonomously charging the system
using a docking station. Battery power is fed directly to the
notebook and regulated down using a series of switching
regulators to accommodate the voltage requirements of the
different platforms. The Logitech Quickcam has been se-
lected for its low price trading off achievable frame rate
(factor 3) with a Firewire camera.

b) Plants:
• Cherry tomato shrubs of approximately 1m height that

continuously carry fruits in all stages of maturity (flow-
ers, green and red tomatoes). Every shrub grows in a
dedicated pot.

• iRobot docking station, which provides an infrared field
that allows a robot to autonomously dock. The dock
is retrofitted to provide charging current to the 130Wh
battery pack.

• Humidity sensor (Vegetronix).
• Wireless sensor node running OpenWRT Linux (tem-

peraturealert.com) on an Atheros AR2315 radio-on-a-
chip.

• Each plant has a unique identity provided by its IP
address in the mesh network.

Embedding the plants with sensing, computation and com-
munication abilities turned out to have numerous advantages:
performing humidity sensing on the plant guarantees to
respond to detect plant needs in the most timely fashion
(as opposed to a mobile robot measuring each plant using a
probe). Storing the result of fruit inventory performed by a
robot on the plant vs. a central server provides a distributed
and hence scalable and robust solution and comes at very
little computational cost. Finally, coordinating plant-specific
tasks by the plant itself allows to forgo a centralized task
allocation system, which again contributes to the scalability
and robustness of the overall system.

In our experimental setup, four potted plants are aligned
in a grid on a 3×4 meters elevated astro-turf field (Figure 1).
Robots and plants communicate via an ad-hoc mesh network.
The plants provide the following functionality:

• A plant periodically reads its humidity sensor and posts
a watering request when the reading falls below a
threshold.

• Upon request, a plant reports the location and maturity
(red or green) of its fruits in a local coordinate frame.

• A plant accepts the location and maturity status (red or
green) of a new fruit from a robot and stores it in its
local database.

• Upon request, a plant deletes a fruit from its database.
The robots have the following functionality
• Navigate to a specific plant and dock at its pot.
• Water a plant.
• Provide an inventory of a plant (fruit maturity and

1510

Fig. 2. Robots are equipped with an end-effector, camera, localization
system and watering device that are controlled by a notebook computer.
Plants are enhanced with a wireless embedded Linux device that can monitor
its status using a humidity sensor and information collected by the robot as
well as issue requests.

location in local coordinates) using its on-board camera,
merging it with the current inventory obtained from the
plant.

• Pick a specific fruit on the plant.

All of these functions are implemented as web services,
leveraging standard tools, and rely on a TCP/IP connection
to a specific robot or plant.

A. Robot Architecture

The software architecture for the robot is depicted in
Figure 3. The core processes are the Scheduler and the
Planner. The Scheduler’s job is to coordinate and maintain a
queue of high level tasks that the robot needs to accomplish,
such as “Water plant #2”, these tasks can be either generated
by the plants or injected by a human supervisor. For this,
the scheduler receives messages from the common gateway
interface (CGI) of an Apache web server that accepts HTTP
requests on the local mesh-network IP.

The Planner is in charge of getting a task from the
scheduler, decomposing it into a series of jobs each of which
can be handled by an individual module, and then overseeing
the execution of those jobs. For this, the planner interfaces
with the navigation and visual servoing process as every task
in our system can be decomposed into a navigation and a
manipulation step.

All software modules are locally communication using the
inter-process communication (IPC) framework ROS (Robot
Operating System) [10], which is available open source
and provides bindings for a wide range of programming
languages (Python, LISP, Octave, and C) and works by
exchanging custom data packets using shared memory or
using a local network. ROS differentiates itself from other
packages with similar intent such as LCM (Lightweight
Communication and Marshalling) [11] by providing a large
number of open source algorithms, and visualization and

Fig. 3. Overall system architecture including robots and tasks.

management tools that can be readily integrated into ROS
systems.

In their current implementations, both ROS and LCM are
only of limited use for wireless inter-robot communication.
We initially implemented the system using LCM as it does
not require a centralized name server, which we consider
preventive in a distributed system. It turns out, however, that
the main bottleneck is that only little control is available
where messages get routed (in fact LCM uses UDP flood-
ing) and that UDP is unreliable as it is a connection-less
protocol. We therefore implemented robot-robot and plant-
robot communication primitives using web services, i.e.
information is transmitted by requesting a specific document
on the remote machine using the HTTP protocol. Using the
common gateway interface (CGI) on a robot’s or plant’s web
server, this approach allows for execution of arbitrary code
on the target platform and to report its output via the HTTP
protocol. Likewise, robots can interact with each plants using
a lightweight web server on the plant (lighttpd) and the
libcurl toolchain.

B. Plant Architecture

The plant’s functionality was implemented using the Linux
cron daemon for periodically checking humidity status, the
wget tool for issuing HTTP requests to the robot and the
lighttpd web server together with a PHP interpreter to serve
and update information about location and maturity of fruits.
This information was stored and transmitted in JSON format,
which is similar in intent than a XML description but
provides a more compact representation for simple table data.

C. Network Architecture

The robots and plants establish an ad-hoc mesh network
using the Optimized Link State Routing (OLSR) algorithm
(which is available in binary form for both Ubuntu and
OpenWRT). OLSR is a link-state routing algorithm. OLSR
implements a series of optimizations geared toward large-
scale wireless networks and has proved its performance in
city-scale networks involving multiple thousand nodes. Each

1511

node floods information about its links to its neighbors until
every node has discovered the other nodes and links. Each
node then runs the same local shortest path computation
algorithm from itself to any other node. We implement
broadcasting by issuing HTTP requests sequentially to all
IP addresses that are shown in the kernel routing table.
Since the routing table also maintains a hop count (roughly
corresponding to the spatial distribution of the nodes), this
approach can also be used to address only nodes that are
within 1-hop communication.

III. NAVIGATION AND PATH-PLANNING

Robots use the basic navigation structure provided by the
Create platform to travel to specific plants. It turned out that
solely relying on odometry for localization is not sufficient
for navigating passages only few centimeters wider than the
robot. In particular, using only odometry does not allow
the robot for recovering from errors. For global localization,
we selected the Hagisonic Stargazer that provides relatively
accurate localization and orientation (±2cm) by detecting in-
frared markers mounted at the ceiling. Each marker consists
of at least four reflecting stickers that are arranged in a 4x4
matrix and encode a unique id. Knowing the position of each
marker in a global coordinate frame then allows each robot
to compute is position using a transformation and rotation.

The Hagisonic sensor provides position information at
roughly 2 Hz whereas odometry send updates at 50Hz.
Therefore, and because we expect odometry to outperform
the global localization system on short distances, position
information from both sensors is fused asynchronously.
Whenever new sensor data arrives, the robot either inte-
grates odometry with full confidence or updates the position
estimate using the global positioning information using an
exponential average filter with 10% weight for new incoming
data. We choose this policy for filtering occasional jumps
in position that correspond to noise from the Stargazer
sensor, which happens rarely, however. This is particularly
noteworthy as the bright lights emitted by the growing system
emit considerable large amounts of light in the IR spectrum.

Each robot is equipped with a configuration-space map
of the environment that is provided by ROS mapserver
component. The pots are arranged in a regular pattern, which
let the system scale also for large numbers of pots. For
path-planning, the navigable space of the map is discretized
into a grid of 1cm2 cells and paths are planned using
the Wavefront algorithm implemented by the ROS package
with the same name. The Wavefront package also accepts
updates to the local map by a laser range scanner, which is
a standard message type in ROS. We are using this interface
for injecting the position of other robots on the field into
the map. For this, our localization node periodically (1 Hz)
reads positions from other robots visible on the mesh via the
HTTP protocol and emulates a laser range scanner mounted
at the origin of the coordinate system.

To navigate to a plant, the robot plans a path to a point in
front of the pot’s docking station and then docks at the plant
using the Create’s built-in docking algorithm. The actual

location that is required for successful docking is known by
the plant and transmitted to the robot at each service request.

In case of a collision (usually due to poor localization),
the robot launches a low-level avoidance behavior, which
eventually leads to recover a safe position, from which the
planner will re-plan.

The dock provides three infrared rays that encode three
different bytes and can thus be distinguished by the robot
and provide a sense whether the dock is to the left or to
the right in the direction of driving. Although the Create can
detect whether it is charging at the dock, we retrofitted the
dock for providing the charging source for the 130Wh battery
to the robot. We therefore rely on a combination of red buoy,
green buoy and force field detection for establishing whether
the robot is close enough to the dock.

IV. OBJECT RECOGNITION

The goal of object recognition is to identify the centroid of
red and green tomatoes, associate the centroid with coordi-
nates in the plant-fixed coordinate system, communicate this
location to the plant and use it for visually servo to a fruit
for grasping. The location is used by the plant to maintain
the fruit inventory and to give harvesting robots guidance on
where the tomatoes to be harvested are.

Recognizing plants and tomatoes is a significant challenge
because the foliage has complex geometry and affects light-
ing in unpredictable ways. The tomatoes are generally round,
but their exact size and shape has many variations. The
tomatoes may be partially obscured by other tomatoes or
leaves. Their shiny skin gives spectral highlights due to the
reflection of light.

For this project, we investigated two distinct approaches
for object recognition: feature-based, resource intensive clas-
sifiers as well as filter-based classifiers that rely on a combi-
nation of Hough circle transform (for detecting circles), the
Sobel filter (for detecting smooth areas), and color filters for
detecting red and green areas as well as spectral high-lights.
The output of each detector was then weighted and combined
to a single estimator.

Image processing routines were implemented in Matlab
(for feature-based approaches) and SwisTrack [12], which
provides a graphical user interface to OpenCV and allows for
rapid prototyping of image processing algorithms. SwisTrack
was then interfaced to ROS allowing the visual servoing
component and the inventory component to receive fruit
locations.

A. Feature-based Object Recognition

Object recognition is formulated as the convolution of
an image with a target pattern. If the target pattern can
be found, the convolution will yield high values in this
region. An extension of this approach is to use many small
discriminative features, i.e. small patches that are relevant
to the target pattern [13], and store the relative location of
each feature with respect to the object’s center. The set of
features serves as a joint classifier that collectively votes for a
specific location. In order to identify which features are most

1512

Fig. 4. Left: Result of convolution of input image with 40 feature/location
pairs. Red dots correspond to local maxima. Right column: Detected fruits
are highlighted with a rectangle. Notice the false-positive and misses in the
bottom row.

discriminative, [13] applies a machine learning technique
known as boosting. In practice, this involves taking a set of
pictures with known object locations and choosing random
features of the images to vote on the center of the object
by convolving the feature with the target image in an offline
learning step. These features are tested on other images from
the training set, which allows selecting those that are most
promising to detect objects in a wide range of images. If
a feature turns out to be useful for a number of images in
the training set, its weight is increased. If not, its weight is
decreased.

We generated a training set consisting of a large number
of red and green tomatoes. We labeled the data using the
online tool LabelMe 1 [11]. The 40 most dominant features
were than extracted using the boosting algorithm (available
online2).

After the best features and weights pairs are extracted from
the training set, a convolution of a feature and the target
image highlights possible locations of the class described
associate with this feature. Figure 4 shows two examples
with green tomatoes. As tomatoes vary drastically in size
depending on the distance to the camera, we convolved the
features not only with the target image, but also with a
number of down-scaled versions.

Processing time of this algorithm is approx. 10-30 seconds
per image, and depends on the number of features and
number of scale variances used (see [13] for details on
the computational complexity of the algorithm). Since the
main feature of tomatoes is its relative lack of features,
the algorithm achieves only around 34% success rate in
identifying tomatoes. We next compare this approach to a
filter-based algorithm for recognizing tomatoes.

1http://labelme.csail.mit.edu
2http://people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html

Algorithm 1: TOMATO DETECTOR (PSEUDO CODE)
Data: Image frame from color video
Result: Position and color of all detected tomatoes in the

frame
foreach frame do1

smooth = Sobelframe2
red = MinMaxColor(RedPlane(frame))3
green = MinMaxColor(GreenPlane(green))4
redTomatoes = MinMaxArea(red ∪ smooth)5
greenTomatoes = MinMaxArea(green ∪ smooth)6
ROSPublish (redTomatoes, greenTomatoes)7

Fig. 5. Detection of red and green tomatoes using a filter-based approach
in the tracking software SwisTrack.

B. Filter-based Object Recognition

The filter-based tomato detection algorithm is shown in
Algorithm 1. This algorithm relies on shape, color, size, and
spectral highlights (due to the shiny skin of the tomatoes.)
The gains for each filter were hand-tuned using quantitative
feedback from a series of test images. The Hough transform
reliably detects the tomato’s outer contours, but leads to
a large number of false-positives triggered by the foliage.
Relying on spectral highlights (corresponding to white image
patches on each fruit (but not on the leaves) is not robust
with respect to changing lighting conditions. Smoothness
(corresponding to dark regions after Sobel-filtering) is the
most dominant feature for both red and green tomatoes. By
combining this information with a constraint on the minimum
and maximum area of each blob we were able to develop a
tomato recognizer with high precision performance. Color is
used to differentiate between red and green tomatoes.

Sample detection results for tomatoes of different colors
are shown in Figure 5. The processing time of this algorithm
was in the order of 1/3 second per image.

V. INVENTORY

The inventory task consists of a systematic scan of the
plant to identify and store the location and color of each
fruit on the plant’s router. If there is previous inventory,
the new inventory data is used to compare and update the

1513

Algorithm 2: INVENTORY (PSEUDO CODE)
Data: Sequence of end-effector positions for systematic scan
Result: Position and color of all detected tomatoes on the

plant, distance threshold for merging tomatoes in
previous inventories

foreach end-effector position do1
moveToPosition(end-effector position)2
tomatoes = ROSGetTomatoes()3
if inventory available then4

MergeInventory(inventory,tomatoes)5

else6
WriteInventory(tomatoes)7

plant router. A tomato’s description consists of: 1) the robots
relative position to the plant at the time of detection, 2)
the tomato’s x and y image coordinates (in the scanning
plane), 3) radius, 4) color, and 5) confidence level of the
measurement. The confidence level is updated every time
using the detection accuracy (75%, see below) such that
confidence increases if a tomato’s description is consistent
throughout several inventories, and decreases otherwise. The
inventory algorithm is given in pseudo-code as Algorithm 2.

VI. VISUAL SERVOING AND GRASPING FOR
HARVESTING

Harvesting tomatoes requires several steps: identification,
reach, grasping, and removal. We use the output of the object
recognition and inventory module as input to a visual servo-
ing algorithm for reaching, grasping, and removing the fruit.
The visual servoing algorithm uses the color-based object
recognition and approximate knowledge of the location of a
tomato to drive the robot manipulator to grasp the tomato. As
the locations of the fruits can only be approximately known
from an inventory step using the feature-based classifier, we
use a closed-loop control algorithm to align the gripper with
the fruit and eventually execute the grasp. We implemented
an image-based visual servoing algorithm [14]. The motion
of a robot end-effector is calculated in Cartesian space using
the perceived error in the camera image.

Using a feedback controller with proportional gain, we
can now calculate the desired position of the end effector by
the inverse of the interaction matrix. Calculating an estimate
of the interaction matrix for a specific camera/end-effector
configuration requires knowledge about the geometry of the
camera relative to the end-effector, its focal length, and the
ratio of pixel width and height, which we established using
simple experiments that consisted of moving a target of
known dimensions in front of the camera. Notice that the
interaction matrix requires an assumption about the distance
of the object. We solve this by assuming all the tomatoes to
have a constant radius.

The visual servoing algorithm is summarized as Algo-
rithm 3.

VII. TASK ALLOCATION

The high-level coordination of all the activities required
to maintain the tomato garden is done via a task allocation

Fig. 6. Sample trajectory describing the Cartesian error of the robot’s
end-effector from its initial position to a successful grasp.

Algorithm 3: HARVESTING (PSEUDO CODE)
Data: Sequence of image frames, inventory
Result: Grasped fruit
selectTomato(inventory)1
while !grasped do2

tomato = ROSGetTomato()3
error = goal-tomato4
if error==0 then5

graspTomato()6

else7
nextpos = ImageJacobian(error)8
moveTo(nextpos)9

algorithm. The task allocation algorithm keeps track of the
active robot tasks and requests (e.g. watering, inventory,
harvesting) and allocates each task to exactly one robot.
The algorithm is decentralized and aims for load-balancing
among robots. Each task has a unique ID. Tasks are generated
either by a user requesting a tomato, or by a plant requesting
to be visited (for watering, inventory, or harvesting). For each
task, a request is broadcast to each robot over the mesh-
network. Robots reply with their cost of task completion. The
cost is a function of the distance to the plant, the length of
the task queue and the abilities of the robot (infinite cost for
infeasible tasks—e.g. a robot that does not have the watering
system installed will not be able to complete the watering
task).

Task assignments are periodically re-allocated to ensure
success even in the presence of robot delays and failures
(see also [15] for a similar scheme and its analysis).

VIII. RESULTS

The algorithms described have been implemented in C,
C++, PHP and Python and are interconnected by ROS
messages and web interfaces. We evaluated the reliability
of each robot operation, the reliability of the plant sensory-
computational system, the ability of the system to coordinate
multiple robots, and the effectiveness of the task allocation
algorithm with up to 2 robots. The accompanying video
shows two robots coordinating for one harvesting and two
watering task.

1514

Fig. 7. Delay distribution for packet transmission over the ad-hoc network
as a function of the distance and network load.

A. Networking

We evaluated the data rates in the network of robots and
plants and quantified the effects distance and high network
load had on the messages that were sent. In this experiment, a
message was judged “successful” if it was sent and received
properly. To see what effect distance had, we had one
computer send messages to the routers at a distance of 1m,
13m, and 27m. To measure the success rate of messages
sent under high load, we had 4 laptops next to each other,
all sending messages, at a distance of 1m from the routers.
Overall, our experiments suggest that as long as the robots
are within the experimental platform, it is reasonably to
expect almost all of our messages (> 95%) to be sent and
received within 0.05 seconds even under high network load
(Figure 7).

We also demonstrated a sequence of experiments in which
the task allocation algorithm controls two robots in parallel.
In this experiment, each robot was tasked asynchronously to
go to a different plant. Once docked at the plant, the task of
the robot (e.g. watering or harvesting) was done according
to the results described below.

B. Navigation and Watering

In order to evaluate the navigation performance of our
system, we required a robot to loop in a square of 85cm side
length. The robot’s position was consistently off by around
10% over 10 iterations. Odometry performed worse than
expected from the specifications of the iRobot Create base
due to the additional weight of arm, notebook and watering
system. Even though the astro-turf ground provides sufficient
traction to the robot’s wheels, it provides significant friction
to the front and rear casters, which particularly impacts the
accuracy of turns. By adding the external localization system,
the performance of the navigation algorithm incurred no
accumulated errors over 20+ loops along the test square. In
the absence of global positioning information, getting stuck
between the plants or supporting poles eventually leads to
a total loss of orientation, which has been remedied by the
Stargazer sensor.

In rare cases, however, navigation error lead to an orien-
tation in front of the plants in which the robot was attracted
by a neighboring pot when docking. This is mitigated by

the planner which supervises that the robot stays within a
rectangle of 1 by 1.5m around the dock and navigates to the
original launching point otherwise.

We evaluated navigation for watering by starting a single
robot in the top-left corner of the arena. We tasked the robot
with watering two different plants, one closer to the origin,
6 and respectively 4 times and solely relying on odometry.
Watering takes approximately 20s and involves moving the
arm toward the soil using open-loop control. The average
navigation time to reach the closer dock was 79.5s ± 11.3
and 94.25±8.9 for the dock farther away. We observed 100%
success rate of watering over 100+ trials.

C. Object recognition and Inventory
We trained classifiers using the boosting algorithm [13]

for red and green tomatoes using a training set of 17 images
that were labeled using [11]. We then tested the classifiers
on live images from the robot. Over 150 images, each
containing at least one tomato, the classifiers detected and
correctly classified around 34% of the tomatoes and 38%
false-positives. We also counted the total number of tomatoes
that were present in the images and calculated the percentage
of tomatoes that the algorithm did not recognized at all
to 44%. Of these 44% misses, 87% were expected as the
tomatoes were occluded or cropped, for which we did not
train appropriate classifiers.

As the detector convoluted 15 scaled instances of each
image with the 40 most important features, processing one
image requires approximately 16s per image on the Centrino
Duo notebook.

Using the Sobel-filter based tracker in Algorithm 1, we
improved the rate of correctly classified tomatoes to 75%
for red and green tomatoes.

Inventory took an average of around 45s over 10 trials.

D. Visual Servoing and Grasping
We conducted the following experiment ten times in a

row using both the feature-based and filter-based detection
approaches. The robot starts in a docked configuration with
a plant. The robot is given the coordinates of a tomato and
moved its arm from the docking configuration to a position
close to the tomato (given its location stored on the plant).
The robot then uses the visual servo feedback controller to
grasp the tomato.

Using the feature-based approach, grasping was successful
in 50% of the time over 10 trials. The average duration for
the successful trials was 30.6s ± 16.1 and 30.8 ± 31.6 for
the unsuccessful trials.

The filter-based approach improved the performance of
the visual servo to 75% successful grasps over 20 trials.
The average time was 28.3 ± 10s for the successful trials.
The success rate of this algorithm is closely related to the
object recognition performance. In case the robot started in
a position that did not lead to any of the expected detections,
the visual servo immediately terminates.

Reasons for failure were mostly due to singularities on
the trajectory from initial position to desired grasping lo-
cation and false-positives on object recognition that lead to

1515

premature grasping. The force sensor helps detecting failed
grasping attempts for false-positive detections. It does not
help, however, when the gripper grasps another part of the
plant, which we also observed.

IX. DISCUSSION

Networking. OLSR will scale for thousands of nodes.
However it might make more sense (for this particular
application) to forgo routing altogether and simply flood
the requests into the network with a limited hop count.
Although IEEE 802.11b allowed us to leverage off-the-
shelf software and protocols, a less resource intensive, short
range communication system such as infrared might be more
appropriate. As a side-effect the infrared signals could also
be leveraged for navigation.

Plants. The system performance can be enhanced by
using a model of plant growth. This will allow plants to
predict their status in between updates received from robots
and it is part of our current work.

Navigation and Path Planning. If global positioning is
available, the gardening system can recover from navigation
errors as described in this paper. If global positioning is not
available, robots with better odometry and navigation sensors
are needed.

Object Recognition. Object recognition using joint
boosting is resource intensive and is difficult in the gardening
domain. A key problem is that texture-less tomatoes provide
only very limited features by themselves. Thus, dominant
features are mostly located at the boundary of tomato and
background, which leads to poor performance when the
background varies strongly as in our experiment (astroturf,
leaves, other robots, laboratory).

Visual Servoing. Visual servoing fails when the robot is
unable to detect the tomatoes at the expected position. This
situation can be improved by implementing an additional
planning step using position-based visual servoing, which
systematically explores the region of interest from different
angles, potentially also involving movement of the base.

Grasping. As the orientation of the stem growing out of
the tomato fruit is not always vertical it turns out that we
could only grasp a subset of tomatoes without an additional
degree of freedom (wrist rotation) and appropriate image
detection algorithms. Also, the limited workspace of the arm
imposes constraints on reachable tomatoes.

X. CONCLUSION

This paper describes our experience with designing and
building a distributed robot garden as part of a project
class with two teams of undergraduate students. We have
developed a network of mobile manipulators and plant sensor
networks. We demonstrated that our system can coordinate
plant requests and robot activities for precision plant wa-
tering, fruit inventory, and fruit harvesting. However we
struggled with the robustness of the operations provided
by the hardware and the limited workspace of the chosen
arm. Particular challenges were the inital lack of a global
localization mechanism for recovering from navigation errors

and the limited robustness to changing lighting conditions of
object recognition during visual servoing.

Our current focus and challenge in this project is achieving
persistent autonomous operation of the distributed gardening
robots for periods on the order of several weeks.

Acknowledgments

We would like to thank A. Torralba for his help on
feature-based object recognition, J. French, J. Myers and A.
Zolj who have been working on the Distributed Robotics
Garden as part of the MIT Summer UROP program in 2008,
Kevin Quigley and Marsette Vona for providing their visual
servoing algorithms, and Michael Otte for helping out on
navigation.

REFERENCES

[1] A. Tabb, D. Peterson, J. Park, S. by ASABE, and O. Portland,
“Segmentation of apple fruit from video via background modeling,”
American Society of Agricultural and Biological Engineers, vol.
63060, 2006.

[2] K. Tanigaki, T. Fujiura, A. Akase, and J. Imagawa, “Cherry-harvesting
robot,” Computers and Electronics in Agriculture, vol. 63, no. 1, pp.
65 – 72, 2008, special issue on bio-robotics.

[3] N. Kondo, Y. Nishitsuji, P. Ling, and K. Ting, “Visual feedback guided
robotic cherry tomato harvesting,” Transactions of the American
Society of Agricultural Engineers (ASAE), vol. 39, no. 6, pp. 2331–
2338, 1996.

[4] J. Reed, S. Miles, J. Butler, M. Baldwin, and R. Noble, “Automatic
mushroom harvester development,” Journal of Agricultural Engineer-
ing Research, vol. 78, no. 1, pp. 15–23, 2001.

[5] E. van Henten, J. Hemming, B. van Tuijl, J. Kornet, J. Meuleman,
J. Bontsema, and E. van Os, “An autonomous robot for harvesting
cucumbers in greenhouses,” Autonomous Robots, vol. 13, no. 3, pp.
241–258, November 2002.

[6] W. Zhang, G. Kantor, and S. Singh, “Integrated wireless sen-
sor/actuator networks in agricultural applications,” in Proc. of ACM
SenSys, November 2004, p. 317.

[7] Y. Kim, R. Evans, W. Iversen, and F. Pierce, “Instrumentation and
control for wireless sensor network for automated irrigation,” ASAE
Paper No. 061105. St. Joseph, Michigan, 2006.

[8] A. S. ad M. Broxvall, M. Gritti, K. LeBlanc, R. Lundh, J. Rashid,
B. Seo, and Y. Cho, “The peis-ecology project: Vision and results,”
in Proc. of the IEEE/RSJ Int Conf on Intelligent Robots and Systems
(IROS), Nice, France, 2008, pp. 2329–2335.

[9] R. Rusu, B. Gerkey, and M. Beetz, “Robots in the kitchen: Exploiting
ubiquitous sensing and actuation,” Robotics and Autonomous Systems,
special issue on Network Robot Systems, vol. 56, pp. 844–856, 2008.

[10] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
in International Conference on Robotics and Automation, Workshop
on Open-Source Robotics, ser. Open-Source Software workshop, 2009.

[11] B. Russell, A. Torralba, K. Murphy, and W. Freeman, “Labelme:
A database and web-based tool for image annotation,” International
Journal of Computer Vision, vol. 77, no. 1–3, May 2008.

[12] T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, and A. Mar-
tinoli, “Swistrack - a flexible open source tracking software for multi-
agent systems,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Nice, France, 2008.

[13] A. Torralba, K. Murphy, and W. Freeman, “Sharing features: efficient
boosting procedures for multiclass object detection,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 2004, pp. 762–769.

[14] F. Chaumette and S. Hutchinson, “Visual servo control part i: Basic
approaches,” Robotics & Automation Magazine, vol. 13, no. 4, pp.
82–90, December 2006.

[15] P. Amstutz, N. Correll, and A. Martinoli, “Distributed boundary cover-
age with a team of networked miniature robots using a robust market-
based algorithm,” Annals of Mathematics and Artifcial Intelligence.
Special Issue on Coverage, Exploration, and Search, 2009, to appear.

1516

