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Abstract— We present a novel biomimetic approach to map-
less autonomous navigation based on insect neuroethology. We
implemented and tested a real-time neuronal model based on
the Distributed Adaptive Control framework. The model unifies
different aspects of insect navigation and foraging including
landmark recognition, chemical search, path integration and
optimal memory usage. Consistent with recent findings the
model supports navigation using heading direction information,
thus precluding the use of global information. We tested our
model using a mobile robot performing a foraging task. While
foraging for chemical sources in a wind tunnel, the robot
memorizes the followed trajectories, using information from
landmarks and heading direction accumulators. After foraging,
landmark navigation is tested with the odor source turned
off. Our results show stability against robot kidnapping and
generalization of homing behavior to stable mapless landmark
navigation. This demonstrates that allocentric and efficient goal-
oriented navigation strategies can be generated by relying on
purely local information.

I. INTRODUCTION

Navigation skills in unknown environments are essential
for the survival of foraging animals. Foraging is a common
feature carried out successfully by a wide range of animals,
from mammals to insects [1], [2], [3], [4]. Some remarkable
behaviors such as landmark navigation, homing, path inte-
gration (PI) and learning are in many occasions required to
perform successful foraging.

The concept of cognitive map for navigation, carried out
mainly by Tolman [5], was fuelled by the discovery of
the so-called place cells in the hippocampus of the rat
and has widely increased our understanding of cognitive
navigation mechanisms [6], [7]. It spawned early research
on navigational strategies in cognitive neuroscience based on
hippocampal representations of space [8], [9], [10]. While
mammals are assumed to learn a place/map-like represen-
tation for foraging [6], [7], this does not seem the case in
insects.

Insect navigation has been studied for more than a century
[11], [12], [2], [13]. Interestingly, a wide range of findings
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suggests that insects do not rely on a map for solving
foraging tasks [14], [12]. Recent studies suggest that rather
than using map-like representations, insects make optimal
use of proprioception, landmark recognition and memory to
navigate [4]. In particular, desert ants use sun position and
visual panorama for heading direction computation [2], [15].
Complex allocentric navigational behaviors using mainly
ego-centric cues can be seen both in mammals like rodents
but also in insects like ants and bees, which have consider-
ably lower computational resources with only hundreds of
thousands of neurons. Therefore, insect navigation studies
are useful in that they reveal essential components for
an efficient mapless navigation strategy. This is especially
relevant for robotic implementations of autonomous systems
and artificial foragers.

Despite massive advances in computing power and clas-
sical branches of robotics [16], [17], [18], [19], robotic au-
tonomous navigation, even with the use of global positioning
information, remains a challenge. Until today a number of
neurobiologically plausible models of navigation paradigms
have been proposed for mobile robots [20], [21]. In the wake
of neurobiological studies of place-cells, biomimetic robotic
models of map-based navigation have recently seen great
interest [21], [22], [23], [24]. The above mentioned models
explain navigation from place to place only in very restricted
familiar environments like mazes and small enclosures [25].
Navigators using such map based models of navigation
are required to learn those place representations [26], [27].
Moreover, only a few of those models have been tested with
real robots [22], [24]. As map based navigation strategies
suffered from an inability to traverse unvisited regions of
space, newer theories have incorporated path integration
and head direction signals [28]. Even more recent versions
also include cortical grid cells but still concentrate on the
self-localization aspect of navigation rather than navigation
between places [29], [30]. At the same time, the parsimo-
nious navigation strategies of insects offer a guideline for
computationally cheaper and eventually simpler navigation
methods for mobile robots. A number of models exploit and
reproduce some of the capabilities required during foraging
[31], [32], [33]. However, many are biologically unrealistic
and only deal with a very limited foraging task.

This paper describes a comprehensive mapless biologically
based model, including chemical search, PI and landmark
navigation, of insect navigation strategies that is implemented
in the framework of the Distributed Adaptive Control (DAC)
[34], [35]. The organization of behavior and optimal use of
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landmark recognition, proprioceptive information, heading
direction information and memory usage is controlled by
DAC and tested on an artificial foraging ant robot. Our results
show a successful integration of a number of biologically
based models and behaviors that give rise to realistic forag-
ing. Moreover, our model explains the generalization process
as a probabilistic use of memory, which generates allothetic
behavior from a limited set of idiothetic cues.

II. METHODS

A. Experimental setup

The experimental scenario consists of a robot forager
called SyntheticAnt, which is tested in a controlled indoor
environment (figure 1). The test environment consists of
a wind tunnel used by SyntheticAnt to localize the feeder
tracking an odor plume. The wind tunnel floor contains a set
of visual cues (landmarks) for SyntheticAnt to learn its way
through the environment. A vision based overhead tracking
system (AnTS) is used to localize the robot and compute
its heading direction within the test arena, allowing for an
analysis of the behavior of the robot.

B. Task

The task of the SyntheticAnt is to perform foraging using
chemical sensing to localize food (odor source), and vision
to learn to navigate through the environment, followed by
successful homing. SyntheticAnt leaves its nest (marked by
a unique visual cue) embarking on a foraging task to find a
food source by following an odor plume up to its source
(marked by another visual cue). On this outgoing route,
the robot detects visual cues placed on the floor while per-
forming foraging. Meanwhile collission avoidance has to be
performed using proximity sensors. Upon feeder detection,
it has to return to the nest using path integration information
and restart foraging again. After foraging, landmark memo-
rization is tested by placing the robot in an arbitrary location
in the absence of the odor plume. Hence, in order to achieve
this, SyntheticAnt has to recall the memorized landmarks and
be able to navigate to other landmarks, including the nest and
the feeder.

C. Foraging Model

SyntheticAnt is based on the Distributed Adaptive Control
(DAC) architecture [34], [36] for the integration of a number
of biologically based models and behaviors that give rise to
a realistic foraging behavior. DAC consists of three, tightly
coupled, layers for behavioral control; the reactive, adaptive
and contextual layers (figure3). The reactive control layer
provides the behaving system with a pre-wired repertoire of
reflexes such as collision avoidance, chemosearch, homing
etc. The adaptive layer provides the mechanisms for the
processing and classification of sensory events. The sensor
and motor representations formed at the level of the adap-
tive layer provide the input to the contextual layer, which
acquires, retains, and expresses sequential representations
by means of short-term and long-term memories. These
representations are used to plan ongoing behavior, and have
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Fig. 1. (A) The artificial forager SyntheticAnt. The robot is equipped
with a wireless color camera for visual cue recognition, a chemosensor array
for odor detection, a wind sensor for wind direction computation and three
LEDs for head direction computation using an overhead tracking system.
The camera image is transmitted using a 2.4 GHz analogue wireless link.
The exchange of motor commands and sensor readings with the robot are
realized via a serial port over Bluetooth. (B) Wind tunnel arena. At the
back of the wind tunnel there are exhaust ventilators that create a controlled
wind flow inside the tunnel. Visual cues are placed on the floor and an
overhead vision based tracking system (AnTS) is used to reconstruct the
position and heading direction of the robot.

been shown to be compatible with formal Bayesian models
of decision making [36]. All computations are implemented
using the neural simulation tool IQR [37].

D. Reactive behaviors

The reactive layer of SyntheticAnt implements a set of
reactive behaviors including:
• Chemical search: SyntheticAnt implements a model based
on the best studied case of chemotactic behavior, moth
chemotaxis (as in [33]). It consists of an upwind movement
(surge) whenever the animal perceives the odor stimulus and
otherwise an oscillatory crosswind search (cast) until the
odor plume is found again.
• Collision avoidance: Virtual proximity sensors, derived
from the tracking system (figure 1), are used to avoid
immediate collissions.
• Feeder detection: After finding the feeder (odor source)
SyntheticAnt returns to the nest using a computed home
vector by means of path integration, further referred to as
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Fig. 2. Contextual learning of landmarks:(A) Activation of HDA cells as a sinusoidal function of the angular difference from the cell’s preferred
angle. (B) HDA-set activation for a group of 36 HDA cells (of 10◦ resolution each) for a movement indicated by the arrow. Blue and red lines represent
positive and negative activations respectively. Each HD accumulator cell stores the value d × cosθ where d is the distance indicated by the movement
arrow and θ the deviation angle of the movement from the preferred angle of the accumulator cell. The slope of activation falls as a sinusoidal function of
angular deviation from the actuated direction, being 0 at 90◦. (C) An example of a foraging run from nest to feeder traversing some landmarks indicated
by the colored shapes. Individual path segments from landmark to landmark are indicated by numbers 1..4. (D) HDA cell activities at the end of each path
segment. Y axis represents the cell activity and correlates with the distance traveled in the preferred angle of each cell, i.e. distance coded as firing rate.
The X axis stands for the accumulator cells 1 to 36. The red vertical line with the corresponding number at the X axis shows the accumulator cell with the
highest activity. (E) During the foraging runs from the nest to the feeder, the encountered landmarks are chained in the DAC contextual layer short-term
memory (STM) together with the HDA set. Upon feeder detection, the contents of the STM are transferred into the LTM and the HDA-set is reset. After
several foraging runs, the LTM contains several segment sequences of different lengths since in each foraging run only a subset of available landmarks are
visited. (F) During the recall phase, the HDA-sets starting from the recalled segment to the goal segment are combined to compute the optimal route to
the feeder. Note that the recalled segment and the goal segment can be on different LTM sequences, in which case the segments from the current landmark
to the nest on one sequence, and the nest to the goal landmark on the other have to be combined.

homing.
In the absence of the odor plume SyntheticAnt’s surge-and-
cast reactive behavior simplifies to a simple cast, which
enables SyntheticAnt to explore the environment until a
memorized landmark is encountered. In the absence of the
odor plume a stochastic behavior is employed to avoid
getting stuck.

E. Landmark Recognition

Landmark recognition is implemented using a neural net-
work that extracts prominent hue and edge features of visited
landmarks using a neural network for extracting salient
landmark features from the camera image using the neural
simulation tool IQR [37]. See table I for the neural network
parameters.

F. Heading Direction Accumulation

Path integration (PI) uses self-motion cues to compute
the vector between the navigator’s current position and the
starting point, i.e. home base. In our model we make use of
heading direction and proprioceptive information to acquire
PI. We propose the use of head direction accumulators
(HDA), as postulated in [25]. A HDA is a neuron that
fires only when the navigator heads in a particular direction.
Furthermore, the firing rate of such a neuron correlates with
the distance covered in that direction (figure 2, B). HDAs are

assumed to integrate sensory information such as optic flow,
polarized photoreceptors, sun position and proprioceptive
information until reset [25]. Hence, a group of HDA neurons
each of which is tuned to a different angle at equal intervals
covering 0 to 360 degrees encodes the direction and distance
from the previous position at which the HDA-set was reset.
The activation of an HDA-set is governed by a cosine
function as shown in figure 2. The slope of the activation
rate is highest when the navigator moves in the HDA cell’s
preferred direction and falls according to the cosine function
with angular deviation, consistent with [25] [38]. During
foraging, whenever SyntheticAnt encounters a landmark, the
set of detected landmark features and the current HDA
information is passed to the STM of the contextual layer
of DAC, as discussed in the next subsection. After that, the
HDA-set is reset and the foraging continues.

G. Short and Long Term Memory

The contextual layer supports the formation of more
complex representations of perception and events (processed
by the adaptive layer) expressing their relationship in time. In
the case of the SyntheticAnt, pairs of visual cues and HDA
information form basic memory elements, called memory
segments. During the acquisition phase (foraging) salient
events (cue detections) are first stored in short-term memory
(STM) together with the current HDA. When the goal state

2245



landmark feature extraction,
heading direction accumulation

Motor
Action

A
d

ap
ti

ve
 L

ay
er

R
ea

ct
iv

e 
la

ye
r

C
o

n
te

xt
u

al
 L

ay
er

Sensors
­ wind compass
­ chemo sensors
­ vision
­ collision detectors
­ proprioception

Wheels

p
er

ce
p

ti
o

n
 m

at
ch

in
g

LTM

STM

successful segment sequence

current segment

segment = 
landmark features + 
HDA­set

current segment sequence

memorized sequences

reactive actions
­ collision avoidance
­ surge and cast chemosearch

co
n

textu
al recall

­ hom
ing

­ landm
ark navigation

Fig. 3. SyntheticAnt Foraging Model: The reactive layer performs
reflex actions like collision avoidance, chemical search, homing, etc. Dur-
ing foraging, the adaptive layer performs landmark recognition, feature
extraction, HDA computation and constructs memory segments for each
observed landmark. A segment, as shown on the top right, contains the
extracted landmark features and an HDA-set. These segments are sequenced
temporarily in the short-term memory (STM) of the contextual layer until
feeder detection, when the contents of the STM are transferred into the
long-term-memory (LTM). During the recall phase (homing, landmark
navigation), the LTM is matched against the current sensory events and
an optimal trajectory is computed from recalled LTM segments.

is reached, the content of the STM is stored in the long-term
memory (LTM) as a sequence (figure 3). During the recall
phase (landmark navigation), the LTM is matched against the
current sensory events. Goal cue is defined as a the feature set
characterizing a specific landmark. Matching LTM sequences
containing both current sensory perception and goal cues
are recalled to compute the optimal route from the current
position to the goal landmark. Matching is accomplished by
the following distance function:

d(a, b) =
1
K

∑
i

| ai

max(a)
− bi
max(b)

| (1)

where a and b are vectors in RK and a is the current
activity of the cue information and b is the stored cue infor-
mation. A segment is selected when the distance 1− d(a, b)
is higher than a predefined threshold. The selected segment
and segments stored in the same sequence together contain
the accumulated PI information (HDA) to the goal.

To compute the optimal route from the currently perceived
landmark to an arbitrary landmark, we consider the scenario
where the currently selected segment (landmark) and the goal
segment (landmark) are on different LTM sequences. To do
this, we first compute the homing vector by summing and
inverting the sequence of HDA-sets stored in all segments
from the currently selected segment until nest on the first
sequence. To this we add the sum of the HDA-s from nest
to the goal segment (landmark) on the second sequence. This

allows computing optimal routes between any two landmarks
represented in arbitrary segments in the whole LTM.

After multiple foraging runs, SyntheticAnt might encounter
landmarks, that had been seen in different foraging runs. This
fact will select segments of different sequences in the LTM
during recall. In this case, each selected segment will return
a homing vector, which have to be merged optimally. This
generalizes from homing to landmark navigation if the goal
landmark is not the nest. In general we refer to the decoded
heading direction and distance as action (or action HDA-set).
Assuming a white noise error, this decoded heading direction
and distance to the goal can be formulated as a 2D Gaussian
probability distribution:

X̄ ∼ N(µ̄, σ2) (2)

where X̄ = [α, δ]T . α is the angle and δ the distance
coded by the action HDA-set. The action HDA-set, X̄ , can
be formulated as a Gaussian distribution with mean µ̄ and
variance σ2. The variance σ2 grows with the total distance
dist covered during the heading direction accumulation. This
can generally formulated as a function: σ2 = f(dist). Given
this Gaussian distribution for each recalled segment action,
we use Bayesian inference to compute the best action. If n
actions are recalled, the best action a is the action with the
highest conditional probability: P (a|X̄1, X̄2, ..., X̄n). And
using Bayes theorem., the probability of the optimal action
is computed:

P (a|X̄1, X̄2, ..., X̄n) =
P (a)P (X̄1, X̄2, ..., X̄n|a)

P (X̄1, X̄2, ..., X̄n)
(3)

where the numerator P (a)P (X̄1, X̄2, ..., X̄n|a) is the
joint distribution P (a, X̄1, X̄2, ..., X̄n) and the denominator
P (X̄1, X̄2, ..., X̄n) is a constant without effect.

Using conditional independence of memory sequences, the
above equation can be reformulated as:

P (a|X̄1, X̄2, ..., X̄n) ∝ P (a)
n∏
i

P (X̄i|a) (4)

P (a) is uniformly distributed in an a priori unknown
environment. Therefore, the computation of P (a) in equation
4 can be reduced to the product of Gaussians X̄1, X̄2, ..., X̄n.
The resulting action with the highest probability is optimal
in the Bayesian sense.

SyntheticAnt runs on an Intel(R) Core(TM)2 Duo CPU
2.66GHz machine with GNU/Linux Suse10.3 operating sys-
tem at about 35 Hz. The parameters of the neural simulation
using the IQR toolkit [37] is summarized in table I.

III. RESULTS

SyntheticAnt was exposed to a number of tests in the arena
shown in figure 1, where it had to forage starting from the
nest and to find the feeder placed at the upwind end of
the wind tunnel. Upon feeder detection it had to compute
the homing vector and return to nest. After foraging runs,
the chemical cue was switched off and SyntheticAnt was
kidnapped and placed in an arbitrary position in the arena.
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Fig. 4. Foraging, homing and landmark navigation: All plots are superimposed on the image from the tracking camera. The vertical bar in the middle
of the image belongs to the wooden structure of the wind tunnel and does not interfere with the movement freedom of SyntheticAnt. (A) Foraging and
homing. The red dots indicate position of SyntheticAnt during chemosearch (foraging) from nest to feeder. The upwind anemotactic chemosearch using
the surge-and-cast algorithm gives rise to the oscillatory movement until the odor plume can be sensed. The green circles indicate encountered landmarks.
Note that not all available landmarks are detected. The white arrows indicate the corresponding HDA sets memorized using the DAC contextual layer. The
blue square on the right is the feeder. The yellow arrow corresponds to the computed homing HDA. The yellow track shows the homing behavior of the
robot after feeder detection. The homing path shows a zig-zag movement as the robot tries to correct its current heading direction using the difference
between the accumulated HDA starting at the feeder and the contextual memory response HDA. Such a correction is equivalent of the general proportional
controller. (B) Different nest to feeder trajectories. To test the generalization of homing to landmark navigation, we forced SyntheticAnt to go on two
different trajectories from nest to feeder (indicated as run 1 and run 2, leading through available landmarks. During these runs encountered landmarks
(shown in green) and the corresponding HDA sets are memorized. Note that all available landmarks are detected in both the runs together, in order to test
the recall. (C) Kidnapping and generalization of homing. After the runs shown in B, SyntheticAnt is kidnapped and placed in an arbitrary position in
the arena. SyntheticAnt employs the cast behavior (not shown in figure) until it finds a landmark it had memorized (shown as the SyntheticAnt position).
Thereafter it recalls all possible straight routes to other landmarks including the nest and feeder, indicated by the white arrows. (D) Navigation of recalled
routes. After recalling routes to other landmarks as shown in C, SyntheticAnt carries out the traversal of the recalled route until the goal landmark is
recognized. The different trajectories are plotted in different colors.
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# total neurons 62771
# total neuron groups 252

# integrate and fire 29
# linear threshold 202
# random spike 21
# total synapses 103872

# cells in HDA set 72
# cells in landmark features 2 × 4

processes 16

TABLE I
NEURAL SIMULATION PARAMETERS

At this point, it had to find a landmark and reach other
landmarks and the feeder by generating optimal routes.
An overhead camera is used to track the position of the
robot for data analysis, together with the logged data from
the neural simulation of the model. Figure 4 A, shows a
foraging run through landmarks and homing behavior on
a straight line to the nest from the feeder. Encountered
landmarks during the foraging run are shown as green circles
in figure 4, A. The nest is indicated by the blue rectangle.
After a foraging run, when the feeder is found, the homing
vector is recalled automatically and the DAC reactive layer
of SyntheticAnt initiates the homing behavior. SyntheticAnt is
also able to generalize homing to landmark navigation and
can traverse unknown paths to go from a given landmark
to another landmark encountered during a different foraging
run (figure 4 B,C,D)1.

Memorized and computed HDA sets are direction vectors
leading from one landmark to another (shown as arrows
in figure 4). Decoding of an HDA neuron group into the
direction α is done as following:

α =
360
N
∗ I

where N is the number of neurons in the HDA set and I
the index of the neuron with highest activity in the set. The
distance D is coded directly by the activity rate of the neuron
I . See also figure 2 A,B,C,D for HDA coding.

Figure 5 is the density plot of tracking data and
summarizes the typical behavior of SyntheticAnt during 5
foraging runs. The landmark regions get very high density
as landmark recognition stops the robot for some time
to ensure precise feature extraction of the landmark. The
robot stops to avoid collisions when at the periphery of the
field and this results in some high density spots along the
periphery.

The use of overhead tracking for the computation of
the heading direction and proprioception of the Syntheti-
cAnt gives highly precise HDA-sets. This is very useful
for testing the feasibility of our insect model and also to
conduct tests inside a wind tunnel. However, in real world
experiments these computations will be erroneous due to
sensor errors. Therefore in future work the overhead tracking

1A video clip provided in the supplementary material demonstrates the
behavior of the robot during a foraging run.

will be replaced by odometry sensors (e.g. using optic flow)
and heading direction sensors (e.g. using solar compass).
This means that the precision of HDA computation will
fall since such sensors have intrinsic errors. While error
in heading direction and path integration accumulates with
the distance traveled, the precision of the computed HDA
falls. To evaluate the performance of our system when using
such imperfect information, we conducted the following
experiment. From three foraging runs of SyntheticAnt going
through different landmarks, we evaluated the error in the
computation of the homing vector when using one, two
or three recalled DAC LTM sequences. Noise in the HDA
sets for each path-segment in each sequence (from one
landmark to the next), was modeled as linearly correlated
with the distance traveled. Specifically a white noise of
mean zero and a variable variance (SNR) proportional to
the distance traveled was induced on each HDA set. After
this, the homing vector was computed in three different ways:
using each of the three sequences individually, by combining
just two of the three and by combining all three together.
The fusion of different sequences was done using the DAC
Bayesian fusion algorithm described earlier (equation 4). We
assessed the robustness of the system by measuring the error
when varying the signal to noise ratio (SNR) from 0.1 to
100. Results show that the error falls with the number of
sequences used to compute the homing vector (number of
runs/experience of the forager) for all ranges of the SNR
values of sensors, see figure 6. This not only justifies the
Bayesian merging of LTM responses but also, it indicates
the validity of the proposed insect-model also when using
real odometry and heading direction sensors.

Fig. 5. Foraging behavior as density plot: Position data from five foraging
runs of SyntheticAnt were used. The high density areas are near landmarks,
the nest (leftmost high density circle) and feeder (rightmost high density
circle). Also some peripheral areas have relatively high densities due to the
fact that SyntheticAnt stops to avoid collisions. The plot illustrates the typical
behavior of the robot during foraging. Note that the colorbar indicates the
number of occurrences of the robot at a given position and a numerical
interpolation was applied to smoothen the tracked position data.

A remarkable property of the three coupled control layers
of DAC is the emergence of useful behavioral properties.
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Fig. 7. Acting in a dynamic world: SyntheticAnt was exposed to obstacles placed on its route during homing or landmark navigation. In a typical
example as in the figure, the collision avoidance reactive control competes with homing behavior and maneuvers SyntheticAnt around the collision. The
heading direction to the nest is simultaneously corrected and the robot returns to nest. This capability emerges intrinsically from the three coupled layers
of DAC and allows SyntheticAnt to act in a dynamically changing world with moving objects.
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One of them is maneuvering in a dynamically changing
world. To test this behavior we placed obstacles in the
arena as SyntheticAnt was performing landmark navigation or
homing. The collision avoidance reactive behavior then had
to compete with the previously active behavior mode (e.g.
homing or surge-and-cast) to maneuver around the obstacle.
Thereby the desired heading direction has to be corrected
for the movement of the robot. A typical example of such a
maneuver is shown in figure 7.

IV. CONCLUSIONS

We presented a mapless navigational model based on
insect navigation strategies. This biologically based model
includes different aspects of insect-navigation like chemical
search, PI and landmark navigation and it is implemented
using the Distributed Adaptive Control framework. Our
model is implemented and tested on a ground robot in
a chemo-foraging task. Unlike navigational models based

on place/map like representations, our model uses head-
ing direction accumulation and proprioceptive information
in combination with landmark recognition. This approach
proposes a solution to autonomous navigation without having
the need to learn place representations. SyntheticAnt is able
to learn a graph structure using local cues, heading direction
accumulation and low memory usage. Consistent with insect
studies, our model is stable against landmark addition or
removal as this does not affect the learned DAC LTM. An
interesting addition to the model would be forgetting, which
would allow the forager to forget LTM sequences that include
landmarks that were displaced after learning. Going beyond
the insect world, the theory is also consistent with environ-
mental exploration of rats, which move along wall edges
and between prominent landmarks when placed in novel
enclosures [14]. Such an exploration pattern was also ob-
served in humans and is optimal for creating waypoints and
heading vectors, but not optimal for creating a representation
of continuous space [39]. Finally, as discussed in [25], the
heading-vector framework unifies various navigation forms
from rodents in laboratory environments to long distance
bird migration. Taking parsimony as the principle behind
optimality, insect navigation strategies as the one proposed
in this model provide inspiration for future work on mobile
robots that act in the real-world. DAC thereby provides
the unifying framework for combining different aspects of
perception, memory and behavior.
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