
Planning-Space Shift Learning: Variable-space Motion Planning toward

Flexible Extension of Body Schema

Yuichi Kobayashi and Shigeyuki Hosoe

Abstract— To improve the flexibility of robotic learning, it
is important to realize an ability to generate a hierarchical
structure. This paper proposes a learning framework which
can dynamically change the planning space depending on the
structure of tasks. Synchronous motion information is utilized
to generate modes and different modes correspond to different
hierarchical structure of the controller. This enables efficient
task planning and control using low-dimensional space. An
object manipulation task is tested as an application, where an
object is found and used as a tool (or as a part of the body)
to extend the ability of the robot. The proposed framework
is expected to be a basic learning model to account for body
image acquisition including tool affordances.

I. INTRODUCTION

Hierarchical learning is an important issue to improve

learning ability of robots. In some researches of hierarchical

learning, navigation in large building like complex mazes

[1], [2] or controlling a robotic arm with multiple joints [3]

are investigated as examples of large and complex problems.

Apart from those high-dimensionalities, one aspect of the

complexity in robot tasks is that it involves objects whose

shapes can vary depending on situations and the objects

can play various roles; a target to be carried, an obstacle

to avoid collision, or a tool which can be used to achieve

different objectives. The existence of the objects makes tasks

diverse (various objectives and situations), complex (different

dynamics depending on contact or non-contact) and high-

dimensional (configuration space).

As an approach to the complex control problems, it is

known that some behaviors of the robotic system can be

realized by combination of multiple modules, each of which

has relatively small dimension, even though the DOF of

the total system is very large. For example, subsumption

architecture [4] realized flexible and adaptive behaviors of

locomotion robots with high DOFs, while individual module

in the architecture played rather simple role such as collision

avoidance or simple maneuver. Such architectures realize

flexibility by focusing on just a part of the total system,

where the part in focus flexibly varies depending on the

situations and objectives.

In this paper, a learning architecture that can account

for such variable focus in robotic motion learning with

objects is proposed. A ‘part in focus’ is interpreted as a

space for motion planning in this research. By changing or

‘shifting’ the planning space, the architecture can be applied

Y. Kobayashi is with Tokyo University of Agriculture and Technology,
2-24-16 Koganei Tokyo, Japan, yu-koba@cc.tuat.ac.jp

S. Hosoe is with RIKEN-TRI Collaboration Center for Human-Interactive
Robot Research, Nagoya, Japan, hosoe@nagoya.riken.jp

to diversity of tasks. In the proposed architecture, variables

to be controlled can be variant, differing from the multiple-

module learning model [5] where the state variables and

control variables have to be invariant.

One possible application of planning-space shift learning

is a problem of adaptive tool-use. An object can be utilized

to extend reachable region of a robot when the robot can

move it. That is, the robot can use the object as a tool.

The ability of tool-use has gathered attention partly because

it is deeply related to the issue of affordance [6] and

body schema, that are frequently discussed in the field of

developmental robotics [7]. Stoychev proposed a behavior-

based approach to realize representation of tool use [8].

Nabeshima et al. also proposed a learning framework for

tool-use [9]. This paper aims to propose a more general

and more ‘bottom-up’ description of hierarchy generation.

Thus, the proposed architecture does not utilize any explicit

representation of ‘tool’ and it uses just the information of

motion synchronousness.

In II, problem settings for the proposed learning architec-

ture is described. The learning architecture is proposed in

III, followed by evaluations by simulation in IV.

II. PROBLEM DESCRIPTION

For simplicity, it is assumed that all motions of the robot

and the objects are quasi-static.1) The objects are assumed to

be polyhedral or spherical rigid bodies. Let n be the number

of joints of the robot arm and m the number of the objects,

which move only through contacting with the robot hand or

other objects, i.e., they do not move by themselves.2) The

state variables of the system are the followings:

• Variables which express the configuration of the robot;

θ ∈ Θ ⊂ R
n

• Variables which express the configuration of the object;

q1 ∈ R
n1 , · · · , qm ∈ R

nm

The objective of the robot task is to move an object to a

certain desired configuration. Which object should be moved

and its desired configuration are given on-line. The agent can

observe the following variables in addition to configuration

of the robot θ :

• Position of the robot hand (end effector) h(θ)
• Configuration variables of the objects measured from

image inputs to the robot

These variables are presented to the agent as the observation

vector y ∈ Y ⊂ R
ℓ. Initially, these variables are not distin-

1)Thus, velocity components can be omitted from state variables.
2)It is assumed that the robot contacts with objects only at its hand.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3107

guished by the agent and the number of the object or DOFs

of motions of them are also unknown. The configuration

variables of objects are denoted by [qT
1 , · · · , qT

m]T . The i-th
component of observation variable y is denoted by yi(t), i =
1, · · · , ℓ3). The agent does not know the correspondence

between the elements of y and the observed position of the

robot hand, nor the functional relations among the elements

of y (including the kinematics of the arm).

At each time step, the robot can change its configuration

variables. That is, u = ∆θ is the control input to the system.

The followings are assumptions on the tasks:

• Contact of a new object with moving ones and the hand

happens only to the object which has begun moving last.

It is also assumed that only one object will start moving

at a time. Therefore the moving objects and the hand

form a chain.

• The movement of an object is affected only by the

object which is positioned closer to the robot hand and

therefore the direction of the effect of object motions is

unidirectional.

• The relationships between any two moving (and con-

tacting) objects (hand) are described by mappings

among the configuration variables of them without

redundancy. The mappings do not depend on the contact

positions on the objects.

III. LEARNING STRUCTURE

The learning structure proposed in this paper is constituted

by the four basic functional components. An overview will

first be presented in the following subsection and following

to this the detail of the algorithm will be described.

A. Basic idea of planning-space shift

The agent repeats trial motions while resetting the con-

figurations of the robot arm and the objects (the reset is

done once a certain steps of the motion). The agent initially

yields random action controls and observes y and collects

them with control u. An example with ℓ = 5 is shown in

Fig.1 and Fig.2. Initial random movements of the robot body

causes changes of the corresponding observation variables.

By detecting synchronous motions through the observation of

changing variables in y, one can find a group of observation

variables which are directly affected by the motion of the

robot itself (these correspond to the configuration variable of

the robot hand). In this example, y3, y4 and y5 are grouped as

a set (Fig.1). Let Y1 ⊂ R
3 (corresponding to {y3, y4, y5}).

By collecting the data of θ and y3, y4, y5 for some time

period, one can obtain a functional relationship between θ

and y3, y4, y5 represented as a mapping from Θ to Y1 and

the inverse mapping from Y1 to Θ.

After some exploration, it may happen that variables y1

and y2 also change. This change of {y1, y2} is regarded to

be caused by the change of {y3, y4, y5}. This observation

corresponds to the fact that an object (corresponding to

{y1, y2}) starts moving by contacting with the moving robot

3)In this paper, i-th component of vector x is denoted by xi.

y

u
robot body &

environment

desired trajectory

as command

planning inY 1

1
y

2
y

3
y

4
y

5
y

u

Fig. 1. Mode 1: generation of
command u from Y1

y

u
robot body &

environment

desired trajectory

as command

planning inY 2

1
y

2
y

3
y

4
y

5
y

u

Fig. 2. Mode 2: generation of
trajectory in Y1 from one in Y2

hand (corresponding to {y3, y4, y5}). Similarly to the above,

the second group of variables Y2 ⊂ R
2 (corresponding

to {y1, y2})is introduced. The case where only variables

y3, y4, y5 change and the case where y1, · · · , y5 change are

called mode 1 and mode 2, respectively. Similarly to the case

of mode 1, the inverse mapping from Y2 to Y1 is acquired.

Using the mapping, it is possible to generate a trajectory in

Y1 when a desired trajectory in Y2 is given.

The constructed mappings can be used when a task

is given to the robot system. For instance, let a desired

configuration for {y1, y2} is given as a cross depicted in

Fig.3. First, a total trajectory with mode transitions (more

strictly, a succession of points on boundaries) is planned as

shown as a succession of arrows in the right part of the

figure. Up to point p12 indicated in Fig.3, the trajectory has

to be retained in mode 1, i.e., only variables y3, y4, y5 can

change but y1, y2 must be constant. For this, we can use the

constructed mapping from Y1 to U . After transition to mode

2, the mapping from Y2 to Y1 is used while maintaining

mode 2. Note that in the case of mode 1, the space for

planning is Y1. Then later in mode 2, the planning space

shifts to Y2.

From the perspective of hierarchical structure, control

variables in U ‘obeys’ the trajectory defined by observation

variables in Y1 in mode 1 (Fig.1). Next in mode 2, the

trajectory in Y1 is dominated by the trajectory defined in

Y2 (Fig.2). Thus, different relations of dependence among

groups of variables can be seen in each mode, where some

groups of variables in the upper layer dominates the behavior

of other groups of variables in the lower layer. The relation

between two groups of variables can be regarded as hierar-

chy. In this sense, the proposed architecture can be regarded

to generate hierarchy autonomously.

This architecture brings two advantages:

• The motion-planning space is not pre-defined. The plan-

ning framework can be flexibly applied to various tasks

with different objects and different number of objects.

• The exploration space is divided into lower dimensional

spaces (Y1 and Y2 in the present example) and this

makes the exploration more efficient.

The proposed learning structure has the following func-

tional components:

1) Mode generation by motion synchronousness:

Modes are generated by grouping observation variables

based on motion synchronousness. Observation vari-

3108

desired configuration

mode 1

mode 2

u

u

Y1

Y2

current configuration

mode transition

Y1

12
p

Y
1

Y2

Fig. 3. Planning-space shift among different modes

ables are stored for estimating the boundary between

modes.

2) Acquisition of motion mappings with consideration of

mode keeping and mode transition:

Mapping from a group of observation variables to

another group is estimated. This mapping is used to

generate motion in a mode when a desired motion in

another mode is given. Within each mode, there can be

two strategies for control; 1) to keep the same mode

without any occurrence of mode transition, and 2) to

make mode transition to a certain target mode.

3) Exploration and estimation of reachable region:

Using the motion mappings mentioned above, each

mode is explored. During exploration, observation vari-

ables are stored to estimate reachable regions.

4) Planning and control via multiple modes:

Once a desired configuration of a certain object is given

to the robot, the total trajectory is planned by finding

via points on the boundaries among modes (p12 in

Fig.3). Parameterization of boundaries is used for this.

These processes can be conducted simultaneously, but we

execute and evaluate each process one by one, for simplicity.

The following subsections give the details of the components.

B. Mode generation using motion synchronousness

Recall that vector y = [y1, · · · , yℓ]
T ∈ Y ⊂ R

ℓ is the

observation vector. y(t) denotes the observed value of y at

time t. In order to detect synchronousness among observa-

tion variables, time differences of observation variables are

defined as

∆yi(t) = yi(t) − yi(t − 1), i = 1, · · · , ℓ. (III.1)

With ∆yi(t), its indicator set IC is defined as

IC(t) = {i1, i2, · · · , ik|∆yij
(t) 6= 0, j = 1, · · · , k,

∆yij
(t) = 0, otherwise}. (III.2)

Hereafter, the terminology ‘mode’ will be used to denote

different indicator sets. When a mode that has never been

encountered is experienced at time t and let k be the current

number of modes, mode k + 1 is newly created and corre-

spondingly the indicator set is represented as I
(k+1)
C = IC(t).

Suppose mode transition from i to j, which means the set

of moving objects has changed. This include two cases; 1)

an object that has been isolated begins to move by contacting

with the moving objects, and 2) a part of a group of objects

that have been moving is separated and stops moving. In

general, any one of the group of moving objects can contact

with an isolated object and any part of the group of moving

objects can be separated. Based on the assumption described

in II, however, connection of the objects is generated in a

chain-form (i.e. not in a tree-form) and contact or separation

happens only at the tip (object) of the chain. Thus, at mode

transition from i to j, either of I
(i)
C ⊂ I

(j)
C or I

(j)
C ⊂ I

(i)
C

holds. The former corresponds to the beginning of motion of

an isolated object and the latter corresponds to the separation

of the object at the tip of the group of moving objects.

Now let k be the current number of the group of observa-

tion variables, that is, k−1 objects have been found excluding

the hand. We consider the former case of I
(i)
C ⊂ I

(j)
C , the

case where a new object has been found at transition from

mode i to j. The observation variables which correspond to

an object that begins to move is defined as

y(k+1) = [yi1 , yi2 , · · · , yif(k+1)
]T , ia ∈ I

(j)
C − I

(i)
C , (III.3)

where f(k +1) denotes the number of observation variables

that correspond to (k + 1)-th object. Yk+1 is defined as

Yk+1 = {y(k+1)|y(k+1) ∈ R
f(k+1)}. (III.4)

Note that the distinction between ‘what can be controlled’

and ‘what cannot be controlled’ is obtained through the

grouping of the observation variables. The indicator sets

of I1
C , · · · , Ik+1

C give the observation variables that can be

controlled and the remaining indicators denote that those

observation variables are impossible to control so far. The

sense of ‘agency’ is expressed as controllable variables of

Y1, · · · ,Yk+1 in this framework.

Suppose that the current mode is i and k-th group of

observation variables is moving at the tip of the chain. Set

of stored observation variables for k-th group is defined as

O(k) = {y(k)(t) ⊂ Yk|
∀t s.t. IC(t) = I

(i)
C }. (III.5)

The boundaries among different modes can be estimated by

collected observation variables at the moment when a mode

changes to another mode. When mode changes from i to

j (or j to i) by connection of k-th object with ℓ-th object

(or by separation of ℓ-th object from k-th object) 4), which

means I
(i)
C ⊂ I

(j)
C , the database for boundary approximation

is denoted by Bi,j as

Bi,j = {[yT
1 , yT

2]T |y1 ∈ O(k), y2 ∈ O(ℓ)}. (III.6)

Bi,j is a set of observation variables between mode i and j.

A transition mode set Mi is defined as the set of modes

to which mode transition is possible from mode i. It is

expressed by Bi,j as Mi = {j|Bi,j 6= ∅}.

C. Estimation of mode boundaries using SVM

To get boundary equations between modes, non-linear

Support Vector Machine (SVM), which is known as a non-

linear classifier with kernel functions [10], is used. For

classification between mode i and j, vectors in Bi,j are used.

4)Here note that ‘object’ includes the robot hand.

3109

Let ms denote the total number of data and ns denote the

dimension of vectors ([yT
1 , yT

2]T in (III.6)). Vectors in Bi,j

are rearranged into data vector ak ∈ R
ns , k = 1, · · · ,ms.

d ∈ R
ms is a vector with plus or minus ones, where plus

and minus of dk correspond respectively to modes i and j of

ak, where i < j. Hereafter, let x = [yT
1 , yT

2]T . In non-linear

SVM with Gaussian kernel, by introducing kernel function

K as

K(x, ak) = exp

(

−
‖x − ak‖

2

σ2

)

, (III.7)

where σ denotes a width parameter for the Gaussian kernel,

separation surface between two classes is expressed as

ms
∑

k=1

dkwkK (x, ak) = 0, (III.8)

where w is a solution of the following optimization problem:

min
w

{

1

2
wT Qw − eT w

}

, e = [1, · · · , 1]T ∈ R
ns , (III.9)

where Q is given by

Q =
1

ν
+ HHT , H = D[A − e], ν > 0. (III.10)

D = diag[d1, · · · , dms
], A = [a1, · · · , ams

]T and ν is a

parameter for the optimization problem . For implementation

of optimization in (III.9), Lagrangian SVM is applied [11].

The boundary information obtained by SVM is used for

1) generation of mode keeping (and mode transition) motion

mappings and 2) planning using via points on the boundaries

with parameterization.

D. Mode-transition and mode-keeping motion mapping

This section describes how to generate motion in Yi when

a desired motion in Yj is given, supposing that there exists

transition of modes from i to j. This motion mapping com-

ponent described in this section is used in control described

in III-G.

For mode j, motion information is collected through

random exploration and stored, where a motion in Yj is

caused by a motion in Yi. The stored data is used to construct

an inverse mapping (regarded as motion transformation)

between groups of observation variables in Yi and Yj .

Fig.4 shows an example of motion transformation between

groups of variables Yi and Yj , denoted by Gi,j . Motion

transformation Gi,j receives a vector in Yj as an input and

gives a vector in Yi as an output. As a result it can generate

a trajectory in Yi so as to realize a given input trajectory

in Yj . One way to realize such a transformation is to apply

a non-linear function approximator such as the feed-forward

neural network (hereafter denoted by NN)[12]. Let f̃i,j(y
(j))

denote the output of NN (after training) for input y(j). When

desired displacement ∆y(j) is given at time t, displacement

in Yi can be calculated by

∆y(i) = f̃i,j(y
(j)(t) + ∆y(j)) − f̃i,j(y

(j)(t)) (III.11)

using the outputs of NN.

)(i
y∆

desired motion

in

motion in

motion transformation
)(j

y∆

Y
iY

j which realizes desired motion

jiG ,

Fig. 4. Motion transformation between Yi and Yj

To generate a motion which keeps the same mode, it is

necessary to explicitly avoid the mode transition in addition

to using the above-mentioned inverse-mapping. Here we

consider that the current mode is j and suppose that it is

required to avoid mode transition from j to k, where k ∈
Mj . Mode keeping motion generator can be designed using

boundary information of SVM. Recall that the discrimination

between two modes is given by F (x) ≶ 0where

F (x) =

ms
∑

k=1

dkwkK(x, ak). (III.12)

By introducing a potential function as Φ(x) = {F (x)}2,
an algorithm to derive a motion in Yi to explore in mode j
randomly is shown in Algorithm I.

Algorithm I Motion generation with mode keeping¶ ³
1) Set found = false
2) While found = false repeat:

• Set ∆y
(j)
tmp = rand

• If F ([y(j)T + ∆y
(j)
tmp

T , y(k)]T) > ε, k ∈
Mj , then found = true

• Else repeat for no times (no > 0):

a) Set ∆y
(j)
tmp = ∆y

(j)
tmp − η

∂Φ

∂y(j)

b) If F ([y(j)T +∆y
(j)
tmp

T , y(k)]T) > ε, k ∈
Mj , then found = true and break

3) Output ∆y(i) with ∆y(j) = ∆y
(j)
tmp using (III.11)

µ ´
Here, η is a coefficient to determine the displacement in

Yj and ε denotes a threshold value to judge that it is

close enough to the boundary of mode transition. ‘rand’

denotes a random vector generator. Before deciding ∆y(j),

it is checked whether current mode j is maintained using

discrimination function F . If it is judged that the mode

might change, the small displacement ∆y(j) is modified to

be further from the boundary of the modes using gradient of

potential function Φ.

E. Parameterization of mode boundary

As described in III-A, it is necessary to parameterize

boundaries between modes to identify where to make transi-

tion on the boundary for the total planning accompanied with

mode transitions. Let us consider parameterization of bound-

ary between mode i and mode. The parameterization is done

for each discretized y(j) as shown in Fig.5. In this paper, a

method for one dimensional parameterization using nodes

is introduced (here assuming for simplicity that boundaries

3110

mode i

mode j

mode boundary

)(j
y

)(

1

i
y

)(

2

i
y

Fig. 5. Parameterization of bound-
ary by nodes

0'=p

i
q

1+iq
1'=p

)'()(p
i
z

)(

1

i
y

)(

2

i
y

Fig. 6. A curve model constructed
by nodes

are one-dimensional manifolds in two-dimensional space 5)

). Thus, a curve for boundary estimation is generated in Yi

space (here we assume that Yi ⊂ R
2) by nodes.

Now let qk ∈ R
2 denote a point on the boundary between

mode i and mode j which we call hereafter k-th node and

L denote the number of nodes. A curve from k-th node to

(k + 1)-th node, which is defined as k-th segment of the

curve, is defined using following equation as shown in Fig.6.

z(k)(p′) = qk + v1kp′ + v2kp′2, (III.13)

where v1k, v2k ∈ R
2 are coefficient vectors that give the

shape of k-th segment of the curve. This curve is designed so

that changing parameter p′ from zero to one corresponds to

the change on the curve from qk to qk+1. By differentiating

(III.13) by p′, ∂z(k)

∂p′ (p′) = v1k + 2v2kp′ is obtained. This

gives a tangential vector of the curve. By considering the

continuity of positions of the curve at the both edge of the

curve segment, that is, by letting z(k)(1) = z(k+1)(0),

qk + v1k + v2k = qk+1, k = 0, · · · , L − 1 (III.14)

is obtained as a condition for position continuity. Similarly,

the condition for continuity of tangential vector is given by
∂z(k)

∂p′ (1) = ∂z(k+1)

∂p′ (0), that is,

v1k + 2v2k = v1k+1, k = 0, · · · , L − 2. (III.15)

The above-mentioned conditions can be expressed in matrix

form as

AV = Q, A ≡

[

A1

A2

]

, Q ≡

[

Q1

O2(L−1)×1

]

, (III.16)

where matrices are defined as

A1 =

I2 I2 O
I2 I2

. . .

O I2 I2

∈ R
2L×4L, (III.17)

A2 =

I2 2I2 −I2 O
I2 2I2 −I2

. . .

O I2 2I2 −I2 O2

∈ R
2(L−1)×4L

(III.18)

5)One dimensional boundary corresponds to the case with objects and
hand expressed in 2-D space.

and

V =

v10

v20

...

v1L−1

v2L−1

∈ R
4L, Q1 =

q1 − q0
...

qL − qL−1

∈ R

2L.

(III.19)

When positions of nodes are given, V can be calculated

using pseudo-inverse as the minimum-norm solution by V =
AT (AAT)−1Q ≡ A†Q. By connecting all segments, a one-

dimensional submanifold z(s) can be defined as follows:

z(s) ≡ z(k)(p′), i ≤ s < k+1, p′ = s−k, k ∈ Z (III.20)

The positions of nodes are modified so that the curve z(s)
lie close to the boundary. It is assumed that the boundary

is smooth. This is realized by an incremental procedure to

reduce energy defined on the curve, where energy function

of the curve is defined with coefficient αext and αint as

E = αextEext + αintEint. (III.21)

An internal energy for the curve is defined as

Eint =

∫ L

0

∥

∥

∥

∥

∂2z(s)

∂s2

∥

∥

∥

∥

2

ds. (III.22)

Using (III.13), Eint can be expressed as

Eint =
L

∑

k=1

∫ 1

0

∥

∥

∥

∥

∂2z(k)

∂p′2

∥

∥

∥

∥

2

dp′ = 4
L

∑

k=1

‖vk2‖
2. (III.23)

Eext is defined so that the curve coincides with the boundary

when Eext is minimized. By using the potential function Φ
defined between mode i and j, it can be defined as

Eext =
L

∑

k=1

Φ([qT
k , y

(j)
d

T]T), (III.24)

where y
(j)
d denotes discretized value of y(j). 6) By iterating

gradient descent update

qk ← qk − ηn

∂E

∂qk

, k = 1, · · · , L (III.25)

the positions of nodes 1, · · · , L are modified so that the

curve coincides the boundary while keeping smoothness.

After convergence of the iteration of (III.25), any point

on the boundary can be expressed by parameter s. In the

following, parameterization of boundary between mode i and

j is referred as zi,j(s).

F. Exploration and estimation of reachable region

Observation variables are stored during exploration to

estimate reachable region for motion planning. The reachable

region is identified by the parameters on mode transition

boundaries and the observation variables. For memorization

of reachable region (and utilization of it for total trajectory

3111

mode i

mode j

mode boundary

)(jy

)(

1

iy

)(

2

iy

)(

)(

j

kdy

kji

lds
),,(

)(

Fig. 7. Discretization of mode
boundary and observationvariable

-0.5 0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

1.5

Tyy],[21

1q 2
q

1θ

2θ

object 1 object 2

hand

Fig. 8. Simulation settings: robot
hand and objects

planning), parameter for boundary and configuration of ob-

ject are discretized as indicated as small circles in Fig.7.

Discretized values of observation variables for mode j is

defined as Y
(j)
D = {y

(j)
d(1), · · · ,y

(j)
d(n(j))}, where n(j) denotes

number of discretization of the observation variable. For

identification of boundary parameter, discretized values of

boundary parameter (between mode i and j) is defined as

S
(i,j),k
D = {s

(i,j),k
d(1) , · · · , s

(i,j),k
d(n(i,j))},where s

(i,j),k
d(ℓ) denotes ℓ-

th discretized parameter on boundary of mode transition from

i to j with k-th discretized observation variable y
(j)
d(k) and

n(i, j) denotes the number of discretization.

Let ik denote current mode and assume that mode

ik has been reached by mode transitions i1 → i2 →
· · · → ik. Mode transition sequence is expressed by τ =
[i1, · · · , ik]T ∈ N

k. Let T denote set of mode transition

sequences and T is updated while exploration as

T ← T ∪{τ (t)} if τ (t) /∈ T ∧

∣

∣

∣
I
(i)
C

∣

∣

∣
<

∣

∣

∣
I
(j)
C

∣

∣

∣
, i < j,

(III.26)

where τ (t) denotes mode transition sequence at current time

t. The second condition stands for that new mode sequence is

memorized only when the mode transition keeps increasing

number of changing observation variables. By this, mode

transitions with separation between objects (or an object

and the hand) are omitted. Using discretizations defined

above, identification of mode transition for mode transition

parameter s(i,j) and observation variable yj can be given as

gτ = [gs
τ

T , gy
τ

T]T , where

g
y
τ = [ℓ(i2)y , · · · , ℓ(ik)

y]T , ℓ(j)y = arg min
k

‖y
(j)
d(k) − y(j)‖

(III.27)

gs
τ = [ℓ(i1,i2)

s , · · · , ℓ(ik−1,ik)
s]T ,

ℓ(i,j)s = arg min
ℓ

‖s
(i,j),k
d(ℓ) − s(i,j),k‖, k = ℓ(j)y . (III.28)

Let D
(i)
τ (gτ) denote set of observation variables in mode i

with mode transition specified by τ and gτ . When y(i)(t)

is observed during exploration, D
(i)
τ (gτ) is updated as

D
(i)
τ (gτ) ← D

(i)
τ (gτ) ∪ {y(i)(t)}

if ∀y
(i)
k ∈ D

(i)
τ (gτ) s.t. ‖y(i) − y

(i)
k ‖ > Rr, (III.29)

6)The discretization intervals are set equal in the simulation.

mode1

)0()1(y

()kji ldji s
),,(

)(,z

mode *imode i

)(

*
*iy

mode j

target

u

)(j
y∆)(i

y∆

)1(
y∆

)()(ti
y

)(i
y∆

Fig. 9. Planning with mode transition

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) 65.055.0
1
<≤ q 75.065.0

1
<≤ q(b)

Fig. 10. Estimated boundaries between mode 1 and 2

where Rr > 0 denotes a threshold value and y
(i)
k denotes

k-th element in D
(i)
τ (gτ). Reachable region in mode i via

mode transition τ and gτ can be expressed as

R
(i)
τ (gτ) =

{y(i) ∈ Yi|
∃y

(i)
k ∈ D

(i)
τ (gτ), ‖y(i) − y

(i)
k ‖ ≤ Rr}, (III.30)

which will be used in motion planning described in III-G.

G. Trajectory generation and control with mode transitions

Planning with mode transitions described in this section

corresponds to the dynamical shift of planning space, be-

cause different observation variables are used in planning

within each mode. The total algorithm of trajectory gen-

eration and control is given in Algorithm II. A task is

given to the robot system as a target configuration of a

certain object7). The robot interprets the given information

as target mode and target observation variables in the target

mode (1). Using mode transition database and reachable

region database, the robot finds an appropriate transition

sequence of modes and pair of mode transition parameters

and observation variable at mode transition (2,3). At step 4,

the robot starts control of its body to realize mode transition

sequence of τ † with transition parameter g
†
τ † . At each

mode, the robot aims at a target (subgoal) point on the

mode transition boundary which is specified by discretized

parameter of boundary curve (b). Once a subgoal is obtained,

the robot repeats small movements toward the subgoal while

trying to keep current mode. For mode keeping, Algorithm

I is utilized by replacing random value to decide ∆y
(i)
tmp by

∆y(i) given in (c)-i. The desired motion ∆y(i) is realized

by transformations of motions as shown in Fig.9.

In the case when impossible tasks are given to the robot,

the procedures of 1) or 3) can not be achieved.

7)Here it is assumed that configurations of other objects are not specified
as a task.

3112

Algorithm II Trajectory generation and control¶ ³
1) Given: target mode i∗ and configuration y

(i∗)
∗

2) Find τ † ∈ T s.t. (∃k ∈ N s.t. (i∗ = τ †
k ∧ k ≤

k1,
∀k1 s.t. i∗ = τ †

k1
))

3) Find g
†
τ † s.t. y

(i∗)
∗ ∈ R

(i∗)

τ † (gτ †) ∧ g
†y
τ † =

[ℓ
(i2)
y0 , · · · , ℓ

(ik)
y0]T ,

where ℓ
(i)
y0 = arg minℓ ‖y

(i)
d(ℓ) − y(i)(0)‖

4) Set current mode as i = 1 and repeat following

trajectory generation and control procedures until

target configuration is achieved, i.e. y(i∗)(t) =

y
(i∗)
∗ holds:

a) If i 6= i∗, find next mode as j = τ †
ι where

ι = κ + 1, τ †
κ = i

b) If i = i∗, set target observation variable as

y
(i)
† = y

(i∗)
∗ , else set target point on mode

boundary by y
(i)
† = zi,j

(

s
(i,j),k†

d(ℓ)

)

, where

ℓ = gs
τ †i

, k† = arg mink ‖y
(j)
d(k) − y(j)(t)‖

c) Repeat small movement of ∆y(1) until tar-

get point is reached, i.e., y(i) = y
(i)
†

i) Calculate displacement using ∆y(i) =

β
(y(i)

†
−y(i)(t))

‖y(i)

†
−y(i)(t))‖

and mode keeping

ii) Calculate ∆y(ι1) using ∆y(i), ∆y(ι2)

using ∆y(ι1), · · · , ∆y(1) using ∆y(ιm)

with mode keeping, where τ † =
[1, ιm, · · · , ι2, ι1, i, j, · · ·]

T

d) Set i ← j
µ ´

IV. SIMULATION

The proposed mode generation and trajectory generation

algorithms are implemented and evaluated in simulation. The

robot manipulator has two joints and there are two objects,

rectangular and circular objects as shown in Fig.8. The end

effector of the robot hand is also a circle. The state variables

are the joint angles of the manipulator θ ∈ R
2 and positions

of two objects q1, q2 ∈ R. The observation variables are

the position of the robot hand (center of circle) [y1, y2]
T ,

the position of the rectangular object (object 1) y3(= q1)
and the position of the circular object (object 2) y4(= q2).
Initial position of object 1 is randomly chosen in 0.6 ≤ q1 ≤
0.9, while position of object 2 is fixed at q2 = 1.6. The

manipulator and the objects are initialized every 100 steps.

Exploration and learning are done by the followings:

1) Move randomly for 3000 steps.

2) Build mapping between [θ1, θ2]
T and [y1, y2]

T , esti-

mate boundary between mode 1 and mode 2, 8) and

generate parameterization on the boundary.

3) Explore mode 2 using the motion generator which

keeps mode 2 for 200 steps.

4) Build mapping between q1 and q2, estimate boundary

between mode 2 and mode 3 (object 2 moving).

8)They correspond respectively to the movement of the robot hand and
the movement of the rectangular object by contacting with the robot hand.

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) 65.055.0
1
<≤ q 75.065.0

1
<≤ q(b)

Fig. 11. Parameterization on boundary with nodes

5) Explore mode 2 and 3 using mode keeping motion

generator for 200 steps to estimate reachable region.

It is expected that while procedure 1, contact between the

hand and object 1 happens frequently enough to estimate

boundary. Similarly it is expected that sufficient motion

information of object 2 is obtainable to finally estimate the

reachable region. The mapping and boundary building in 4. is

formally done but actually not so important because motions

of object 1 and 2 are restricted on a line and the boundary

of mode switching is just a point.

After the total exploration, three tasks are given to the

robot system:

• Task 1: move the end effector to [y1, y2] = [1.3, 0.6].
• Task 2: move object 1 to q1 = 0.5.

• Task 3: move object 2 to q2 = 1.9.

First, the robot acquires the relation between its joint

angles and the hand position by randomly changing the joint

angles (procedure 1). The first group of observation variables

is built as [y1, y2]
T ∈ Y1. When the hand contacts object 1,

the second group of observation variable is constructed as

y3 ∈ Y2. While the hand keeps contact with the object 1, the

object moves together with the hand. When moving object 1

contacts with object 2, object 2 begins to move and the third

group is constructed as y4 ∈ Y3. While collecting mapping

data by the random motion, the robot also collects boundary

information between mode 1 and mode 2. In this case

discrimination function F (x) of SVM is defined in three-

dimensional space, that is, x = [y1, y2, y3]
T . Fig.10(a) and

(b) show boundaries of two modes where 0.55 ≤ q1 < 0.65
for (a) and 0.65 ≤ q1 < 0.75 for (b). Circles in the figure

denote variables in mode 1, crosses denote mode 2 and

curves denote boundaries of F (x) = 0.

The discrimination function F (x) is utilized for param-

eterization on the boundary explained in III-E. Fig.11(a)

and (b) are resultant node distributions with L = 9 after

100 iterations of node movements, where nodes are initially

located around the center of the boundary. It can be seen that

nodes are distributed along the contour of F (x) = 0. The

both end nodes are constrained to the nearest observed data,

which can be understood by comparing Fig.10 with Fig.11.

Fig.12 shows the trajectory of task 1, where a cross in

the figure denotes the target configuration. This motion was

realized by using the mapping between Y1 and Y2, which can

be regarded as inverse kinematics learning. In the case of task

2, first reachable region of y3 was checked by Algorithm II.

A cross in Fig.13 denotes the destination on the boundary

3113

-0.5 0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

Fig. 12. Trajectory of task 1

-0.5 0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

Fig. 13. Trajectory of task 2

-0.5 0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

Fig. 14. Trajectory of task 3

between mode 1 and 2. First the robot hand aims at the

destination on the boundary, and then keeps contact to realize

the desired configuration of y3. In the case of task 3, first

reachable region of y4 was checked. The lower cross in

Fig.14 indicates the destination on boundary between mode

2 and 3, while the upper cross indicates the destination on

boundary between mode 1 and 2. After realizing contact

between the hand and object 1, the robot keeps contact to

move object 1 to the right direction and to realize contact

between object 1 and object 2. It can be seen that finally

the robot realized the desired configuration of y4 = 1.9 by

extending its body by using object 1.

V. DISCUSSION

In the simulation, it was shown that the proposed learning

architecture enables various task execution by finding rela-

tions among variables and using the relations for planning

with various observation variables.

Motor babbling [13] has been discussed as human learning

of motor coordination. While the first stage of mapping

learning in the proposed method can be equivalent to inverse-

kinematics learning [14], the total framework deals with

wider problem of finding relations among various observa-

tion variables. The proposal of this paper can be regarded as

an construction method of body image [15], where ‘self’ is

identified through the criterion of ‘what can be controlled’

and ‘what cannot be controlled’.

On the other hand, the applications presented in the

simulation is rather simple and easy. The proposed archi-

tecture is applicable to more complex and high-dimensional

problems, but to apply the framework to higher-dimensional

problems, it is required to consider parameterization of high-

dimensional sub-manifolds (boundaries between modes).

Other possible extensions are the followings:

• The influence of noise should be taken into account in

order to implement the proposed framework in the real

world. One possible way to deal with noise in motion

synchronousness detection is to approximate the effect

of noise by preceding measurement.

• Observation variables directly correspond to configura-

tion variables in this paper. Extraction of observation

variables from various image feature vectors should be

taken into consideration.

• The framework of hybrid dynamical system control [16]

is closely related to the control with mode switchings.

Besides, a control strategy that utilizes a partial informa-

tion of state variable is known as ‘backstepping’ [17].

VI. CONCLUSION

In this paper, an approach to hierarchy generation is

proposed as planning-space shift learning. The learning

framework consists of generation of modes based on motion

synchronousness, estimation of boundaries between modes,

and planning via multiple modes. In simulation, an illustra-

tive example was shown where an object is utilized as a tool

to move another object. The consideration of the proposed

architecture even with simple examples will be an impor-

tant base for constructing more complex representations of

hierarchical learning.

REFERENCES

[1] Dayan, P. and Hinton, G. E. (1993). Feudal reinforcement learning.
Advances in Neural Information Processing Systems, (5):271–378.

[2] Hauskrecht, M., Meuleau, N., Boutilier, C., Kaelbling, L. P., and Dean,
T. (1998). Hierarchical solution of markov decision processes using
macro-actions. In Proc. of 14th Annual Conference on Uncertainty in

Artificial Intelligence, pages 220–222.
[3] Miyamoto, H., Morimoto, J., Doya, K., Kawato, M. (2004). Rein-

forcement learning with via-point representation. Neural Networks,
17:299–305.

[4] Brooks, R. A. (1986). A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, RA-2:253–262.

[5] Wolpert, D. M. and Kawato, M. (1998). Multiple paired forward and
inverse models for motor control. Neural Networks, 11:1317–1329.

[6] Gibson, J. J. (1977). The theory of affordances. In Perceiving, Acting,

and Knowing: Toward Ecological Psychology, pages 62–82.
[7] Lungarella, M., Metta, G., Pfeifer, R., and Sandini, G. (2003). Devel-

opmental robotics: a survey. Connection Science, 15(4):151–190.
[8] Stoychev, A. (2005). Behavior-grounded representation of tool affor-

dances. In Proc. of IEEE Int. Conf. on Robotics and Automation.
[9] Nabeshima, C., Kuniyoshi, Y., Lungarella, M. (2006). Adaptive body

schema for robotic tool use. Advanced Robotics, 20(10):1105–1126.
[10] Vapnik, V. N. (1995). The Nature of Statistical Learning Theory.

Springer.
[11] Mangasarian, O. L. and Musicant, D. R. (2001). Lagrangian support

vector machines. Journal of Machine Learning Research, 1:161–177.
[12] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

internal representations by error propagation. Parallel Data Process-

ing, 1:318–362.
[13] Demiris, Y. and Dearden, A. (2005). From motor babbling to

hierarchical learning by imitation: a robot developmental pathway. In
Proc. of the Fifth Int. Workshop on Epigenetic Robotics, pages 31–37.

[14] Oyama, E., Agah, A., MacDorman, K. F., Maeda, T., and Tachi, S.
(2001). A modular neural network architecture for inverse kinematics
model learning. Neurocomputing, 38-40:797–805.

[15] Yoshikawa, Y., Hosoda, K., and Asada, M. (2003). Does the invariance
in multi-modalities represent the body scheme? - a case study with
vision and proprioception -. In Proc. of the 2nd Int. Symp. on Adaptive

Motion of Animals and Machines, volume SaP-II-1.
[16] van der Schaft, A. and Schumacher, H. (2000). An Introduction to

Hybrid Dynamical Systems. Springer.
[17] Khalil, H. K., (Ed.) (2001). Nonlinear Systems. Prentice Hall.

3114

